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The following Communications were read:—

1. Vortex Statics. By Sir William Thomson.

(Abstract.)

The subject of this paper is steady motion of vortices.
1. Extended definition of " steady motion-" The motion of any

system of solid or fluid or solid and fluid matter is said to be steady
when its configuration remains equal and similar, and the velocities
of homologous particles equal, however the configuration may
move in space, and however distant individual material particles
may at one time be from the points homologous to their positions
at another time.

2. Examples of steady and not steady motion : —
(1.) A rigid body symmetrical round an axis, set to rotate round

any axis through its centre of gravity, and left free, performs
steady motion. Not so a body having three unequal principal
moments of inertia.

(2.) A rigid body of any shape, in an infinite homogeneous liquid,
rotating uniformly round any, always the same, fixed line, and
moving uniformly parallel to this line, is a case of steady motion.

(3.) A perforated rigid body in an infinite liquid moving in the
VOL. IX. I
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60 Proceedings of the Royal Society

manner of example (2.), and having cyclic irrotational motion of
the liquid through its perforations, is a case of steady motion.
To this case belongs the irrotational motion of liquid in the neigh-
bourhood of any rotationally moving portion of fluid of the same
shape as the solid, provided the distribution of the rotational mo-
tion is such that the shape of the portion endowed with it remains
unchanged. The object of the present paper is to investigate
general conditions for the fulfilment of this proviso ; and to inves-
tigate, farther, the conditions of stability of distribution of vortex
motion satisfying the condition of steadiness.

3. General synthetical condition for steadiness of vortex motion.—
The change of the fluid's molecular rotation at any point fixed in
space must be the same as if for the rotationally moving portion
of the fluid were substituted a solid, with the amount and direction
of axis of the fluid's actual molecular rotation inscribed or marked
at every point of it, and the whole solid, carrying these inscrip-
tions with it, were compelled to move in some manner answering
to the description of example (2). If at any instant the distribu-
tion of molecular rotation* through the fluid, and corresponding
distribution of fluid velocity, are such as to fulfil this condition, it
will be fulfilled through all time.

4. General analytical condition for steadiness of vortex motion.—
If, with (§ 24, below) vorticity and "impulse," given, the kinetic
energy is a maximum or a minimum, it is obvious that the motion
is not only steady, but stable. If, with same conditions, the
energy is a maximum-minimum, the motion is clearly steady, but
it may be either unstable or stable.

5. The simple circular Helmholtz ring is a case of stable steady
motion, with energy maximum-minimum for given vorticity and
given impulse. A circular vortex ring, with an inner irrotational
annular core, surrounded by a rotationally moving annular shell
(or endless tube), with irrotational circulation outside all, is a case
of motion which is steady, if the outer and inner contours of the

* One of the Helmholtz's now well-known fundamental theorems shows
that,/rom the molecular rotation at every point of an infinite fluid the velocity at
every point is determinate, being expressed synthetically by the same formula
as those for finding the " magnetic resultant force" of a pure electro-magnet.
— Thomson's Reprint of Papers on Electrostatics and Magnetism.
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section of the rotational sliell are properly shaped, but certainly
unstable if the shell be too thin. In this case also the energy is
maximum-minimum for given vorticity and given impulse.

6. In these examples of steady motion, the " resultant impulse"
(V. M.* § 8) is a simple impulsive force, without couple; the cor-
responding rigid body of example 3 is a circular toroid, and its
motion is purely translational and parallel to the axis of the toroid.

5. We have also exceedingly interesting cases of steady motion
in which the impulse is such that, if applied to a rigid body, it
would be reducible, according to Poinsot's method, to an impulsive
force in a determinate line, and a couple with this line for axis.

To this category belong certain distributions of vorticity giving
longitudinal vibrations, with thickenings and thinnings of the core
travelling as waves in one direction or the other round a vortex
ring, which will be investigated in a future communication to the
Eoyal Society. In all such cases, the corresponding rigid body of
§ 2 example (2) has both rotational and translational motion.

7. To find illustrations, suppose, first, the vorticity (defined below,
§ 24) and the force resultant of the impulse to be (according to the ty j '
conditions explained below, § 29) such that the cross section is
small in comparison with the aperture. Take a ring of flexible
wire (a piece of very stout lead wire with its ends soldered together

answers well), bend it into an oval form, #^ -
and then give it a right-handed twist

round the long axis of the oval, so that

the curve comes to be not in one plane
(fig. 1). " A properly-shaped twisted

ellipse of this kind [a shape perfectly
determinate when the vorticity, the
force resultant of the impulse, and the rotational moment of the
impulse (V. M. § 6), are all given] is the figure of the core in what

we may call the first+ steady mode of single and simple toroidal

* My first series of papers on vortex motion in the " Transactions of the
Royal Society of Edinburgh," will be thus referred to henceforth.

t First or gravest, and second, and third, and higher modes of steady mo-
tion to be regarded as analogous to the first, second, third, and higher funda-
mental modes of an elastic vibrator, or of a stretched cord, or of steady
undulatory motion in an endless uniform canal, or in an endless chain of
mutually repulsive links.
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vortex motion with rotational moment. To illustrate the second
steady mode, commence with a circular ring of flexible wire, and
pull it out at three points, 120° from one another, so as to make it
into as it were an equilateral triangle with rounded corners. Give
now a right-handed twist, round the radius to each corner, to the
plane of the curve at and near the corner; and, keeping the cha-
racter of the twist thus given to the wire, bend it into a certain
determinate shape proper for the data of the vortex motion. This
is the shape of the vortex core in the second steady mode of single
and simple toroidal vortex motion with rotational moment. The
third is to be similarly arrived at, by twisting the corners of a
square having rounded corners ; the fourth, by twisting the corners
of a regular pentagon having rounded corners ; the fifth, by twisting
the corners of a hexagon, and so on.

In each of the annexed diagrams of toroidal helixes a circle is
introduced to guide the judgment as to the relief above and
depression below the plane of the diagram which the curve repre-
sented in each case must be imagined to have. The circle may
be imagined in each case to be the circular axis of a toroidal core
on which the helix may be supposed to be wound.

To avoid circumlocution, I have said, "give a right-handed
twist" in each case. The result in each case, as in fig. 1, illus-
trates a vortex motion for which the corresponding rigid body
describes left-handed helixes, by all its particles, round the central
axis of the motion. If now, instead of right-handed twists to the
plane of the oval, or the corners of the triangle, square, pentagon,
&c, we give left-handed twists, as in figs. 2, 3, 4, the result in
each case will be a vortex motion for which the corresponding
rigid body describes right-handed helixes. It depends, of course,
on the relation between the directions of the fo*ce resultant and
couple resultant of the impulse, with no ambiguity in any case,
whether the twists in the forms, and in the lines of motion of the
corresponding rigid body, will be right-handed or left-handed.

8. In each of these modes of motion the energy is a maximum-
minimum for given force resultant and given oouple resultant of
impulse. The modes successively described above are successive
solutions of the maximum-minimum problem of § 4; a determinate
problem with the multiple solutions indicated above, but no other

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0370164600031679
Downloaded from https://www.cambridge.org/core. Tufts Univ, on 26 Jun 2018 at 20:52:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0370164600031679
https://www.cambridge.org/core


of Edinburgh, Session 1875-76. 63

solution, when the vorticity is given in a single simple ring of tbe
liquid.

9. The problem of steady motion, for the case of a Vortex line
with infinitely thin core, bears a close analogy to the following
purely geometrical problem :—

Find the curve whose length shall be a minimum with given

Fig. 2. Fig. 3. Fig. 4.

resultant projectional atea, and given resultant areal moment (§ 27
below). This would be identical with the vortex problem if the
energy of an infinitely thin vortex ring of given volume and given
cyclic constant were a function simply of its apertural circum-
ference. The geometrical problem clearly has multiple solutions
answering precisely to the solutions of the vortex problem.

10. The very high modes of solution are clearly very nearly
identical for the two problems (infinitely high modes identical)^
and are found thus :—

Take the solution derived in the manner explained above, from
a regular polygon of N sides, when N is a very great number. It
is obvious that either problem must lead to a form of curve like-
that of a long regular spiral spring of the ordinary kind bent round
till its two ends meet, and then having its ends properly cut and
joined so as to give a continuous endless helix with axis a circle
(instead of the ordinary straight line-axis), and N turns of the
spiral round its circular axis. This curve I call a toroidal helix,
because it lies on a toroid * just as the common regular helix lies

* I call a circular toroid a simple ring generated by the revolution of any
singly-drcumferential closed plane curve round any axis in its plane not
cutting it. A "tore," following French usage, is a ring generated by the
revolution of a circle round any line in its plane not cutting it. Any simple

I*'"
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on a circular cylinder. Let a be the radius of the circle thus
formed by the axis of the closed helix; let r denote the radius of
the cross section of the ideal toroid on the surface of which the
helix lies, supposed small in comparison with a; and let 6 denote
the inclination of the helix to the normal section of the toroid.
We have

tan u = a
Nr

because -^ is as it were the step of the screw, and 2?rr is the cir-

cumference of the cylindrical core on which any short part of it may

be approximately supposed to be wound.
Let K be the cyclic constant, I the given force resultant of the

impulse, and //, the given rotational moment. We have (§ 28)
approximately

I = K7ra2, fx = /cN7rr2a.

Hence
I / ii

I*tan 6 =

11. Suppose, now, instead of a single thread wound spirally
round a toroidal core, we have two separate threads forming as it
were a a two-threaded screw," and let each thread make a whole

ring, or any solid with a single hole through it, may be called a toroid ; but
to deserve this appellation it had better be not very unlike a tore.

The endless closed axis of a toroid is a line through its substance passing
somewhat approximately through the centres of gravity of all its cross sec-
tions. An apertural circumference of a toroid is any closed line in its surface

• once round its aperture. An apertural section of a toroid is any section by
a plane or curved surface which would cut the toroid into two separate toroids.
It must cut the surface of the toroid in just two simple closed curves, one of
them completely surrounding the other on the sectional surface : of course, it
is the space between these curves which is the actual section of the toroidal
substance, and the area of the inner one of the two is a section of the
aperture.

A section by any surface cutting every apertural circumference, each once
and only once, is called a cross section of the toroid. It consists essentially
of a simple closed curve.

But it J
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number of turns round the toroidal core. The two threads, each
endless, will be two helically tortuous rings linked together, and
will constitute the core of what will now be a double vortex ring.
The formulas just now obtained for a single thread would be appli-
cable to each thread, if K denoted the cyclic constant for the circuit
round the two threads, or twice the cyclic constant for either, and
N the number of turns of either alone round the toroidal core.
But it is more convenient to take N for the number of turns of
both threads (so that the number of turns of one thread alone is
JN), and K the cyclic constant for either thread alone, and thus for
very high steady modes of the double vortex ring

I i= 2/c7ra2, fji =

U a « - i

Lower and lower steady modes will correspond to smaller and
smaller values of N, but in this case, as in the case of the single
vortex core, the form will be a curve of some ultratranscendent
character, except for very great values of N, or for values of 6 in-
finitely nearly equal to a right angle (this latter limitation leading
to the case of infinitely small transverse vibrations).

12. The gravest steady mode of the double vortex ring corre-
sponds to N = 2. This with the single vortex core gives the case ' *
of the twisted ellipse (§ 7). With the double core it gives a sys-
tem which is most easily understood by
taking two plane circular rings of stiff
metal linked together. First, place them
as nearly coincident as their being linked
together permits (fig. 5). Then separate
them a little, and incline their planes a
little, as shown in the diagram. Then Fig. 5.
bend each into an unknown shape deter-
mined by the strict solution of the transcendental problem of
analysis to which the hydro-kinetic investigation leads for this
case.

13. Go back now to the supposition of § 11, and alter it to
this:—
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Let each thread make one turn and a half, or any odd num-
ber of half turns, round the toroidal core: thus each thread will
have an end coincident with an end of the other. Let these
coincident ends be united. Thus there will be but one endless
thread making an odd number N of turns round the toroidal core.
The cases of K = 3 and N = 9 are represented in the annexed
diagrams (fig. 9).*

Imagine now a three-threaded toroidal helix, and let N" denote
the whole number of turns round the toroidal core, we have

I = 3/c7ra2, fx = #eN7rr2a,

tan 0
/ (£1)

Suppose now N to be divisible by 3 : then the three threads
form three separate endless rings linked together. The case of
N = 3 is illustrated by the annexed diagram (fig. 6), which is
repeated from the diagram of V. M. § 58. If N be not divisible
by 3, the three threads run together into one, as illustrated for the
case of N = 14 in the annexed diagram (fig. 7).

Fig. 6, Fig. 7. Fig. 8. "Trefoil Knot."

14. The irrotational motion of the liquid round the rotational
cores in all these cases is such that the fluid velocity at any point is
equal to, and in the same direction as, the resultant magnetic force
at the corresponding point in the neighbourhood of a closed gal-

• The first of these was given in § 58 of my paper on vortex motion It has
since become known far and wide by being seen on the back of the « Unseen
Universe." s e e u
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vanic circuit, or galvanic circuits, of the same shape as the core or
cores. The setting forth of this analogy to people familiar, as
modern naturalists are, with the distribution of magnetic force in
the neighbourhood of an electric circuit, does much to promote a,
clear understanding of the still somewhat strange fluid motions
with which we are at present occupied. ;

15. To understand the motion of the liquid in the rotational
core itself, take a piece of Ii^dian-rubber gas-pipe stiffened internally
with wire in the usual manner, and with it construct any of the
forms with which we have been occupied, for instance the sym-
metrical trefoil knot (fig. 8, § 13), unit-
ing the two ends of the tube carefully
by tying them firmly by an inch or two
of straight cylindrical plug, then turn
the tube round and round, round its
sinuous axis. The rotational motion of
the fluid vortex core is thus represented.
But it must be remembered, that the
outer form of the core has a motion per- F i g 9 «Nine_leaved Kno t - .
pendicular to the plane of the diagram,
and a rotation round an axis through the centre of the diagram, \ P
and perpendicular to the plane in each of the cases represented by , j
the preceding diagrams. The whole motion of the fluid, rotational
and irrotational, is so related in its different parts to one another,
and to the translational and rotational motion of the shape of the
core, as to be everywhere slipless.

16. Look to the preceding diagrams, and, thinking of what they
represent, it is easy to see that there must be a determinate parti-
cular shape for each of them which will give steady motion, and I
think we may confidently judge that the motion is stable in each,
provided only the core is sufficiently thin. It is more easy to
judge of the cases in which there are multiple sinuosities by a
synthetic view of them (§ 3) than by consideration of the maxi-
mum-minimum problem of § 8.

17. I t seems probable that the two- o* three- or multiple-
threaded toroidal helix motions cannot be stable, or even steady,
unless I, /x, and N are such as to make the shortest distances
between different positions of the core or cores considerable in

VOL. IX. K
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comparison with the core's diameter. Consider, for example, the
simplest case (§ 12, fig. 5) of two simple rings linked together.

18 Go back now to the simple circular Helmholtz ring. It is
clear that there must be a shape of absolute maximum energy for
given vorticity and given impulse, if we introduce the restriction
that the figure is to be a figure of revolution, that is to say,
symmetrical round a straight axis. If the given vorticity be given
in this determinate shape the motion will be steady, and there is
no other figure of revolution for which it would be steady (it being
understood that the impulse has a single force resultant without
couple) . If the given impulse, divided by the cyclic constant, be
very great in comparison with the two-thirds power of the volume
of liquid in which the vorticity is given, the figure of steadiness is an
exceedingly thin circular ring of large aperture and of approximately
circular cross section. This is the case to which chiefly attention is
directed by Helmholtz. If, on the other hand, the impulse divided
by the cyclic constant be very small compared with the two-thirds
power of the volume, the figure becomes like a long oval, bored
through along its axis of revolution and with the ends of the bore
rounded off (or trumpeted) symmetrically, so as to give a figure
something like the handle of a child's skipping-rope, but sym-
metrical on the two sides of the plane through its middle
perpendicular to its length. It is certain that, however small
the impulse, with given vorticity the figure of steadiness thus
indicated is possible, however long in the direction of the axis
and small in diameter perpendicular to the axis and in aperture
it may be. I cannot, however̂  say at present that it is certain
that this possible steady motion is stable, for there are figures
not of revolution, deviating infinitely little from it, in which,
with the same vorticity, there is the same impulse and the same
energy, and consideration of the general character of the motion
is not reassuring on the point of stability when rigorous demon-
stration is wanting.

19. Hitherto I have not indeed succeeded in rigorously demon-
strating the stability of the Helmholtz ring in any case. With
given vorticity, imagine the ring to be thicker in one place than in
another. Imagine the given vorticity, instead of being distributed
in a symmetrical circular ring, to be distributed in a ring still,
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with a circular axis, but thinner in one part than in the rest. It f
is clear that with the same vorticity, and the same impulse, the
energy with such a distribution is greater that when the ring is t
symmetrical. But, now let the figure of the €iross sectioji of the
ring, instead of being approximately circular, be made considerably
oval. This will diminish the energy with the same yorticity and
the same impulse. Thus, from the figure of steadiness we may
pass continuously to others with same vorticity, same impulse, and
same energy. Thus, we see that the figure of steadiness is, as
stated above, a figure of maximum-minimnm, and not pf abso-
lute maximum, nor of absolute minimum energy. Hence, from
the maximum-minimum problem we cannot derive proof of
stability.

20, The known phenomena of steam rings and smoke rings
show us enough of, as it were, the natural history of the subject
to convince us beforehand that the steady configuration, with
ordinary proportions of diameters of core to diameter of aperture,
is stable, and considerations connected with what is rigorously
demonstrable in repect to stability of vortex columns (to be given
in a later communication to the Royal Society) may lead to a ,
rigorous demonstration of stability for a simple Helmholtz ring «$
if of thin enough core in proportion to diameter of aperture. But
at present neither natural history nor mathematics gives us perfect
assurance of stability when the cross section is considerable in
proportion to the area of aperture.

21. I conclude with a brief statement of general propositions, JI \
definitions, and principles used in tho preceding abstract, of which
some appeared in my series of papers on vortex motion com-
municated to the Royal Society of Edinburgh in 1867-68 <and 69,
and published in the Transactions for 1869. The rest will form
part of tho subject of a continuation of that paper, which I hope
to communicate to the Royal Society before the end of the
present session.

Any portion of a liquid having vortex motion is called vortex
core, or, for brevity, simply " core." Any finite portion of liquid
which is all vortex core, and has contiguous with it over its
whole boundary irrotationally moving liquid, is called a vortex. A
vortex thus defined is essentially a ring of matter. That it must
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be so was first discovered and published by Helroholtz. Some-
times the word vortex is extended to include irrotationally moving
liquid circulating round or moving in the neighbourhood of vortex
core; but as different portions of liquid may successively come
into the neighbourhood of the core, and pass away again, while
the core always remains essentially of the same substance, it is
more proper to limit the substantive term a vortex as in the
definition I have given.

22. Definition I.—The circulation of a vortex is the circulation
[V.M. § 60 (a)] in any endless circuit once round its core. What-
ever varied configurations a vortex may take, whether on account
of its own unsteadiness (§ 1 above), or on account of disturbances
by other vortices, or by solids immersed in the liquid, or by the
solid boundary of the liquid (if the liquid is not infinite), its
" circulation " remains unchanged [V. M. § 59, Prop. (1)]. The
circulation of a vortex is sometimes called its cyclic constant.

Definition II.—An axial line through a fluid moving rotation-
ally, is a line (straight or curved) whose direction at every point
coincides with the axis of molecular rotation through that point
[V. M. § 59 (2)].

Every axial line in a vortex is essentially a closed curve, being
of course wholly without a vortex.

23. Definition III.—A closed section of a vortex is any section
of its core cutting normally the axial line through every point of
it. Divide any closed section of a vortex into smaller areas ; the
axial lines through the borders of these areas form what are
called vortex tubes. I shall call (after Helmholtz) a vortex
filament any portion of a vortex bounded by a vortex tube (not
necessarily infinitesimal). Of course, a complete vortex may be
called therefore a vortex filament; but it is generally convenient
to apply this term only to a part of a vortex as just now defined.
The boundary of a complete vortex satisfies the definition of a
vortex tube.

A complete vortex tube is essentially endless. In a vortex
filament infinitely small in all diameters of cross sections " rota-
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tion " varies [V. M. § 60 (e)] from point to point of the length
of the filament, and from time to time inversely as -the area
of the cross section. The product of the area of the cross section | j !

into the rotation is equal to the circulation or cyclic constant of
the filament.

24. Vorticity will be used to designate in a general way the
distribution of molecular rotation in the matter of a vortex. Thus,
if we imagine a vortex divided into a number of infinitely thin
vortex filaments, the vorticity will be completely given when the
volume'of each filament and its circulation, or cyclic constant, are
given; but the shapes and positions of the filaments must also be
given in order that, not only the vorticity, but its distribution, can
be regarded as given.

25. The vortex density at any point of a vortex is the circula-
tion of an infinitesimal filament through this point divided by the
volume of the complete filament. The vortex density remains
always unchanged for the same portion of fluid. By definition it
is the same all along any one vortex filament.

26. Divide a vortex into infinitesimal filaments inversely as their

densities so that their circulations are equal; and let the circula-

tion of each be — of unity. Take the' projection of all the fila- I'J f:

ments on one plane. — of the sum of the areas of these projections

is (V. M. §§ 6, 62) equal to the component impulse of the vortex
perpendicular to that plane. Take the projections of the filaments
on three planes at right angles to one another, and find the centre
of gravity of the areas of these three sets of projections. Find,
according to Poinsot's method, the resultant axis, force, and

couple of the three forces equal respectively to — of the sums of

the areas, and acting in lines through the three centres of gravity
perpendicular to the three planes. This will be the resultant axis ;
the force resultant of the impulse, and the couple resultant of the

vortex.
The last of these, that is to say, the couple is also called the

rotational moment of the vortex (V. M. § 6).
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27. Definition IV—The moment of a plane area round any axis
is the product of the area multiplied into the distance from that
axis of the perpendicular to its plane through its centre of
gravity.

Definition F.—The area of the projection of a closed curve on
the plane for which the area of projection is a maximum will be
called the area of the curve, or simply the area of the curve. The
area of the projection on any plane perpendicular to the plane of
the resultant area is of course zero.

Definition VI.—The resultant axis of a closed curve is a line
through the centre of gravity, and perpendicular to the plane of
its resultant area. The resultant areal moment of a closed curve
is the moment round the resultant axis of the areas of its pro-
jections on two planes at right angles to one another, and parallel
to this axis. It is understood, of course, that the areas of the
projections on these two planes are not evanescent generally,
except for the case of a plane curve, and that their zero values are
generally the sums of equal positive and negative portions. Thus
their moments are not in general zero.

Thus, according to these definitions, the resultant impulse of a
vortex filament of infinitely small cross section and of unit
circulation is equal to the resultant area of its curve. The
resultant axis of a vortex is the same as the resultant axis of the
curve, and the rotational moment is equal to the resultant areal
moment of the curve.

28. Consider for a moment a vortex filament in an infinite
liquid with no disturbing influence of other vortices, or of solids,
immersed in the liquid. We now see from the constancy of the
impulse (proved generally in V. M. § 19) that the resultant area,
and the resultant areal moment of the curve formed by the
filament, remain constant, however its curve may become con-
torted ; and its resultant axis remains the same line in space.
Hence, whatever motions and contortions the vortex filament may
experience, if it has any motion of translation through space this
motion must be on the average along the resultant axis.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0370164600031679
Downloaded from https://www.cambridge.org/core. Tufts Univ, on 26 Jun 2018 at 20:52:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0370164600031679
https://www.cambridge.org/core


V |

of Edinburgh, Session 1875-76. 73

29. Consider now the actual vortex made up of an infinite
number of infinitely small vortex filaments. If these be of
volumes inversely proportional to their vortex densities (§ 25), so ||'
that their circulations are equal, we now see from the constancy
of the impulse that the sum of the resultant areas of all the
vortex filaments remains constant; and so does the sum of their ,J?
rotational moments: and the resultant areal axis of them all
regarded as one system is a fixed line in space. Hence, as in the
case of a vortex filament, the translation, if any, through space is iK

on the average along its resultant axis. All this, of course, is on
the supposition that there is no other vortex, and no solid
immersed in the liquid, and no bounding surface of the liquid near
enough to produce any sensible influence on the given vortex. j,; ^

2. Experiments illustrating Rigidity produced by Centrifugal
Force. By John Aitken, Esq.

If an endless chain is hung over a pulley and the pulley driven
at a great velocity, it is well known that the motion so communi-
cated to the chain has almost no tendency to change the form of
the curve in which the chain hangs, and that the principal effect
of the motion is to confer on the chain a quasi-rigidity which • (f
enables it to resist any force tending to alter its curvature.

This is only true in a general sense, and possibly may be true of
some ideal form of chain; but in all chains we can experiment on
there are forces in action in the moving chain which tend to cause
the chain to depart from the form which it has while at rest.

I shall refer to these disturbing forces later on. As the disturb-
ing forces in most chains are very small, we shall neglect them,
and for the present suppose the centrifugal force just balances the
tension at all points. The following experiments were made to
illustrate the balance of these forces, to show that into whatever
curves we may bend the chain when in motion, the centrifugal force
has no tendency to alter these curves: that all forms are forms of
stability, as far as the centrifugal force is concerned.

The first experiments were to show the effect of destroying the
balance between the tension and the centrifugal force. In these
experiments the links on the descending side of the loop were
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