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XII.  The Fanction of O,~motic Pres.~ure in the Analogq between 
Sol~tions and Gases. .By Professor J.  vA~':r HOFF*. 

D URING an investigation which required some know|edge 
of the laws regulating chemical equilibrium in solutions, 

the conclusion has gradually been evolved that a deep analogy 
--indeed almost an identity--exists between dilute solutions 
exerting osmotic pressure on the one hand, and gases under 
ordinary atmospheric pressure oll the other. The following 
pages contain an attempt to explain this analogy; and the 
physical properties of such systems will form the first subject 
of discussion. 

I. Osmotic Pressure--the nature of the Analogy due to this 
conception. 

In order clearly to realize the quanti~y referred to as osmotic 
pressure, imagine a vess@ A (fig. 1), corn- Fig. 1. 
pletelv full of an aqueous solution of sugar, ~/////////.////////////a 
placecl in water, B. If  it be conceived that 
the solid walts of this vessel are permeable 
to water, but impermeable to the dissolved 
sugar, then, owing to the attraction of the 
solution for water, water will enter the 
vessel A up to a certain limit, thereby in- 
creasing the pressure on the walls of the vessel. Equilibrium 
then ensues, owing to the pressure resisting further entry of 
water. This pressure we have termed osmotic pressure. 
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It  is evident that this state of 
equilibrium might have been at- 
tained in A without entl\y of 
water if the vessel had been con- 
strueted with a piston, compress- 
ing the solution with a pressure 
equal to the osmotic pressure 
(fig. 2). I t  follows moreover 
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Fig. 2. 

that, by increasing or diminishing the pressure on the piston, 
the state of concentration of the liquid can also be altered, 
owing to the passage of water through the walls of the vessel 
in an outward or inward direction. 

Such osmotic pressure has been experimentally investigated 
by Pfeffer (Osmotisc]~e Untersuchungen, Leipsig, 1887). Tim 
walls of the cell consisted of unglazed porcelain, rendered 
impermeable to sugar though not to water, by filling it with 
a solution of potassium ferrocyanide and placing it in a solu- 
tion of copper sulphate. Owing to diffusion, the ferroeyanide 
and the copper-salt come in contact after some time, and pro- 
duce a membrane of copper ferrocyanide having the required 
properties. Such a vessel is then filled with a one-per-cent. 
solution of sugar ; it is then closed with a cork provided with 
a manometer, and sunk in water ; the osmotic pressure gra- 
dually rises, owing to entry of water, and the pressure due to 
the entry of water is read off when it becomes constant. As 
an example of the results obtained, it may be mentioned that 
a one-per-cent, solution of sugar (which, owing to its con- 
siderable mass, was not appreciably diluted on entry of water) 
exerted at ~o.~ a pressure of 50'5 miliim, of mercury--about 
one fifteenth of an atmosphere. 

The porous membrane, such as that described, will be 
termed in the following pages a "semipermeable membrane;" 
and the conception will be made use of even where experi- 
mental verification is lacking. The behaviour of solutions 
may thus be studied in a manner strikingly analogous to that 
employed in the study of gases, inasmuch as what is known as 
"osmotic pressure" corresponds to pressure, or, as it is com- 
monly but incorrectly termed, " t ens ion"  of a gas. I t  is right 
to mention that this is no fanciful analogy, but a fundamental 
one ; the mechanism which, according to our present views, 
controls the pressure of gases and the osmotic pressure of liquids 
is substantially the same. In the former case pressure is due 
to the impacts of gaseous molecules on the walls bf the con- 
tainil~g vessel, and in the lafter to the impacts of the mole- 
cules of the dissolved substance on the semipermeable mem- 
bran% since the impacts of the molecules of the solvent, being 
equal and opposed on each side of the vessel, may be neglected. 
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The great practical advantage arising from this method of 
regarding the behaviour of solutions, which leads at once to 
quantitative conclusions, consists in the fact that the applica- 
tion of the second law of thermodynamics to liquids is rendered 
exceedingly easy ; for reversible processes, of which this law 
treats, can now be very simply conceived. I t  has already 
been mentioned that a piston and cylinder with semipermeable 
walls, placed in the solvent, permits of alteration of concen- 
tration of the solution contained therein, by alteration of the 
pressure on the piston, in exactly the same way as a gas can 
be rarefied or compressed ; except that in the former ease it 

i s  the solvent which escapes through the semipermeable walls 
on increase of pressure. Processes of this kind can always be 
made reversible, if  care be taken that the pressure on the 
piston is made equal to the opposed pressure, that is, in the 
ease of solutions, the osmotic pressure. 

We shall make use of this practical advantage in the fol- 
lowing pages, particularly in investigating the laws of " ideal 
solutions;" that is to say, solutions so dilute as to be com- 
parable with " i d e a l "  or "pe r f ec t "  gases, in which the action 
on one another of the dissolved molecules, as well as their 
actual volume compared with that of the space they inhabit, 
is so small as to be negligible. 

II .  Boyle's Law for Dilute Solutions. 

The analogy between dilute solutions and gases acquires at 
once a quantitative form, if it be noted that in both cases 
alteration of concentration exercises a similar influence on 
pressure, and is in both cases proportional to the pressure. 

This proportionality, which for gases goes by the name of 
Boyle's law, may be proved experimentally for liquids, as well 
as deduced theoretically. 

Experimental .Proof (Determination of osmotic pressure 
for solutions of various co~wentrations).--Let us first adduce 
:Pfeffer's determinations (Osmotische Untersucltungen, p. 71) 
of the osmotic poressure (oP.) in sugar-solutions at the same 
temperature (13 "2 to 16 "1), and with varying concentra- 
tions (C) : - -  

C. P. P 

1 per cent. 535 millim. 535 
2 ,, 1016 ,, 508 
2"74 ,, 1518 ,, 554 
4 ,, 2082 ,, 521 
6 ,, 3075 ,, 5i3 

0 2  
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P 
The approximately constant quotients (~ point conclusively 

to this proportionality between pressure and concentration. 
Comparison of Osmotic -Pressures by .P],ysiological Methods. 

--Observations of de Yries (" Eine Methode zur Analyse der 
Turgorkraft," Pringsheim's 3"al~rb. xiv.) show that equal 
changes of concentration of solutions of sugar, and of potas- 
sium sulphate and nitrate, exercise equal influence on the 
osmotic pressure. This osmotic pressure was compared, by 
physiological methods, with that of the contents of a plant- 
cell ; the protoplasmal envelope contracts when it is immersed 
in solutions possessing great attraction for water. By a 
systematic comparison of the three bodies mentioned, using 
the same cells, three isotonic liquids (i. e. liquids exhibiting 
the same osmotic pressure) were obtained. Cells of a differ- 
ent plant were then made use of, and so four isotonic series 
were constructed which showed a similar proportion in their 
concentrations ; this is exhibited in the following table, where 
the concentrations are expressed in gram-molecules per 
lib'e : -  
Series. KNO v C12H2~O u. K2S Q. KNO3=I. 012H220 n. K2S Q. 

I . .  0"12 ~ 0"09 l ~ 0"75 
l I . .  0'13 0"2 0"1 1 1"54 0"77 

I I I . .  0"195 0"3 0"15 1 1"54 0"77 
I V . .  0"26 0"4 - -  1 1"b4 - -  

Tlleoretlcal Proof.--These observations render highly 
probable the existence of proportionality between osmotic 
pressure and concentration, and the theorem may be com- 
pleted by a theoretical proof which is, indeed, ahnost self: 
evident. Regarding osmotic pressure as due to a kinetic 
cause (i. e. as produced by impacts of the dissolved molecules), 
there must exist a proportionality between the number of im- 
pacts in unit time and the number of molecules in unit volume. 
The proof is therefore exactly the same as that for Boyle's 
law. If, on the other hand, osmotic pressure be regarded as 
the outcome of an attraction for water-molecules, its value is 
evidently proportional to the number of attracting molecules 
in unit volume, provided (and this is taken for granted in 
sufficiently dilute solutions)the dissolved molecules exercise 
no attraction on each other, and each one exerts its own 
special attractive action, uninfluenced by its neighbours. 

I IL Gay-Lussae's Law for Dilute Solutions. 
While the proportionality between concentration and os- 

motic pressure is self-evident, so long as temperature remains 
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constant, the proportionality between osmotic pressure and 
absolute temperature, the concentration being maintained 
constant, is not so manifest. Yet proof can be furnished from 
thermodynamical considerations ; and experimental data exist 
which are highly favourable to the results predicted on 
thermodynamical grounds. 

Theoretical Proof.--l t  has been already mentioned that, by 
means of a piston and a cylinder with semipermeable walls, 
reversible processes can be conceived to occur. If' such pro- 
cesses ure expressed in the way common as regards g:~ses, 
volmne and pressures are indicated on the lines 0 V and O P 
(fig. 3); but pressure in this case, 
as before, must be taken as osmotic 
pressure. The initial volume (V cub. 
metres) is represented by OA; the 
initial pressure on the piston of area 
1 square metre (Pkilogr.) by Aa; 
and the absolute temperature by T;  
the solution is t~hen conceived to un- 
dergo a minute increase of volume, 

Fig. 3. 
P 

AD BC V 

dV cubic metres (=AB) ,  by moving the piston through dV 
metres, while the temperature of the solution is maintained 
constant by introduction of the requisite amount of heat. This 
amount of heat can be at once determined, inasmuch as it is 
equivalent to the external work perfi)rmed, PdV, by the 
motion of the piston. Internal work is absent, for the dilu- 
tion is, by hypothesis, so great that the dissolved molecules 
exercise no attraction on each other This isothermal change 
ab is succeeded by the isentropic or adiabatic change be, 
during which heat is neither absorbed nor evolved ; the tem- 
perature sinks by tiT°; and the original condition is then 
brought about by a second isothermal and a second adiabatic 
change, cd and da, respectively. The second law of thernlo- 

dT 
dynamics requires that the fraction, -~- PdV of the initially 

imparted heat charge PdV shall have been converted into 
work ; this must be equivalent to the area abed ; and hence 

dT 
the equation follows: --~ PdV = a b c d= af . AB = af dV ; and 

,iT =aft But af represents the change of osmotic hence P T- 

pressure, volume being kept constant, due to the change of 

C) temperature dT;  i.e. d-T v dT; hence 

dT} v 
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On integration this equation gives, on the assumption of 
constant volmne, 

P 
= constant; 

that is, the osmotic pressure is proportional to the absolute 
temperature, provided concentration (which is here equiva- 
lent to the volume of a gas) remain constant;  and this is 
entirely in accordance with Gay-Lussac's law connecting the 
pressure and temperature of gases. 

ff.xperimental ]-'roof (Determination of th'e osmotic pressure 
at di~'erent tem]geratures).--Let us compai'e this theoretical 
conclusion with the experimental data furnished by Pfeffer 
(pp. 114-115). He found that the osmotic pressure increases 
with rise of temperature; it will be seen that, although his 
results do not furnish a conclusive proot ~ of the correctness of 
the theorem, yet  there is a most striking correspondence 
between experiment and theory. I f  we calculate from one of 
two experiments at different temperatures the osmotic pres- 
sure ~o be expected in the other, by help of Gay-Lussac's law, 
and compare it with the experimental result~ we have the 
following series : - -  

1. Solution of cane-sugar. 
Pressure at 32 °, tbund . . 544 millim. 
Pressure at 14°'15, calculated . 512 ,, 

,, ,, found 510 ,, 
2. Solution of cane-sugar. 

Pressure at 36 ° , tbund . . 567 ,, 
Pressure at 15°'5, calculated 529 ,, 

,, , ibund 520"5 , 
3. Solution of sodium tartrate. 

Pressure at 36°'6, found . 1564 , 
Pressure at 13°'3~ calculated . 1443 ,, 

,, ,, found . 1431"6 , 
4. Solution of sodium tartrate. 

Pressure at 37°'3~ found . 983 , 
Pressure at 13°'3, calculated 907 , 

, , tbund 908 , 

Comparison of the Osmotic Pressure by Ph!lslological 
Methods.--Ifi the same manner that support has been lent to 
the application of Boyle's law to solutions (viz. that dii~rent 
substances in isotonic solutions retain their equality of 
osmotic pressure so long as their respective concentrations are 
reduced to the same fraction), so the application of Gay- 
Lussac's law receives support by the fact that this isotonic 
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state is maintained during equal alterations of temperature. 
I t  has been proved by physiological methods by Donders and 
Hamburger (Onderzoekingen gedaan in bet phy~'iologiseh. La- 
boratorium der Utrechtsche ttoogeschool [3] ix. p 26), making 
use of blood-corpuscles, that solutions of potassium nitrate, 
sodium chloride, and sugar, which at 0 ° are isotonic with the 
contents of these cells, and hence are isotonic with each other, 
exhibit the same isotonic state at 34°; this is seen in the 
annexed table : -  

Temperature 0 °. Temperature 34 °. 
KN03 1'052 to 1"03 p .c .  1"052 to 1"03 p. c. 
NaCl . 0"62 to 0"609 p.c .  0"62 to 0"609 p c. 
Cl~H226n 5-4_~ to 5"38 p .c .  5"48 to 5"38 p. c. 

Experimental Proof of ]3oyle's and Gay-Lussac's Laws for 
Solntions. L\q~eriments by Sorer (ArcMves des Sciences p@s. 
et ~at. [3] it. p. 48;  Ann. C]dm. P]q/s. W5] x:di. p. 295).--  
The phenomenon observed by Soret lends a strong support to 
the analogy between dilate solutions and gases in respect of 
the influence of concentration and temperature on pressure. 
His work shows that just as in gases the warmest part is the 
most rarefied, so with solutions the warmest portions are the 
most dilute; but that in the latter case a much longer time 
must be allowed for the attainment of equilibrium. The ex- 
perimental apparatus consisted e t a  vertical tube, the upper 
portion of which was heated while the lower portion was kept 
at a low temperature. 

Soret's latest experiments lend a quantitative support to 
our analogy. As with gases, it is to be expected that when 
the isotonic state is produced, the solution will exist in 
equilibrium; and as the osmotic pressure is proportional to 
concentration and to absolute temperature, the isotonic state 
of different portions of the solution will occur when the 
product of the two (absolute temperature and concentration) 
are equal. I f  we therefore calculate, on this basis, the con- 
centration of the warmer part of the solution from data 
obtained with the colder, the values compare wi~h those 
ibund as follows : ~  

1. Solution of Copper Sulp/~ate.~The portion cooled to 20 ° 
contained 17"332 per cent. The lint portion at b0 ° should 
contain 14"3 per cent. ; found, 14"03 per cent. 

2. The portion cooled to 20 ° contained 29"867 per cent. 
The portion at 80 ° should contain 2.t"8 per cent. ; ibund, 
23"871 per cent. 

It must be stated that previous experiments by Soret gave 
less favourable results; vet perhaps too much importance 
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should not be attached to them, owing to the difficulties of 
experiment. 

IV. Avogadro's L a w  applied to Dilute Solution,. 

We have considered the changes produced in the osmotic 
pressure of solutions by alteration of temperature and con- 
centration, and attempted to exhibit the analogy between 
dilute solutions and gases, in relation to these two quantities 
It now remains to compare directly the two analogous quan- 
tities, gaseous pressure and osmotic pressure, in one and the 
same body. It is obvious that this analogy should hold with 
gases in solution ; and in actual fact it will be shown that, if 
Henry's law be taken into consideration, the osnlotic pressure 
in solution is absolutely equal to the gaseous pressure, under 
similar conditions of temperature and concentration. 

To prove this statement, we shall picture a reversible pro- 
eess by aid of semipermeable diaphragms, temperature being 
maintained constant; and we shall again make use of the 
second law of thermodynamics, which in this case leads to the 
simple result that no work is transformed into heat, nor heat 
into work ; and hence the stun of all work done at different 
stages of the process is zero. 

This reversible process may be conceived bymeans of two 
similar cylinders and pistons, like those already described. 
One contains a gas (A), say oxygen, and ill contact with it a 
saturated aqueous solution of oxygen (B) (fig. 4). The wall b c 
allows only oxygen to pass, but Fig. 4. 
no water; the wall a b, on the . (s) 
other hand, water, but not oxygen; 
and it is in contact with water, E. 
A reversible process may be car- 
ried out by such an arrangement 
as follows :--By raising the two 
pistons (1) and (2), oxygen is ~ a(6) ~ 
evolved from its aqueous solution as gas, while the water 
passes through a b; this change can proceed without altering 
the concentration of the solution. The only difference between 
the two cylinders is in the state of concentration of the solu- 
tions which they contain ; we may explain the action thus : -  
The unit of weight of the substance in question occupies in 
the lef't-hand cylinder a volume v and V, and in the right-hand 
cylinder, v + d v  and V + d V ;  hence, in order that Henry's 
law may hold, 

v : V = (v 4 dv) : (V + dV) ; hence v : V=  dv : dV .  

If, now, the pressure, or osmotic pressure, as the case may be 
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(supposing unit volume to contain unit mass), as regards 
gas and solution be P and p (which will afterwards be shown 
to be equal), then, from Boyle's law, the pressure in gas 

solution will be - P and ~r respectively. a n d  
v 

Now let the pistons (1) and (2) be raised so as to liberate 
unit weight of gas from the solution, and increase the gaseous 
volume v by dr, in order to equalize its concentration with 
that of the gas in the left-hand vessel, and by depressing the 
pistons (4) and (5) let us redissolve the freshly liberated gas, 
and then reduce the volume of the solution V + d V  by the 
amount dV in the cylinder with semipermeable walls ; then 
the cycle is complete 

Work has been done in six separate ways ; let us number 
them (1), (2), (3), (4), (5), and (6). :Now (2) and (4) are 
equal in amount, but opposite in sign, since they refer to 
change of volume v and v +dr in opposite directions under 
pressures which are inversely proportional to the volumes. In 
similar rhanner the sum of (1) and (5) is zero ; so that the 
point requiring proof is that ( 3 ) + ( 6 ) = 0 .  Here (3) repre- 
sents work done by the gas in increasing its volume by dr, 

under a pressure of P-- therefore (3 )=  P dv ; while (6) repre- 
V' V 

sents the work done by the solution, while it decreases in 

volume by dV, under a pressure of~r , therefore (6)=  -- ~dV. 

The statement is therefore 

P dv= ~ dV; 

and as v : V = dv : dV, P must be equal to p, which was to be 
proved. 

Tbis conclusion, which will receive in the sequel ample 
confirmation, lends, on the one hand, support to Gay-Lussac's 
law in its application to liquids : - - I f  gaseous pressure and 
osmotic pressure are at the same temperature equal to one 
another, then equal changes of temperature must affect both 
equally. On the other hand, this relation allows of a con- 
siderable extension of Avogadro's law, always provided that 
we may substitute the conception of osmotic pressure for 
gaseous pressure :--under equal osmotic pressures and at the 
same temperature, equal volumes of all solutions contain equal 
numbers of molecules; and, moreover, the same number of 
molecules which would be contained in an equal volume of a gas 
under the same conditions of temperature and pressure. 
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V. General Expression for Boyle's, Gay-Lussac's~ and 
Avogadro's Laws for Solutions and Gases. 

The well-known formula expressing both Boyle's and Gay- 
Lussae's laws for gases, 

PV = RT~ 

are, in so far as these laws are applicable to liquids, also appli- 
cable as regards osmotic pressure ; with the reservation, also 
made in the case of gases, that the space occupied bv the 
molecules must be so great that the actual volume of the 
molecules becomes negligible• 

To include Avogadro's law in the above expression, Horst- 
O "  • • t mann s sug~,estlon (Berl. Bet. XlV. p. 124:3) may be adop~,ed, 

to express the molecular weight of the substance in kil@rams ; 
taking 2 kilos• of hydrogen, 44 kilos, of carbon dioxide, and 
so on. Then R in the above equation has always the same 
value ; for, under equal conditions of temperature and pres- 
sure, these weights occupy the same volume. Calculating 
this value, and expressing the volume in cubic metres, and the 
pressure in kilograms per square metre, and choosing hydrogen 
gas at 0 ° and 760 millim, pressure as starting-point, then 

2 
13=10333; V - 0 . 0 ~ 9 5 6 ;  T=273 ; R=845"05. 

Hence the combined ex.pression for Boyle's, Gay-Lussac's, 
and Avogadro's laws becomes 

P V = 8 4 5 T  ; 

and this expression is applicable to solutions, substituting 
osmotic pressure for gaseous pressure. 

We may give this equation even a simpler form,'inasmuch 
as the number of calories cquiwdent to a Mlogrammetro of 

1 
work ( A =  j - 4 ~ )  stands in a very simple relation to R, 

viz. A R = 2  (in reality about one thousandth less). Hence 
we may choose the form 

A P V = 2 T  ; 

and this form has the great practical advantage that work, 
which will often be discussed in the following pages, receives 
a very simple expression, if calculated back to heat, measured 
in calories. 

Let us next calculate the work, expressed in calories~ when 
a gas or a solution~ under constant pressure and temperar, ure, 
expands V volumes ; V volumes containing a kilognm~- 
molecule. This is evidently 2T. It must be added 1hat this 
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constant pressure is maintained only when the total volume of 
gas or ~olution is very great compared with V~ or in cases of 
evaporation, where the vapour-pressure is at its maximum. 

We shall also often have to express in calories the work 
done during isothermal expansion of the kilogram-molecule of 
a substance as gas, or in solution. I f  pressure falls a very 
small fraction Ap, corresponding to a small increase of 
volume AV, the work done will be APAV,  or 2AT. 

VI. _First Confirmation of Avogadro's Lazo in its Application 
to Solutions.--.Direct determination of Osmotic .Pressure. 

I t  is to be expected that Avogadro's law, deduced as a con- 
sequence of Henry 's  law for solutions of gases, will not be 
restricted to solutions of substances which usually exist in a 
gaseous condition. This expectation has been realized~ not 
merely from a theoretical, but from an experimental standpoint. 
Pfeffer's determinations of the osmotic pressure of solutions of 
sugar furnish a remarkable confirmation of this extension of 
the law. 

Pfeffer's solution consisted of 1 gram of sugar dissolved in 
100 grams of water ; one gram of the sugar therefore exists 
in about 100"6 cubic centim, of the solution. Comparing the 
osmotic pressure of this solution with the pressure of a gas 
(e. g. hydrogen) containing as many molecules in the volume, 
there are ~42~ gram (C=H:~On-~342) in 100 6 cubic centim. 
Now one litre of hydrogen gas at 0 ° and 760 millim, pressure 
weighs 0"08956 gram ; and the above concentration is equi- 
wdent to 0"0581 gram per litre ; the pressure at 0 ° is 0"649 
atmosphere, and at t, 0"649(1+0"00367t). Placing these 
results beside Pfeffer's~ we obtain the fbllowing agreement : ~  

Temperature (t). Osmotic pressure. 0"649(1-1-0"00367 t). 
6"8 0"664 0"665 

13"7 0"691 0"681 
14"2 0"671 0"682 
15"5 0"684 0"686 
22"0 0"721 0"701 
32"0 0 716 0"725 
36"0 0"746 0"735 

The directly determined osmotic pressure of a solution of 
sugar is thus seen to be equal to the pressure of a gas at the 
same temperature, containing the same number of molecules 
in unit volume as the sugar-solution. 

Stayting from cane-sugar, this relation can be calculated for 
other dissolved substances, such as invert sugar, malic acid, 
tartaric acid, citric acid~ magnesiuln malatc and citrate, all of 
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which, from de Vries' physiological researches (Eine Methode 
zur Messung der Tu~'gorkra/t, p. 512), exhibit equal osmotic 
pressure when they contain an equal number of molecules in 
a given volume. 

VII. Second Confirmation of Avogadro's Law in its Application 
to Solutions.--Molecalar lowering of Vapour-pressure. 

The relation between osmotic pressure and the pressure of 
a vapour in contact with liquid, which is easily developed 
on thermodynamical principles, yields, from Raoult's recent 
observations~ a satisfactory proof of the analogy under consi- 
deration. 

We shall begin with a general law, of which the previous 
matter of this thesis is quite independent:--Isotonism (i. e. equal 
osmotic pressure--from ~'ao~ and ~6vov, stretching) in solutions 
made with the same solvent, implies equality of vapour-pressure. 
This statement is easily proved by a reversible cycle, keeping 
temperature constant. Imagine two solutions exhibiting 
equal vapour-pressnre, and introduce a small quantity of one 
in the state of vapour into the other in a reversible manner, 
i. e. by means of cylinder and piston. The vapour-pressures 
are equal, hence this transi~rence takes place without expen- 
diture of work ; and also, on restoring the original condition, 
no work is expended. But if the solvent be transferred back 
through a semipermeable diaphragm, separating the two 
solutions, then equal osmotic pressure must exist, else the 
transference could not take place without expenditure of 
energy. 

If this fundamental conception be applied to dilute solutions, 
accepting the laws which have been explained in the preceding 
pages, the simple conclusion follows, that if a solvent contains 
equal numbers of molecules of dissolved substances, the 
vapour-pressure is the same. This is merelr Raoult's law 
(Comptes rendus, lxxxvii, p. 167 ; xliv. p. 1431) of the con- 
stancy of molecular diminution of vapour-pressure, obtained by 
multiplying the relative diminution by the molecular weight of 
a one-per-cent, solution ; i. e. with the difference between the 
vapour-pressures of the solvent, before and after addition of 
dissolved substance. The equality of molecular diminution of 
vapour-pressure depends on the solutions containing equal 
numbers of molecules, a close proportionality between the 
lowering of the vapour-pressure and the concentration being 
assumed. With ether, for example, the value fluctuated 
between 0"67 and 0"74 (mean 0"71) for thirteen substances 
dissolved in it. 
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But this relation can be further developed. Different 
solutions may be compared with each other, and a second law 
may be deduce(l, which Raoult has also discovered experimen- 
tally. The following reversible process, consisting of two 
operations, is carried out with a very dilute solution of P per 
cent., at temperature T. 

1. Remove, by use of cylinder with semipermeable wall, a 
portion of the solvent containing a kilogram-molecule (M) of 
the dissolved substance : hero the total quantity of solution is 
supposed so great that no alteration of concentration occurs, 
and the expenditure of work is therefore 2T. 

100 M 
2. This quantity, ~ kilograms, of the solvent is returned 

as vapour ; it may be conceived as produced from the liquid 
by evaporation at its vapour-pressure ; then expanded till its 
pressure is equal to the vapour-pressure of the solution ; and 
finally liquefied in contact with the solution. The kilogram- 
molecule of the solvent (M ~) will thus receive an expenditure 
of work of 2TA, where A represents the relative diminution 

100M 100M 
of pressure ; and the ----p--- kilograms will receive 2TA ~ . 

& 
Here ~ M is Raoult's molecular diminution of pressure, which 

we shall term K ; employing this abbreviation, the expression 
200TK 

becomes - - .  
M ~ 

From the second law of thermodynamics, again, the alge- 
braic sum of the work expended during this cycle at constant 
pressure must equal zero ; hence the work done by the solu- 
tion during the first stage must equal the work done on it 
during the second ; and thus 

2T---- 200TK M~ ; o1" 1 0 0 K = M  t. 

This expression includes all Raoult's results. It expresses the 
fact, as stated above, that the molecular diminution of vapour- 
pressure is independent of the nature of the dissolved body ; 
and it also expresses, what R~oult found experimentally, that 
this diminution is independent of temperature. It also con- 
tains Raoult's second conclusion, that the molecular diminution 
is proportional to the molecular weight of the solvent, amount- 
ing to about one hundredth of the latter. This is seen from 
the following table : - -  
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Solvent. 

Water . . . . . .  
Phosphorous chloride. 
Carbon disulphide . 
Carbon tetrachloride . 

Molecular 
weight. 
(~'). 

18 
137"5 

76 
154 

Chloroform . . . . .  119"5 
Amylene . . . . . . .  70 
Benzene . . . . . .  78 
Methyl iodide . . . .  14'2 
Methyl bromide 109 
Ether . . . . . . .  74 
Acetone . . . . . .  58 
Methyl alcohol . . . .  32 

Molecular 
diminution 
of vapour- 

pressure. 
(K). 

0"185 
1"49 
0"80 
1"62 
1"30 
0"74 
0"83 
1"49 
1"18 
0"71 
0"59 
0"33 

VIII .  T]drd Confirmation of Avogadro's Law in its Applica- 
tion to Solutions.--Molecular Depression of Freezing-point 
of Solvent. 
Here, again, a general law may be stated, connecting 

osmotic pressure with the freezing-point of a solut ion:-  
Solutions in the same solvent~ and of the same .freezing-point, 
are isotonic at that temperature. This st.atement admits, like 
the former, of proof by means of a reversible cycle ; but the 
solvent when returned is here in the condition of ice, not of 
vapour ; the inverse change is also brought about by means 
of a semipermeable diaphragm, and, as it cannot be accom- 
panied by gain or loss of energy, isotonism must exist. 

We shall apply the above statement to dilute solutions; and 
applying the relations previously described, the simple con- 
clusion follows that solutions containing an equal number of 
molecules in equal volume, and which therefore, from Avo- 
gadro's law, are isotonic, also have the same freezing-point. 
This law has been actually discovered by Raoult, and is ex- 
pressed by him as "normal molecular depression of freezing- 
point." It holds for the great majority of dissolved substances 
examined, and consists in the statement that the depression of 
freezing-point of a one-per-cent, solution, multiplied by the 
molecular weight of the dissolved substance, gives a constant 
product ; it is stated of solutions containing equal numbers of 
molecules in unit velum% assuming a close proportionalit) 
between concentration and lowering of the freezing-point. 
For an aqueous solution of nearly all organic bodies the 
constant product is about 18"5. 
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We can follow this relation still further, and, assuming 
Avogadro's law for solutions, deduce the above normal mole- 
cular depression of the freezing-point fl'om other data. It 
bears a close relation to the heat of iusion of the solvent, as is 
shown by applying the second law of thermodynamics to a 
reversible cycle. Imagine a very dilute solutiola containing 
P per cent. of a dissolved substance, which has produced a 
depression of freezing-point, A ; the solution itself freezes at 
T, and its heat of fusion is W per kilogram. 

1. By use of piston and cylinder with semipermeable 
walls, the solution is deprived at temperature T of that amount 
of the solvent in which a kilogram-molecule of the dissolved 
substance existed ; the amount of the solution is moreover so 

~ reat that no appreciable change of concentration occurs, 
once the work expended on it is 2T. 

100 IK 
2. This quantity of solvent, ~ .  is then allowed to freeze 

100MW , . 
a~ T by withdrawing p camrles; the solution and the 

solvent, now solid, are cooled through A degrees, and the 
solvent is now allowed to melt in contact with the solution, 
thereby absorbing the above quantity of heat. Finally, the 
temperature is raised A degrees. 

100 MW 
During this reversible process ~ p - -  calories rise from 

A to T, corresponding to an expenditure of energy equal to 
MA 

100MWA In this expression, however, ~ - -  is the molecular 
P I' 

depression of the freezing-point, which we may represent by 
100 Wt 

the letter t ; the work done is therefbre ~ ,  and it was 

shown above to be equal to 2T. Hence the equation 

100 Wt = 2T T2 
T ; whence t=0"02 W" 

This theoretical deduction receives ample confirmation from 
experimental data. The following table exhibits the molecular 
depression of fi-eezing-point experimentally determined by 
Raoult ( A~nales de C]dmie et de PT~ydqae, [5] xxviii.; [6] xi.), 
along with the values calculated by means of the above 
formula :--  
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Freezing- Heat of 0'02 T ~ Raoult's 
Solvent. point fusion t =- --W-" molecular 

(T). (W). depression. 
Water . . 273 79 18"9 18"5 
Acetic acici . 273+1(;'7 43"2"t 38"8 38"6 
Formic acid . 273+ 8'5 55"6"t 28'4 27"7 
.Benzene . 273+ 4"9 29"1J' 53 50 
Nitrobenzene. 273+ 5"3 22"31' 69"5 70"7 

It  may be added that, from the molecular depression of 
ethylene bromide (117"9), the hitherto unknown heat of fusion 
is found equal to 13 ; and Mr. Pettersson, at my request, 
having experimentally determined this constant, obtained the 
number 12"94. 

IX. Application of Avogadro's Law to Solutions.raTtle Law 
of Guldberg and Waage. 

Having discussed the physical aspect of this problem in 
order to furnish as many proofs as possible of the correctness 
of its treatment~ it now remains to apply it to chemical facts. 

The most evident application of Avogadro's Law in reference 
to solutions is to the determination of the molecular weights 
of dissolved substances. This has already been attempted; 
but here it is not the pressure which requires measurement, 
as with gases, when the molecular weight is deducible from 
volume, pressure, and temperature ; with solutions the osmotic 
pressure must be measured, and as yet the practical method is 
wanting. Yet this difficulty may be avoided by substituting 
for a determination of pressure that of the related values ; as, 
for example, the diminution of vapour-pressure, or the depres- 
sion of the freezing-point. This proposal is Raoult's. He 
divides the reduction of vapour-pressure of water containing 
one per cent. of dissolved substance into 0"185 parts, or the 
observed depression of freezing-point into 18"5 parts; and 
this method is comparable in respect of accuracy with deter- 
minations of the density of gases, and is in itself a strong 
presumption of the accuracy of Avogadro's law in its appli- 
cation to gases. 

It is still more remarkable that the law of Guldberg and 
Waage, so generally accepted for solutions, can be evolved 
from the above laws regulating the behaviour of dilute solu- 
tions. Again, a reversible cycle at constan~ temperature 
must be imagined, which can be conceived for solutions 
equally well with gases, by means of semipermeable 
diaphragms. 

. Berthelot, .Essai de ~[~cani~ue Chimique. 
~" Pettersson, Journ. f. prakt. Chem. W2j xxvi. p. 129. 
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Let there be two systems of gaseous or dissolved substances 
in equilibrium, which may be expressed by the following 
symbols : - -  

a,'M,' +a,"M," + &c. ~_ a,,'~,' +a,"M," +&c., 

where a denotes the number of molecules, and ~ the formula. 
This equilibrium exists in two different vessels, A and B, at 
the same temperature but at different concentrations, shown 
by the partial pressure, or by the osmotic pressure which each 
of the bodies exerts. Let these pressures be in vessel A, 
P,'P,". . .  P,,'P," &c.; and in B greater than these by dP,' 
alP,".., dP : alP,,"... &c. 

The reversible cycle consists in introducing into A that 
amount in kilograms expressed by the first symbol of the first 
system, while the second is removed in equivalent amount: 
both systems have here the concentrations which exist in A 
(fig. 5). This change is accom- Fig. 5. 
plished by causing the entry or (~ 
exit of each of the substances in 
question by means of its own 
cylinder and piston, which is se- 
parated from A by u diaphragm ~ I 
permeable to that body alone, et~ 
If  they are in solution, then the (~) 
cylinders possess a semiperme- 
able wall, and are surrounded 
by the solvent. 

When this has been done, each 

£ t c  
(~) 

constituent of the two systems has 
undergone such a change of concentration that it is now equal 
to that in B ; and, as before, the work done per kilogram- 
molecule equals 2AT, where A represents a minute fr/tctiou 

dP 
of the pressure, and is here ~ -  ; fbr the amounts here iu 

dP 
question it is 2aT ~-.  

By making use of the vessel B, the second system, which 
has just been evolved, is now converted into the first, but of 
concentration as in B, proceeding as just described ; and by 
suitable alteration of volume it is finally changed into its 
original state, as it at first existed in A. 

As no change of temperature has occurred, the algebraic 
sum of all these operations is zero, as is seen from the num- 
bers; it is thought unnecessary to interpret them, as they 
refer to the operations in the order in which they were carried 
o u t : - -  ( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) + ( 5 ) + ( 6 ) = 0 .  

Phil. Meg. S. 5. Vol. 26. No. 159. A~g. 1888, H 
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Now (1) and (5) refer to operations opposite in sign on th~ 
same substances, with the same mass, at the same temperature; 
hence (1)+(5)---0. And for similar reasons, (2)-1-(4)=0; 
whence (3) +.(6)=-0. 

This conclusion leads directly to Guldberg's and Waage's 
law. 

.~.~ mdP,, 
The work expressed by (3) is from that law z,2a,,~ - - ,  and 

1)u 9 P  
(6) is Z20,T~-j ; hence it follows that 

/ 

Z [ ,  mdP,, - d P , \  Z(a,, dP,, dP, \  
o r  . >7 , ,  = o .  

By integrating, 

Y~(a, log P,--a, log 1),) = constant ; 

and here P is proportional to the concentration, or to the 
active mass C ; so that C may be substituted without altering 
the equation : - -  

E(a,, log C,,--a, log C,) = constant. 

This is the logarithmic form of Guldberg's and Waage's 
formula. 

X. Deviation from Avogadro's Law in Solutions.--Va~.iations 
in Guldberg and Waage's .Law. 

We have attempted to show the connexion between Guld- 
berg and Waage's law and the laws of Boyle, Henry, Gay- 
Lussae, and Avogadro, as applied to liquids; as applied to 
gases, the truth of Guldberg and Waage's law has been long 
proved from thermodynamical considerations. 

It  remains to develop further the laws of chemical equili- 
brium, and~ first, to investigate more closely the limits of 
applicability of the ~hree fundamental princii;les from which 
Guldberg and Waage's law has been deduced. 

So long as "ideal solutions" are under consideration, there 
exists strict analogy between gases and solutions ; and just 
as ~here are deviations from Avogadro's law in the case of 
gases, so we may expect to find them with solutions. As, 
for example, the pressure of the vapour of ammonium chloride 
was found to be too great to be accounted for by Avogadro's 
law, so the osmotic pressure is in many eases abnormal ; and as 
the high pressure in the first case is due to dissociation into 
ammonia and hydrogen chloride, it may be conceived that 
similar dissociation occurs in solutions. It  must, indeed, be 
acknowledged that deviations are much more frequent with 
solutions than with gases~ and occur often with bodies the 
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dissociation of which, under ordinary circumstances, does 
not appear probable; in aqueous solution, for example, the 
majority of salts as well as the stronger acids and bases undergo 
dissociation ; and hence Raoult did not discover the existence 
of so-called normal molecular depression of freezing-point 
and lowering ef vapour-pressure until he investigated organic 
compounds; their behaviour is almost without exception 
regular. For these reasons it may have appeared daring 
begin by giving prominence to Avogadro's law ill its applica- 
tion to solutions ; and I should have shrunk from this course 
had not Arrhenius pointed out to me the probability that salts, 
and analogous bodies, decompose on solution into their ions ; 
m fact, substances which obey Avogadro's law are, as a rule, 
non-conductors, suggesting that in such cases no dissociation 
into ions occurs; and further experimental proof exists for 
other liquids, since by Arrhenius's assumption the deviations 
from Avogadro's law are calculable from the conductivity. 

However this may stand, an attempt is made in the follow- 
ing pages to take account of such deviations from Avogadro's 
law, and, by help of the application of Boyle's and Gay- 

f f  Lussac's laws to solutions, to develop Guldberg s and Waa~,e s 
formula so far as is possible. 

The change in the expressions given above caused by these 
deviations is easily sketched. 

The general expression for Boyle's, Gay-Lussac's, and 
Av%adro s laws, shown on p. 90, is 

APV = 2T; 

and this changes, if pressure is /-times that of this equation, 
into 

A P V = 2  iT. 
Hence, in a reversible cycle, the work will be /-times that 
previously done ; this alteration is easily applied to the former 
statement of Guldberg's and Waago's formula. Recurring 
to the final stage of the cycle described on p. 97, 

(3) + (6) = O, 
the work corresponding to (3) and (6), which were formerly 

dP,  alP, 
~2a,,T ~-~-, a n d - E 2 a ,  T ~-~-,, is now increased/-times; hence 

the equations become 

E /  . alP,, dP,'~ 0 ~ a,,~,, ~ -- a,i, 
_ t',, P , ) =  ; 

and on integration, 
E(a,,i,, log P,,--a,i, log P,)=constant. 

I t 2  
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And introducing the concentration, or the active mass C, in- 
stead of the pressure proportional to it, 

X(a.i. log C,,--a,i, log C,)=constant. 
This is Guldberg's and Waage's law in a logarithmic form, 
differing from the former statement only by the introduc- 
tion of the value i. 

It remains to be shown that in this new form it agrees 
better with experimental results ; and as a knowledge of the 
correct value of i is necessary, we must deal with aqueous solu- 
tions, for sufficient experimental data are to be had only with 
such. 

XL Determination of i for Aqueous Solutions. 
As Avogadro's law has been proved for solutions by four 

separate lines of argmnent~/.here are four ways in which the 
deviations~ i. e. the values of i, may be determined. But that 
one which depends on the lowering of the melting-point has 
been so thoroughly proved experimentally that we shall con- 
fine ourselves to its use. 

Reverting to the cycle which, on p. 95, was employed to 
prove the applicability of Avogadro's law to solutions, the re- 
lation was found : - -  

100 Wt 
T = 2T~ 

where the second term refers to the work done in removing or 
adding that amount of the solvent in which a kilogram- 
molecule of the substance was dissolved ; that term must 
therefore be multiplied by i : - -  

100 Wt=2 iT"  
T 

In this manner a simple means of determining the value of i 
is apparent. The value of i is from the above equation pro- 
portional to t~ i. e. to the molecular depression of temperature, 
for the other data (T=absolute melting-point, W--heat  of 
fusion of solvent) are constant. Now 18"5 is the molecular 
depression for cane-sugar, which from p. 91 is seen to follow 
Avogadro's law accurately ; hence i = 1  ; and for other bodies 
i is their respective depressions divided by 18"5. Almost 
identical results are arrived at by using in the above equation, 
instead of T and W, the values for ice, viz. 273 and 79 ; they 
will therefore be employed in the following calculations. 

XII .  P~vof of tl~e Modified Law of Guldberg and Waage. 
In employing the relation proposed /'or the purpose of 

comparison with the results of Guldberg andWaage's ibrmul% 
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it is necessary to mention the different forms which it has 
assumed during the years since its discovery. We shall 
first give this relation a simple expression in which Guldberg 
and Waage's conceptions may be included, viz. : -  

Eat log C = K  . . . . . . .  (1) 
This differs from the one given on p. 100 merely in that the 
terms representing the components of both systems have had 
their signs changed. The original expression of the Nor- 
wegian investigators is closely analogous (Christiania Viden- 
skabs Selskabs Forl~andlingar, 186~) :m 

:~k log C = K  . . . . . . .  (2) 
except that k has to be determined for each constituent in 
question by observation of theequilibrium of the system. 

As Guldberg and Waage (Etudes sur les affnitds chimiques, 
1867) repeatedly found the coefficient k equal to 1, they 
simplified their equation thus : - -  

Elog C = K  . . . . . . .  (3) 
Intheir last treatise, however (Jour..farprakt. C],em. xix. p. 69), 
they introduce the change that the nmnber of molecules a 
must also be taken account of, and consequently they approxi- 
mate their formula to that deduced for gases on thermodyna- 
mical grounds, thus : - -  

Ea log C- -K ; . . . . . .  (4) 

We have taken this last expression as their final formula. 
The Norwegian investigators maintained this simple 

formula, with whole numbers as coefficients, even for solu- 
tions; but Lemoine has lately revived the original formula 
(2) in order to represent the results of SchlSsing's investiga- 
tions on the solubility of calcium carbonate in water con- 
taining carbon dioxide, with constants hereafter to be deter- 
mined, which are, however, not whole numbers ; for if whole 
numbers be employed, it is impossible to reconcile fact with 
theory. 

In view of this uncertainty, the formula which we have 
suggested has this advantage, that the coefficients which 
occur in it are h priori determined, and its truth can at once 
be decided by experiment. It  will in fact appear that in the 
instances studied by Guldberg and Waage the simple form 
which they recommend is completely confirmed; and that 
such simplification is in most cases admissible confirms, more- 
over, the validity of Avogadro's law in its application to solu- 
tions. O~ the other hand~ the results of SchlSsing's in- 
vestigation, prominently alluded to by Lemoine, cannot be 
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simply expressed, and require the same fractional coefficients 
which Schl5sing himself arrived at. 

Before proceeding to this investigation, it is necessary to 
include cases where partially insoluble bodies are present: 
this is easily done; they may be included in the formulm 
given above, remembering that such bodies exist in solution 
up to its saturation-point~ and are therefore present with 
constant concentration. All concentrations depending on this 
may~ therefore, be removed from the first term of the above 
equation to the socond~ without affecting the constancy of the 
latter. Everything remains the sam% except that in the first 
term only the dissolved bodies need be considered., 

1. We shall first examine Guldberg and Waage s observa- 
tions. The first case they studied was that expressed by the 
equation 

BaCOs + K 2 S Q ~ B a S 0 4  + K~COs ; 

and they found~ according to their simplified formul% that 
log C~so,--log CK~co~-~K. 

The relation given by our equation is almost identical~ for~ 
for K2SQ, a =  1 and i--- 2"11, and for K2CO3, a--- 1 and i =  '2"26; 
hence 

log CK~so~--l'07 log CK~co~=K. 
A similar agreement exists with sodimn carbonate, for then 
the values of i for ~a~SO4 and Na~COa are 1"91 and 2"18 
respectively ; hence 

log Cn~,so,--1"14 log s~co~=K. 
2. This result, expressed in what is almost a whole nmnber, 

cannot be expected in the above-mentioned experiment or' 
SchlSslng (Comptes rendus, lxxiv. 155`2; lxxv. 70). There 
the. subject of experiment was the solubility of calcium car- 
bonate in water containing carbonic acid, and the state of 
equilibrium is expressible by the following statement : - -  

CaC O3 + H~CO~Ca (HC0~):. 
We should expect that, as i = l  for carbon dioxide, that i 
should-----`2 56 for calcium hydrogen carbonate : - -  

0"39 log C~co~--log Cc,(Hco~)~=K ; 
and SchlSsing found :-- 

0"37866 log CH~eo~--log Cc~(uco~)~=K. 
Similar experiments with barimn are equally satisfactory; 
the value of i for barium hydrogen carbonate is 2"66, and ~he 
fb]lowing results are ealcu]afed : ~  

0"37~] ](~g CH~co~--log ( '~(Hco~=K. 
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The experimental result is 

0"38045 log CH~co~--log CBa(HCO~)~=K. 
3. Tm'ning to Thomsen's investigation on the action of 

sulphuric acid on sodium nitrate in solution (Thomsen's 
T]~ermochemische Untersuc]tungen~ i.), we find a similar agree- 
ment. 

The reaction may be formulated thus : - -  

~Ia~SO4 + HNO3:Nal tS04  4- ~laNO3 ; 

and Guldberg and Waage's relation requires 

log CN~SO, + log CH~o~--log CmHso~--log C ~ o ~ =  K. 
Now 
iNa2so = 1"91 ; I~No~= 1"94 ; imnso = 1"88 ; and iNaNO~---- 1"82; 
and the equation becomes 

1"05 log CN~so,+ 1"06 log C~o~--1"03 log CN~HsO~ 
--log C ~ o ~ =  K,  

which is almost identical. 
If we express the relation thus : - -  

Na~S04 + 2HNO3~H~SO~ + 2~aNO~, 

Guldberg and Waage's formula becomes 

log C~so4 + 2 log C~No~--log CH~so~-- 2 log ( ~o~---- K ; 
and we obtain : 

log CN~SO, + 24)3 log CH~o~--1"07 log Cn~so~ 
--1"91 log C~No~--K ; 

Again an almost absolute agreement. 
4. Ostwald's investig.ntion (J. prakt. Cicero. [2] xix. p. 480) 

on the action of hydrochloric acid on zinc sulphid% according 
to the formula 

ZnS + 2HCI:H2S + ZnC12, 

leads, when the following values are ascribed : 
iHcl=l'98 ; i~S----1"04 ; iz,cL,=2"53 

to the equation : - -  
3"96 log C~c1--1"04 log C~s--2"53 log Cz~c,,---K. 

It is evident that the concentrations of the sulphuretted 
hydrogen and the zinc chloride are equal, for only hydro- 
chloric acid and zinc sulphide are initially present. The 
result is expressible by taking the volmne V, in which a 
known amount of hydrochloric acid was dissolved, as the 
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initial concentration ; and the fraction x to denote that 
portion which after contact with zinc sulphide has finally re- 
acted, forming zinc chloride. Hence we have 

x 
3"96 log ~v-~ --3"57 log V =eonst. ; 

This function is really nearly constant : 

Volume (V). Portion reacted (x). 

1 0"0411 
2 0"038 
4 0"0345 
8 0'0317 

3,' V0.11 
(1-x)--  

0'043 
0"0428 
0"0418 
0"0413 

Similar experiments with sulphurie acid, where i for H~SO4 
and ZnSO4 is respectively 2"06 and 0"98~ gave 

( 1 -- x) l.o~ V°'°~ = const.; 

and here also x is nearly a constant, as is seen from the 
following experimental numbers : -  

Volume V. Portion reacted (x). 
2 0"0238 
4 0"0237 
8 0'024 

16 0'0241 

5. The experiments of Engel on the solubility of magnesium 
carbonate in water containing carbonic acid (Coheres rendus~ 
c. pp. 352~ 444) also deserve notice. The state of equili- 
brium is 

MgCOa + H2COs~Mg (HCO~)~ ; 

and our formula leads to the following relation, where i-=2"64 
for acid magnesium carbonate : - -  

0"379 log CH~co~--log GMs(Hco~)~---K. 
The number found was 

0"370 log CH~co3--1og C~s(Hco~)~=K. 
6. Other experiments by the same author on the simul- 

taneous solubility of copper and ammonium sulphates (Co~tes  
rendus~ cii. p. 113), are shown by the reversible equation 

CuS0~ + (NH4)~SO~-Cu (NH4).. (804)... 

and also 

x V °'n = const. 
( l - - x )  TM 
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As the double salt was always partly undissolved, and as the 
values of i for CuS04 and for (NI-I4)~S04 are 0"98 and 2"0, 
we have the relation 

0"49 log Cc~so~--log C(NH~)~so,=K. 

The number found is 0"438 log Cease,. 

7. In conclusion, we may notice Le Chatelier's experiments 
on the equilibrium between basic mercuric sulphate and sul- 
phuric acid (ComTtes rendus, xevii, p. 1565); 

Hg3S06 + 2t t :S04~3HgS04 + 2H20. 

In this case the values of i for H2S04 and HgS04 are 2'06 
and 0"98, and we have 

1"4 log CH~so~--log CHsso,=K. 
The found value is 1"58 log Cri2so~. 

Generally speaking~ therefore, such results show a very 
satisfactory agreement. 

XlII .  On an Explanation of the Action of a Magnet on 
Chemical Action. By t tE~Y A. ROWLAND and Louis 
BF~Ln *. 

I N the year 1881 Prof. Remsen discovered that magnetism 
had a very remarkable acLion on the deposition of copper 

from one of its solutions on an iron plate, and he published an 
account in the American Chemical Journal for the year 1881. 
There were two distinct phenomena then described--the deposit 
of the copper in lines approximating to the equipotential lines 
of the magnet, and the protection of the iron from chemical 
action in lines around the edge of the poles. It seemed pro- 
bable that the first effect was due to currents in the liquid pro- 
duced by the action of the magnet on the electric currents set 
up in the liquid by the deposited copper in contact with the 
iron plate. The theory of the second kind of action was 
given by one of us, the action being ascribed to the actual 
attraction of the magnet for the iron, and not to the magnetic 
state of the latter. It is well-known since the time of Faraday 
that a particle of magnetic material in a magnetic field tends 
to pass from the weaker to the stronger portions of the field ; 
and this is expressed mathematical~ by stating that the force 
acting on the particle in any direction is proportional to the 

* Communicated by the Authors, having been read t~t the Manchester 
Meeting of the British Association~ September, 1887. 


