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Deep Sea Ship-Waves. {Continued from Proc. E.S.E.,
January 23, 1905.) By Lord Kelvin.

(Read July 17, 1905.)

§ 65. Referring to § 63, we must, for the present, as time
presses, leave detailed interpretation of the curves of fig. 17 :
merely remarking that, according to § 44, if 8 = 0, (which means
that J ' is an integer), the disturbance, d, is infinitely great; of
which the dynamical meaning is clear in (70) of § 39.

§ 66. Let us now find the depression of the water at distance x
from the origin, when the disturbance is due to a single forcive,
expressed by the formula *

travelling uniformly with any velocity v. If this forcive were
applied steadily to the surface of water at rest it would produce a

steady depression - TL(x), as we are taking the density of the
J

water, unity. Thus the forcive n(a;) would shape the water to an
infinitely long trough, of cross-section shown in fig. 25, representing
z = kb2/(x2 + 62) on the scale of k = 10 ran. and 6=1 cm.

1 ["
Taking — I dx of (95) we find ta,n~1(x I b).bk. Hence the area

g J o
of fig. 25 is 2tan~18.6&, or •-— irbk, and the total area of the

180 •
diagram extended to infinity on each side is irbk. Hence the area

of fig. 25 is —- , or '92, of the total area. This total area, vbk, I
180

call, for brevity, the forcive area; and irb, I call the mean breadth
of the forcive area. The breadth of the forcive where z = Sk (as
shown by the dotted line B B in the diagram) is b.

§ 67. Now let the forcive be suddenly set in motion, and kept
moving uniformly with any velocity v in the rightward direction'
of our diagrams. This will produce a great commotion, settling

* What is denoted by x in this and following expressions, is the (x - vt) of
§§ 36 . . . . 40 ; the origin of co-ordinates being now fixed relatively to the
travelling forcive.
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ultimately into more and more nearly steady motion through
greater and greater distances from 0. The investigation of
§§ 1-10 above (Feb. 1904), and particularly the results described
in §§ 5, 6, and illustrated in figs. 2, 3, show that in our present
case the commotion, however violent, even if including splashes*
divides itself into two parts which travel away in the two direc-
tions from 0, ultimately at wave-speed increasing in proportion
to square root of distance (according to the law of falling bodies);
and leaving in their rears, through ever broadening spaces, what
would be more and more nearly absolute quiescence if the forcive
were suddenly to cease after having acted for any time, long or
short.

§ 68. But if the forcive continues acting, and travelling right-
wards with constant speed, v, according to § 67, the travelling
away of the two parts of the initial commotion in the two
directions from O (itself merely a point of reference, moving
uniformly rightwards), leaves the water, as shown by fig. 26, in a
state of more and more nearly quite steady motion through an
ever broadening space on the rear side of 0, and through a small
space in advance of 0 ; provided certain moderating conditions
are fulfilled in respect to k, b, v.

§ 69. To illustrate and prove § 68 ; first suppose v infinitely small.
The water will be infinitely little disturbed from the static
forcive-curve shown in fig. 25, and described in § 66. Small
enough velocities will make very small disturbance with any finite
value of k/b.

§ 70. But now go to the other extreme and let v be very great.
It is clear, on dynamical principles without calculation, that v
may be great enough to make but very little disturbance of the
water-surface, however steep be the static forcive curve. A
"skipping stone" and a ricochetting cannon shot, illustrate the
application of the same dynamical principle in three-dimensional
hydrokinetics. By mathematical calculation (§ 79 below) we
shall see that, when v is great enough, we have

h=bA (97),
A

* However sudden and great the commotion is, the motion of the liquid is,
and continues to be, irrotational throughout.
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where h denotes the height of crests above mean water-level in the
train of sinusoidal free waves left in the rear of the travelling
forcive; A denotes the area of the forcive curve (fig. 25); being
given in § 66 by the equation

A=irbk (98):

and -V, given [§ 39, (71)] by

A = 2W7<7 (99),

denotes the wave-length of free waves travelling with velocity v.
§ 71. A very important theorem in respect to ship-waves is

expressed by (97). Without calculation we see that, if X is very
great in comparison with irb, (the " mean breadth " of the forcive
curve according to § 66), h must be simply proportional to A, for
different forcives travelling at the same speed. This we see
because, for the same value of b, h/lc is the same, and because
superposition of different forcives within any breadth small in com-
parison with A, gives for h the sum of the values which they
would give separately. Farther without calculation, we can see,
by imagining altered the scale of our diagrams, that hX/A must
be constant. But without calculation I do not see how we could
find the factor 4ir of (97), as in § 79 below.

§ 72. The effect of the condition prescribed in § 71 is illustrated
and explained by considering cases in which it is not fulfilled.
For example, let two forcives be superposed with their middles at
distance JA ; they will give 7i = 0, that is to say no train of waves.
The displaced water surface for this case is represented in fig. 27.
Or let their distance be -JA or f A; the two will give the same value
of h as that given by one only. Or let the two be at distance A;
they will make h twice as great as one forcive makes it.

§ 73. In figs. 26, 27, 29, 30, representing results of the calcula-
tions of §§ 78, 79 below, the abscissas are all marked according
to wave-length. The scale of ordinates corresponds, in each of
figs. 26, 27, 29, to £ = 243-89, and irb= 1-0251.10-U. This
makes by (98) and (97) A = \ \ and h = tr. Fig. 30 represents the
curve of fig. 29 at the maximum, in the neighbourhood, of 0, on a
greatly magnified scale: about 1720 times for the abscissas, and
39 times for the ordinates.

§ 74. Fig. 26 shows, on the right-hand side, the water slightly
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heaped up in front of the travelling forcive, which is a distribution
of downward pressure whose middle is at O. On the left side of
0, we see the water surface not differing perceptibly from a curve
of sines beyond half a wave-length rearwards from O. A small
portion of a wave-length of true curve of sines in the diagram
shows how little the water's surface differs from the curve of sines
at even so small a distance from O as a quarter wave-length.

It must be remembered that in reality the water surface is
everywhere very nearly level; and in considering, as we shall have
to do later, the work done by the forcive, we must interpret
properly the enormous exaggeration of slopes shown in the
diagrams. It is interesting to remark that the static depression,
k, which the forcive if at rest would produce, is about 87 times
the elevation actually produced above O by the forcive, travelling
at the speed at which free waves, of the wave-length shown in the
diagrams, travel. It is interesting also to remark that the limita-
tion to very small slopes is not binding on the static forcive curve.
Thus for example, a distribution of static pressure, everywhere
perpendicular to the free surface, producing static depression
exactly agreeing with fig. 25, would, if caused to travel at a
speed for which the free-wave-length is very large in comparison
with b, produce a disturbance, represented by fig. 26 with waves
of moderate slopes : and, as said in § 69 above, would produce no
disturbance at all if the speed of travelling were infinitely great.

§ 75. Fig. 27 is interesting as showing the waveless disturbance
produced by two equal and similar forcives with their middles at
distance equal to half the wave-length. This disturbance is
essentially symmetrical in front and rear of the middle between
the two forcives. By dynamical considerations of the equilibrium
of downward pressures, we see that the area of fig. 27 (portion
above line of abscissas being reckoned as negative) must be exactly
equal to 2A, the sum of the areas of the two forcives, representing
their integral amount of downward pressure. This area, being
2irbk, with the numerical data of § 73, is numerically JX; that is
to say a rectangle whose length is JX, and breadth the unit of our
vertical scale. Approximate mensuration, with a very rough
estimate of the area beyond the range of the diagram, continued to
infinity on the two sides, verifies this conclusion.
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§ 76. Fig. 28 is designed on the same plan as fig. 27 but with
eleven half-wave-lengths as the distance between the two forcives
instead of one half-wave-length. Like fig. 27, it is symmetrical on
the two sides of the middle of the diagram ; but, instead of being
waveless, as is fig. 27, it shows four and a half waves, all very
approximately sinusoidal, with two depressional halves of waves at
their two ends, and elevations coming asymptotically to zero
beyond the two ends of the diagram. The curve represented by
fig. 26 is very accurately the right-hand extreme of fig. 28 : and the
same figure, turned right to left, is the left-hand extreme of fig. 28.
If we commence with the water wholly at rest, and start the
forcives at the proper speed, with force gradually (or somewhat
suddenly) increasing up to the prescribed amount, the motion
produced will be that represented by fig. 28, with, superimposed
upon it, a disturbance quickly disappearing in ever lengthening
waves of diminishing amplitude, travelling away in both directions
from our field. If now, with the regular regime represented by
fig. 28, we suddenly cease to apply the forcives, we have left a
free procession of four and a half very approximately sinusoidal
waves, between a front and a rear deviating from sinusoidality as
shown in the diagram. From the instant of being left free, the
front of this procession and its rear will rapidly become modified ;
while for three periods the central part of the procession will have
travelled three wave-lengths, with very little deviation from sinu-
soidality. But, after four or five periods from the instant of being
left free, the whole procession will have got into confusion. After
twenty or thirty or forty periods, the water will be sensibly
quiescent, not only through the whole space where the procession
was, but through the whole space over which it would have travelled
if its front and rear had been kept guarded by the continued action
of the two travelling forcives. At no time after the cessation of
the forcives can we reasonably or conveniently assign a " group
velocity" to the group or procession of waves with which we are
concerned. A prevalent idea is, I believe, that such a group of
deep sea waves could be regarded as travelling with half the
" wave-velocity" of waves of the length given in the original
group. In § 30 above, reasons are given for accepting the theory
of "group velocity" only in the case of mutually supporting
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groups, given by Stokes in his Smith's Prize examination paper,
published in the Cambridge University Calendar for 1876 : and
for rejecting it for the case of any single group of waves. In
reality the front of a group, left to itself, travels with accelerated
velocity exceeding the velocity of periodic waves of the given
wave-length, instead of with half that velocity.

§ 77. Kg. 29 shows the steady motion, symmetrical in front and
rear of a single travelling forcive, which is a solution of our problem;
but it is an unstable solution (as probably are the solutions of the
problem of § 45 above, shown in figs. 13, 14, 15). If any large
finite portion of the water is given in motion according to fig. 29,
say, for example, 50 wave-lengths preceding 0 (the forcive) and
50 wave-lengths following 0, the front of the whole procession, to
the right of O, will become dissipated into non-periodic waves
travelling rightwards and leftwards with increasing wave-lengths
and increasing velocities; and the approximately steady periodic
portion of it will shrink backwards relatively to the forcive.
Thus before the forcive has travelled fifty wave-lengths, the
periodic waves in front of it are all gone: but there is still
irregular disturbance both before and behind it. After the forcive
has travelled a hundred wave-lengths, the whole motion in advance
of it, and the motion for perhaps 30 wave-lengths or more in its
rear, will have settled to nearly the condition represented by fig.
26, in which there is a small regular elevation in advance of the
forcive, and a regular train of approximately sinusoidal waves in
its rear; these waves being of double the wave-height given
originally. This motion, as said above in § 68, will go on, leaving
behind the forcive a train of steady periodic waves, increasing in
number; and behind these an irregular train of waves, shorter
and shorter, and less and less high the farther rearward we look
for them (see R in fig. 10 of S§ 26, 27 above). It is an interesting,
but not at all an easy problem, to investigate the extreme rear
(with practically motionless water behind it) of the train of waves
in the wake of a forcive travelling uniformly for ever. I hope to
return to this subject when we come to consider the work done by
the travelling forcive.

§ 78. Pass now to the investigation of the formulas by the
calculation of which figs. 26, 27, 28, 29, 30 have been drawn, and
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the theorem of (97) proved. Go back to the problem of § 41
above: but instead of taking e= -9j as in§§ 46-61, take e= 1 - 10~4;
and c= 1/(2/+ 1). By (86) and (87) of § 45 we have the following
solution

d=/+Jf (100)
where

-gPJg - j cos (,/ + ̂  log \ +_\ > ^ |* + * } (101).

and

# I e2 cos 20 , ,
= * "2/+1 + fj—\ + W~*~ J

Fig. 29 has been calculated by putting 0= — . -.—=-, and

taking j = 20. The explanation is that, as we shall see by (78) of
§ 43 above, (100), (101), (102), express the water disturbance due
to an infinite row of forcives at consecutive distances each equal
to (20J) A; the expression for each forcive being

where n is zero or any positive or negative integer; and by (79)
we have

6 = 2 0 * 1 0 ^ ( 1 Q 4 )

Thus we see that the pressure at 0 due to each of the forcives next
to 0, on the two sides, is 1/{1 + (27r.lO4)2} of the pressure due to
the forcive whose centre is 0. Thus we see that the pressures due
to all the forcives, except the last mentioned, may be neglected
through several wave-lengths on each side of 0 : and we conclude
that (100), (101), (102) express, to a very high degree of approxi-
mation, the disturbance produced in the water by the single
travelling forcive whose centre is at O.

§79. To prove (97) take 0=180° in (100), (101), (102); we
thus find

= e\2^e a n T-e + ~ 3 +~5 ' " ' ' + ^~e> ' 2f+\) ' '"

Instead now of taking e= 1 - 10"*, as we took in our calculations
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for d(0), let us now take e= 1. This reduces (105) to

! i i ; ( ^ + i (=i£ (ice).! + i + _ ; . + ^ +

Lastly take j an infinitely, great 'odd or even integer, and we
find

d(180°) = ( - l )>- " (107).

fig. 26 is, as we have seen, found by superimposing on the
motion represented by fig. 29 an infinite train of periodic waves

represented by - | h . sin ——, and therefore h = TT, which proves

(97).
§ 80. To pass now from the two-dimensional problem of canal-

ship-waves to the three-dimensional problem of sea-ship-waves, we
shall use a synthetic method given by Rayleigh at the end of his
paper on " The form of standing waves on the surface of running
water," communicated to the London Mathematical Society in
December 1883.* In an infinite plane expanse of water, consider
two or more forcives, such as that represented by (95) of § 66, with
their horizontal medial generating lines in different directions
through one point O, travelling with uniform velocity, v, in any
direction. The superposition of these forcives, and of the disturb-
ances of the water which they produce, each calculated by an
application of (100), (101), (102), gives us the solution of a three-
dimensional wave problem; which becomes the ship-wave-problem
if we make the constituents infinitely small and infinitely numerous.
Rayleigh took each constituent forcive as confined to an infinitely
narrow space, and combated the consequent troublesome infinity by
introducing a resistance to be annulled in interpretation of results
for points not infinitely near to O. I escape from the trouble in
the two-dimensional system of waves, by taking (95) to express
the distribution of pressure in the forcive, and making b as small
as we please. Thus, as indicated in §§ 79, 73, 76, by taking
& = 10£A/(104.7r) we calculated a finite value for d(0). But for
values of x, considerably greater than half a wave-length, we were
able to simplify the calculations by taking b = 0.

* Proc. L.M.S., 1883 : republished in Rayleigh's Scientific Papers, vol. ii.
art. 109.

PKOC. EOY. SOC. EDIN VOL. XXV. 6 8
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§ 81. For the three-dimensional system let, in fig. 31, if/ be
the inclination to 0 X of the rearward wave-normal of one of the
constituent systems of waves. This is also the inclination to 0 Y
of the medial line of the travelling forcive to which that set of
waves is due. Take now for the forcive obtained by the super-

Q ft

FIG. 31.

position of an infinite number of constituents, as described
in § 80,

Vn • • (108),
bVc

[(* cos \j/ + y sin \f/)'1 + 62]
where k may be a function of \j/, and 6 is the same for all values
of if/.

For the case of a circular forcive system we must take h
constant; and we find

1 TTM- . . (109).

§ 82. Let now the forcive, whether circular or not, be kept

travelling in the direction of x negative * with velocity v: and

* This is opposite to the direction of the motion of the forcive in fig. 26.
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let A. denote the corresponding free wave-length given by the
formula 2irv2/g. This is the wave-length of the constituent train
of waves corresponding to i// = 0. For the i/'-constituent, the
component velocity perpendicular to the front is v cos \j/, and the
wave-length is A. cos 2>f/. Looking now to fig. 26, with A cos 2i/r
instead of A; and to fig. 31; and to equations (97), (98); we
see that the portion of the depression at (x, y) due to the
constituent of forcive shown under the integral in (108) is

i^bk.dij/ g-n 1^{xcos i/f + y sin \j/) (HO)
Acos2i/T Acos2i/r • • • • { h

provided x cos <f/ + y sin if/ is considerably greater than JA cos <i\\i.
Hence for the depression at (x, y) due to the whole travelling
forcive, we have

AcosV XcosV

-G-0
§ 83. The reason for choosing the limits -I 01 t o - is that

each constituent forcive gives a train of sinusoidal waves in its rear,
and no perceptible disturbance in its front at distances from it
exceeding half a wave-length. Look now to fig. 31, and
consider the infinite number of medial lines of the forcives
included in the integrals (108), (111); all as lines passing through
0. Four examples, Q P, Y' Y, L K, X X' of these lines are

shown in the diagram: corresponding respectively to i/r = - ( — — d\

i/r = 0, i/f = any positive acute angle, i/r = — . On each of the first three

of these lines E R indicates the rear. The fourth, X X', is in the
direction of the motion, and has neither front nor rear. The
integral (111) must include all, and only all, the medial lines
which have rears towards P. Hence Q P is one limit of \p in
(111) because it passes through P ; XX' is the other limit because
it has neither front nor rear. Thus all the lines included in the
integral, lie in the obtuse angle POX'. Thus the integral (111)
expresses the depression at P(z, y) due to the joint action of all
the constituent forcives, because none except those whose medial
lines lie in the angle P O X', contribute anything to the disturbance
of the water at P.
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§ 84. For interpreting and approximately evaluating the definite
integral, we may conveniently put

r - V ^ . and u - ^ ^ . . .(112),

and write (111) as follows :

A COS ZW A

D I
'e)

Now if we suppose r/\ very great, there will be exceedingly
rapid transitions between equal positive and negative values of
sin (27TJ-M/X), which will cause cancelling of all portions of the

integral except those, if any there are, for which du/di/r vanishes.

We shall see presently that there are two such values, \(/v i/f2, both
real if tan#< J\; u being a maximum (wj) for one of them,
and a minimum (w2) for the other; and that, when 6 has any
value between tan - 1 J\ and 2ir — tan - 1 J^, the values of if/v ij/2

are both imaginary. Consideration of this last-mentioned case
shows that, in the whole area of sea in advance of two lines
through the centre of the travelling forcive inclined at equal
angles of tan ~x J\, (or 19" 28') on each side of the mid-wake, there
is no perceptible disturbance at distances of much more than a
half wave-length from the centre of the forcive. The main
disturbance by ship-waves, therefore, lies in the rearward angular
space between these two lines. It is illustrated by fig. 32, as we
now proceed to prove by the proper interpretation of (113).
Expanding the argument of the sin in (113) by Taylor's theorem
for values of f differing from i/fj by small fractions of a radian,
we find

where
2irru j /1 , \ IT( d2u\ , , , j.N

a1 , and ^ ( ^ - ^ ^ - ^ . (115).

From the second of (115) we find d\f/=dqlj(pi Jir), where

Dealing similarly in respect to \j/2 and values of \j/ differing but
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little from it, we take + g2
2 instead of the -q^ of (114), and

(d2u/dij/2)2 instead of the - (cPu/dif^^ of (115); because ux is the
maximum and «2 the minimum. Calling \ , k2 the values of Jc
corresponding to i/̂ , ij/2, and using these expressions properly in
(113), we find, for the depression of the water at (a;, y),

s i n

The limits oo, - oo are assigned to the integrations relatively
to q1 and g2 because the greatness of r/X in (115) and correspond-
ing formula relative to ij/2, makes qx and q2 each very great,
(positive or negative,) for moderate properly small positive or
negative values of ^ - i / ^ and I/'-I/ 'J. Now as discovered by
Euler or Laplace (see Gregory's Examples, p. 479), we have

/ tfgsing2 = I dq cos q* = JTT/2, and using these in (117)we

find

d(x u) - V271"25 ffei(sin a t - cos ax) ^^2(sin a2 + cos a2)"]
XL /SjCOS2^ ft COS V * J

Substituting for aj, a2 values by (115) we find
\

+
\~]
/ Jy ) = - v - ^ — - V r s m V \ r u i a + 5 2 T s l n r ( r M 2+ Q"" A LySjCos2^ XV 8 / /32 cos 2i/f2 X \ 8

§ 85. To determine the quantities denoted by ft, ft in (116)
. . . . (118)', we write (112) as follows :—

ru = (x + yt) Jl + t2, where t = ta,mj/ . . . (119).

Hence, by differentiation on the supposition of x, y, r constant, we
find

l + t* . . .(121).

By (120) we find for tm which makes u a maximum or minimum,

arfB + y(l + 2£) = 0 (122);

a quadratic equation which, when (y\xf<\, has real roots as
follows,—
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And substituting tm, (either of these,) for t in (121) we find

1 " t l ) + 2 y t m \ J l + * » • • • ( 1 2 4 ) >

or with simplification by (119),

Eliminating ^ from the first factor of (124) by (122) we find

which, with m = l, and m = 2, gives /31 and /32 by (116).
§ 86. Using (123) we see that (d2u/dKJ/2)m vanishes when x = y J8,

and that it is negative for tv and positive for t2, when x>y *J8.
Hence t-^ makes d2u/dij/2 negative. Therefore MX is the maximum;
and t2 makes it positive. Therefore w2 is the minimum ; and (119)
gives for these maximum and minimum values

jT+t* . (125).

By (122), (123) we see that when y/x=0, we have -t1= + co ,
and - £2 = 0. If we increase y from 0 to + x /J8, - tx falls
continuously from oo to J^, and —12 rises continuously from
0 to J^. Thus - tx and - 1 2 become, each of them, ^'J ; which
is the tangent of 35° 16'.

§ 87. Geometrical digression on a system of autotomic, monopara-
metric co-ordinates.* §§ 87-90.

In (119) put
ru = a (126),

where a denotes the parameter 0 W of the curve 0 C C, fig. 32,
which we are about to describe; being the curve given intrinsi-
cally by (119) and (122) with suffix ' m ' omitted from t. In the
present paper these curves may be called isophasals, because the
argument of the sine in (130) below is the same for all points on
any one of them.

Solving (119) and (122) for x and y, we find

(12<)

* Of this kind of co-ordinates in a plane, we have a well-known case in the
elliptic co-ordinates consisting of confocal ellipses and hyperbolas.
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The largest of the eight curves shown in fig. 32 has been
described according to values of x, y calculated from these two
equations, by giving to - 1 values tan 0°, tan 10°, tan 20°, . . . .
tan 90°. The seven other isophasals partially shown in fig. 32,
all similar to the largest, have been drawn to correspond to seven
equidifferent smaller values, 19A., 18A . . . . 13X, of the parameter
a, if we make the largest equal to 2 OX.

§ 88. I t is seen in the diagram that every two of these isophasals
cut one another in two points, at equal distances on the two sides
of O W. If we continue the system down to parameter 0, every
point within the angle G O C is the intersection of two and only
two of the curves given by (127), with two different values of the
parameter a. If we are to complete each curve algebraically, we
must duplicate our diagram by an equal and similar pattern on
the left of O : and the doubled pattern, thus obtained, would
show a system of waves, equal and similar in the front and rear,
which (§ 77 above) is possible but instable. We are, however,
at present only concerned with the stable ship-waves contained in
the angle + 19° 28' on the two sides of the mid-wake; and we
leave the algebraic extension with only the remark that all points
in the angle C O C of the diagram, and the opposite angle leftward
of O, can be specified by real values of the parameter a: while
imaginary values of it would specify real points in the two
obtuse angles.

§ 89. By differentiation of (127), we find

(128);

which proves that tan ~H is the angle measured anti-clockwise

from O Y to the tangent to the curve at any point (x, y), in the

lower half of the diagram. Elimination of t between the two

equations of (127) gives, as the cartesian equation of our curve,

(a;2 + 2/2)3 + a2(82/4_20a;y-a;4) + 1 6 a y = 0 . . (129).

But the implicit equations (127) are much more convenient

for all our uses. It is interesting to verify (129) for the case

- 1 — ± J\ in (127), corresponding to either of the two cusps

shown in the diagram.
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§ 90. Going back now to § 86 and the continuous variations con-
sidered in it, we see that - tx and - t2 are respectively the tan-
gents of the inclinations, reckoned from O Y clockwise, of portions
of the long arc 0 C and of the short arc W C, in the upper half of
the diagram. Thus, if we carry a point from 0 to C in the long
arc, and from C to W in the short arc, we have the change of in-
clinations to 0 Y represented continuously by the decrease of
tan -1( - £,) from 90° to 35° 16', while y increases from 0 to a; J§ ;
and the farther decrease of tan ~1( - t2) from 35° 16' to 0°, while y
diminishes from xJ8 to 0 again. The inclination to O Y of the
two branches meeting in the cusp, C, is 35° 16' (or tan"1

 V/J).
For any point in the short arc C W C of the curve u or
cos (if/ - 6)/cos 2 i/f, is a minimum. In each of the long arcs u is a
maximum. At every point of the curve the value of u, whether
minimum or maximum, is a/r. Hence for different points of the
curve, u is inversely proportional to the radius vector from O.

§ 91. Going back to (118)' we now see that for all points on
any one of our curves, rux and ru2 have both the same value, being
the parameter O W of the curve. The first part of (118)' is one
constituent of the depression at any point on either of the long
arcs; and the second part of (118)' is one constituent of the
depression at any point on the short arc. Taking for example
the largest of the curves shown in fig. 32, we now see that for any
point of either of its long arcs, the second constituent of the
depression of the water is to be calculated from the second part
of (118)'; while for any point of its short arc, the second con-
stituent of the depression is to be calculated from the first part of
(118)'.

§ 92. Explaining quite similarly the determination of d(x, y)
for every point of each of the smaller curves which we see in the
diagram cutting the longer arcs of the largest curve, we arrive
at the following conclusions as the complete solution of our problem.

The whole system of standing waves in the wake of the travel-
ling forcive is given by the superposition of constituents calcu-
lated according to (127), with greater and smaller values of the
parameter a with infinitely small successive differences. Hence,
what we see in looking at the waves from above is exactly a
system of crossing hills and valleys, with ridges and beds of
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hollows, all shaped aocording to the isophasal curves shown in

fig. 32. Looking at any one of the short arc-ridges and following

it through the cusps, we find it becoming the middle line of a

valley in each of the long arcs of the curve. And following a

short arc mid-valley through the cusps, we find, in the continua-

tion of the curve, two long ridges. Every ridge, long or short, is

furrowed by valleys. All the curved ridges and valleys are parts

of one continuous system of curves, illustrated by fig. 32 and

expressed by the algebraic equation (129).

With these explanations we may write (118)' as follows :

d(*»y)= ^ — - s i n v ( r u - — ) . . . (130),
Ao A \ o /

where

§ 93. An important, perhaps the most important, feature of the

wave-system which we actually see on the two sides of the mid-

wake of a steamer travelling through smooth water at sea, or of a

duckling* swimming as fast as it can in a pond, is the steepness

of the waves in two lines which we know to be inclined at 19° 28' to

the mid-wake. The theory of this feature is expressed by the

coefficient of the sine in (130), and is well illustrated by the

calculation of / - • f°r eleven points of any one of the

curves of fig. 32, the results of which are shown in column 6 of

the following table. They express the depression below, and

elevation above mid-level, due to one constituent of the system of

crossing hills and valleys described in § 92. Column 1 is - \j/.

Columns 2, 3 are xja and yja, calculated from (127). Column 4

is u, calculated by (126) from columns 2, 3. Column 5 is

- • d2u/dif/^, calculated from (124) and columns 2, 4. Column 6
a,

is / - • - , calculated from columns 1, 6. u, being, as we

* In the case of even the highest speed attained by a duckling, this angle is
perhaps perceptibly greater than 19° 28', because of the dynamic effect of the
capillary surface tension of water. See Baltimore Lectures, p. 593 (letter
to Professor Tait, of date 23rd Aug. 1871) and pp. 600, 601 (letter to William
Froude, reprinted from Nature of 26th Oct. 1871).
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have seen, a maximum for values of - i/r from 0 to 35° 16', and
a minimum for values from this to 90°, we see that the proper
suffix in columns 4, 6, for the first four lines of each column is 1,
and for the last six lines is 2.

Col. 1.

0°
10°
20°
30°
35° 16'
40°
50°
60°
70°
80°
90°

Col. 2.

X

a

1-0000
1-0145
1-0497
V0825
10887
1-0826
1-0201

•8750
•6441
•3421

o-oooo

Col. 3.

V
a

o-oooo
•1685
•3201
•3750
•3849
•3773
•3166
•2165
•1100
•0297

0 0000

Col. 4.

u

1-00000
•97239
•91587
•87290
•86602
•87225
•93624

1-10941
1-53041
2-91222

oo

Col. 5.

r cPu
a d^

1-00000
•93782
•73497
•33333

o-ooooo
- -40830
- 1-84070
- 5-00003
-14-0987
-63-3341
— QO

Col. 6.

/a sec 2\f/

1-0000
1-0647
1-3210
2-3094

CO

2-6660
1-7839
1-7888
2-2793
4-1672

oo

§94. In (130), k is generally a function of i/e; but if the
forcive is circular, (§81 above) k is a constant, and for
points on one of the isophasal curves (a = constant) the only
variable coefficients of the sine are sec2i/r, and ft'1. But for
different isophasal curves the coefficient in (130) expressing the
magnitude of the range above and below mean level, varies
inversely as Ja. For mid-wake (ip = 0) a is simply the distance
from the farcive: and we conclude, not merely for our point-
forcive, but for a great ship, that the waves at a very large
number of wave-lengths right astern, are smaller in height
inversely as the square root of the distance from the forcive or
from the middle of the ship.

§ 95. The infinity for i// = + 35° 16' represents a feature
analogous to a caustic in optics. There is in nature no infinity
for either case, if the source is finite and distributed, not infin-
itely intense and confined to an infinitely small space. According
to the methods followed in §§ 1-72 above, we have in every
case a finite intensity of source, or of forcive, except in § 80
where we have supposed b infinitely small, in comparison with X,
we avoid the infinity shown in column 6 : and can, by great
labour, calculate a table of mitigated numbers, rising to a very
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large maximum at \j/ = + 35° 16'; but not to infinity; and so
arrive mathematically at an expression for the very high waves
seen on the two bounding lines of the wave-disturbance, inclined
at 19° 28' to the mid-wake. But it is interesting to remember
that we see in reality a considerable number of white-capped waves
(would-be infinities) before the well-known large glassy waves
which form so interesting a feature of the wave-disturbances.

§§ 80-95 of the present paper are merely a working out of the
simple problem of purely gravitational waves with no surface-
tension on the principle given by Eayleigh* in 1883 for the much
more complex problem of capillary waves in front, in which
surface-tension is the chief constituent of the forcive, and waves
in the rear, in which the chief constituent of the forcive is
gravitational.

In all the work arithmetical, algebraic, graphic of §§ 32-95
above, I have had much valuable assistance from Mr J. de Graaff
Hunter; who has just now been appointed to a post in the
National Physical Laboratory.

*Proc. Land. Math. Soc, xv. pp. 69-78, 1883 ; reprinted in Lord Bayleigh's
Scientific Papers, vol. ii. pp. 258-267.

{Issued separately December 11, 1905.)
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