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PROBABLY no department of Analytical Mechanics presents
greater difficulties than that which treats of the motions of
fluids; and hitherto the success of mathematicians therein has
been comparatively limited. In the theory of the waves, as pre-
sented by MM. POISSON and CAUCHY, and in that of sound, their
success appears to have been more complete than elsewhere; and
if to these investigations we join the researches of LAPLACE con-
cerning the tides, we shall have the principal important applica-
tions hitherto made of the general equations upon which the de-
termination of this kind of motion depends. The same equa-
tions will serve to resolve completely a particular case of the
motion of fluids, which is capable of a useful practical applica-
tion; and, as I am not aware that it has yet been noticed, I shall
endeavour, in the following paper, to consider it as briefly as
possible.

In the case just alluded to, it is required to determine the
circumstances of the motion of an indefinitely extended non-
elastic fluid, when agitated by a solid ellipsoidal body, moving
parallel to itself, according to any given law, always supposing
the body's excursions very small, compared with its dimensions.
From what will be shown in the sequel, the general solution of
this problem may very easily be obtained. But as the principal
object of our paper is to determine the alteration produced in
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the motion of a pendulum by the action of the surrounding me-
dium, we have insisted more particularly on the case where the
ellipsoid moves in a right line parallel to one of its axes, and
have thence proved, that, in order to obtain the correct time
of a pendulum's vibration, it will not be sufficient merely to al-
low for the loss of weight caused by the fluid medium, but that
it will likewise be requisite to conceive the density of the body
augmented by a quantity proportional to the density of this
fluid. The value of the quantity last named, when the body of
the pendulum is an oblate spheroid, vibrating in its equatorial
plane, has been completely determined, and, when the spheroid
becomes a sphere, is precisely equal to half the density of the
surrounding fluid. Hence, in this last case, we shall have the
true time of the pendulum's vibration, if we suppose it to move
in vacuo, and then simply conceive its mass augmented by half
that of an equal volume of the fluid, whilst the moving force
with which it is actuated is diminished by the whole weight of
the same volume of fluid.

W e will now proceed to consider a particular case of the motion of a

non-elastic fluid over a fixed obstacle of ellipsoidal figure, and thence endea-

vour to find the correction necessary to reduce the observed length of a pen-

dulum vibrating through exceedingly small arcs in any indefinitely extend-

ed medium to its true length in vacuo, when the body of the pendulum is

a solid ellipsoid. For this purpose, we may remark, that the equations of

the motion of a homogeneous non-elastic fluid are

d*d>
dz* (2.)

" ~ dx* r dy*

Vide Mec. Cel. Liv. iii. Ch. 8. No. 33, where <p is such a function of the
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co-ordinates x, y, z of any particle of the fluid mass, and of the time t that
the velocities of this particle in the directions of and tending to increase the

co-ordinates oc, y and z shall always he represented by -j-, -j-, and - p re-

spectively. Moreover, g represents the fluid's density, p its pressure, and V

a function dependent upon the various exterior forces which act upon the

fluid mass.

When the fluid is supposed to move over a fixed solid ellipsoid, the prin-
cipal difficulty will be so to satisfy the equation (2.) that the particles at the
surface of this solid may move along this surface, which may always be ef-
fected by making

00

supposing that the origin of the co-ordinates is at the centre of the ellip-
soid : A and /x being two arbitrary quantities constant with regard to the
variables oc, y,z\ and a, b, c,f being functions of these same variables, de-
termined by the equations

in which a', b', d are the axes of the given ellipsoid.

* In my memoir on the Determination of the exterior and interior Attractions of El-
lipsoids of Variable Densities, recently communicated to the Cambridge Philosophical So-
ciety by Sir EDWARD FFRENCH BROMHEAD, Baronet, I have given a method by which
the general integral of the partial differential equation

~d& + da? + + ~dl? + du* + ~ ~di,

may be expanded in a series of a peculiar form, and have thus rendered the determina-
tion of these attractions a matter of comparative facility. The same method applied to
the equation (2.) of the present paper, has the advantage of giving an expansion of its
general integral, every term of which, besides satisfying this equation, may likewise be
made to satisfy the condition (6.). The formula (3.) is only an individual term of the
expansion in question. But in order to render the present communication independent
of every other, it was thought advisable to introduce into the text a demonstration of this
particular case.
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To prove that the expression (3.) satisfies the equation (2.), it may be
remarked, that we readily get, by differentiating (3.)

d*<p <Pd> d?cf> ifi df ax Atff cPf d*f\
dx* + dy* + dz2 ~a3 be dx + a3 be \dx* + dyi + ds2 /

Moreover, by the same means, the last of the equations (4.) gives

Y= . "? ,, (dJy i (vy i (dfY- 4

d*f

which values being substituted in the second member of the preceding equa-
tion, evidently cause it to vanish, and we thus perceive that the value (3.)
satisfies the partial differential equation (2.)

We will now endeavour so to determine the constant quantities X and
fi that the fluid particles may move along the surface of the ellipsoidal body
of which the equation is

But, by differentiation, there results

n xdso i ydy i z d z

and as the particles must move along the surface, it is clear that the last

equation ought to subsist, when we change the elements dx, dy and dz in-

to their corresponding velocities -^ , -p and - p . Hence, at this sur-

face,

d*dx+V* dy + c* dz

But the expression (3.) gives generally

VOL. XIII. PART I. H
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dx~ +' 1 / «36c + o3ic d#' rfy "" a3fic rfy dz a3bc dz
CO * O

and, consequently, at the surface in question, where / = 0,

= fig df^ \ + u / ^ x J ^ . ^ ± j _ =

dx~ FJ asbc "** a!zVd dz' dy ~ a!3b(? dy' dz d*b'd dz

These values, substituted in (6.), give, when we replace ^ , •—, and

with their values at the ellipsoidal surface,

00

which may always be satisfied by a proper determination of one of the con-
stants \ and [*, the other remaining entirely arbitrary.

From what precedes, it is clear, that the equation (2.), and condition to
which the fluid is subject, may equally well be satisfied by making

QO

provided we determine the constant quantities therein contained by means
of the equations

J
oo oo

respectively. The same may likewise be said of the sum of the three values
of (j> before given. However, in what follows, we shall consider the value
(8.) only, since, from the results thus obtained, similar ones relative to the
cases just enumerated may be found without the least difficulty.

Instead now of supposing the solid at,rest, let every part of the whole
system be animated with an additional common velocity -— A in the direc-
tion of the co-ordinate a?.. Then, it is clear, that the equation (2.), and con-
dition to which the fluid is subject, will still remain satisfied. Moreover, if
x', y', z' are now referred to three axes fixed in space, we shall have
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and if X ' represents the co-ordinate of the centre of the ellipsoid referred

to the fixed origin, we shall have

X.' = —Fkdt (9)

Adding now to (p the term — \ x due to the additional velocity, the ex-
pression (3.) will then become

oo

and the velocities of any point of the fluid will be given, by means of the
differentials of this last function. But <p and its differentials evidently va-
nish at an infinite distance from the solid, where f— oo ; and consequently,
the case now under consideration is that of an indefinitely extended fluid,
of which the exterior limits are at rest, whilst the parts in the vicinity of
the moving body are agitated by its motions.

It will now be requisite to determine the pressure p at any point of the
fluid mass. But, by supposing this mass free from all extraneous action
V = 0, and if the excursions of the solid are always exceedingly small, com-
pared with its dimensions, the last term of the second member of the equa-
tion (1.) may evidently be neglected, and thus we shall have, without sen-
sible error,

p dd> . dd>
p dt ' * dt

or, by substitution from the last value of (p,

P = — dt
oo

Having thus ascertained all the circumstances of the fluid's motion, let
us now calculate its total action upon the moving solid. Then, the pressure
upon any point on its surface will be had by making f— 0 in the last ex-
pression, and is

0

du r
P° = -TtpxJ

a*bc

H 2
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Hence we readily get for the total pressure on the body tending to in-
crease, x

000 00

v representing the volume of the body, p" the pressure on that side where
x is positive, p' the pressure on the opposite side, and ds an element of the
principal section of the ellipsoid perpendicular to the axis of x.

If now we substitute for ft its value given from (8.), the last expression
will become

00

ctVd pv fML
J aa?bc

a3 be
o

Having thus the total pressure exerted upon the moving body by the sur-
rounding medium, it will be easy thence to determine the law of its vibra-
tions when acted upon by an exterior force proportional to the distance of
its centre from the point of repose. In fact, let py be the density of the
body, and, consequently, p,v its mass, gl&! the exterior force tending to de-
crease X'. Then, by the principles of dynamics,

If, now, in the formula (10.) we substitute for X its value drawn from
(9.), the last equation will become

which is evidently the same as would be obtained by supposing the vibra-
tions to take place in vacuo, under the influence of the given exterior force,
provided the density of the vibrating body were increased from
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oo
a'Vd, df

a3 be
co

— dh'dfl
J a

(11.)

a?bc

We thus perceive, that, besides the retardation caused by the loss of
weight which the vibrating body sustains in a fluid, there is a farther re-
tardation due to the action of the fluid itself; and this last is precisely the
same as would be produced by augmenting the density of the body in the
proportion just assigned, the moving force remaining unaltered.

When the body is spherical, we have a' = b' = (/, and the proportion

immediately preceding becomes very simple, for it will then only be requi-

site to increase pt the density of the body by ^, or half the density of the

fluid, in order to have the correction in question.
The next case in point of simplicity is where a' = c', for then

GC 00 00

Mr*L
a*b

J aHc J a*b~ J a*
o ° A'

If a' zr~ b', or the body, is an oblate spheroid vibrating in its equatorial

plane, the last quantity properly depends on the circular arcs, and has for

value

I" - (t an=

If, on the contrary, a' ̂ L b', or the spheroid, is oblong, the value of the

same integral is

Another very simple case is where c' = b', for then the first of the quan-

tities (12.) becomes, if a' p=- V

a' + J^a" — - J Q 2
(a'1 — & ' 2 ) " 1 log

a' — a' (a* —

and if a' ^ b', the same quantity becomes
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By employing the first of the four expressions immediately preceding,
we readily perceive, that, when an oblate spheroid vibrates in its equatorial
plane, the correction now under consideration will be affected by conceiving
the density of the body augmented from

| (tan = ^J_j^) -

2 ( ' * 5'2)§ | & b' '2f ( t a n = uj/_v^ 6'2 V ' * 6'2

When b' is very small compared with a', or the spheroid is very flat, we
must augment the density

7T b'

from p to p -)- -—T p nearly ;

and we thus see that the correction in question becomes less in proportion
as the spheroid is more oblate.

In what precedes, the excursions of the body of the pendulum are sup-
posed very small, compared with its dimensions. For, if this were not the
case, the term of the second degree in the equation (1.) would no longer be
negligible, and therefore the foregoing results might thus cease to be correct.
Indeed, were we to attend to the term just mentioned, no advantage would
even then be obtained; for the actual motion of the fluid, where the vibra-
tions are large, will differ greatly from what would be assigned by the pre-
ceding method, although this method consists in satisfying all the equations
of the fluid's motion, and likewise the particular conditions to which it is
subject. It would be encroaching too much upon the Society's time to en-
ter on the present occasion into an explanation of the cause of this apparent
anomaly: it will be sufficient here to have made the remark, and, at the
same time, to observe, that when the extent of the vibrations is very small,
as we have all along supposed, the preceding theory will give the proper
correction to be applied to bodies vibrating in air, or other elastic fluid, since
the error to which this theory leads cannot bear a much greater proportion
to the correction before assigned, than the pendulum's greatest velocity does
to that of sound.




