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irrespectively of the direction of the stream lines in its neighbour-
hood ; a result easily deduced from the elementary formula for fluid
pressure in hydrokinetics.

I have long ago shown that an elongated diamagnetic body in a
uniform magnetic field tends, as tends an elongated ferromagnetic
body, to place its length along the lines of force. Hence a long
solid, pivoted on a fixed axis through its middle in a uniform stream
of liquid, tends to place its length perpendicularly across the direc-
tion of motion ; a known result (Thomson & Tait's " Natural Philo-
sophy/' § 335). Again, two globes held in a uniform stream with
the lines joining their centres, require force to prevent them from
mutually approaching one another. In the magnetic analogue, two
spheres of diamagnetic or ferromagnetic inductive capacity repel
one another when held in a line at right angles to the lines of
force. A hydrokinetic result similar to this for the case of two
equal globes, is to be found in Thomson and Tait's " Natural Philo-
sophy/' § 332.

IV. (Proposition.) If the second body considered in § III., that is
to say, a body either having no apertures, or, if perforated, having
no circulation through the apertures, be acted on by one system of
forces applied so as always to balance the resultant of the fluid
pressure, calculated for it according to I I . and III . for whatever
position it may come to at any time, and if it be influenced, besides,
by any other system of applied forces, superimposed on the former,
it will move just as it would move, under the influence of the latter
system of forces alone, were the fluid at rest, except in so far as
compelled to move by the body's own motion through it. A parti-
cular case of this proposition was first published many years ago, by
Professor James Thomson, on account of which he gave the name
of " vortex of free mobility " to the cyclic irrotational motion sym-
metrical round a straight axis,

4. On the Equilibrium of Vapour at a Curved Surface of
Liquid. By Sir William Thomson.

In a closed vessel containing only a liquid and its vapour, ail at
one temperature, the liquid rests, with its free surface raised or
depressed in capillary tubes and in the neighbourhood of the solid
boundary, in permanent equilibrium according to the same law of
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relation between curvature and pressure as in vessels open to the
air. The permanence of this equilibrium implies physical equi-
librium between the liquid and the vapour in contact with it at all
parts of its surface. But the pressure of the vapour at different
levels differs according to hydrostatic law. Hence the pressure of
saturated vapour in contact with a liquid differs according to the
curvature of the bounding surface, being less when the liquid is
concave, and greater when it is convex. And detached portions of
the liquid in separate vessels all enclosed in one containing vessel,
cannot remain permanently with their free surfaces in any other
relative positions than those they would occupy if there were hydro-
static communication of pressure between the portions of liquid
in the several vessels. There must be evaporation from those
surfaces which are too high, and condensation into the liquid at
those surfaces which are too low—a process which goes on until
hydrostatic equilibrium, as if with free communication of pressure
from vessel to vessel, is attained. Thus, for example, if there are
two large open vessels of water, one considerably above the other
in level, and if the temperature of the surrounding matter is kept
rigorously constant, the liquid in the higher vessel will gradually
evaporate until it is all gone and condensed into the lower vessel.
Or if, as illustrated by the annexed diagram, a capillary tube, with
a small quantity of liquid occupying it from its bottom up to a
certain level, be placed in the neighbourhood of a quantity of the
same liquid with a wide free surface, vapour will gradually become
condensed into the liquid in the capillary tube until the level of
the liquid in it is the same as it would be were the lower end of
the tube in hydrostatic communication with the large mass of
liquid. Whether air be present above the free surface of the
liquid in the several vessels or not, the condition of ultimate
equilibrium is the same; but the processes of evaporation and
condensation through which equilibrium is approached will be
very much retarded by the presence of air. The experiments of
Graham, and the kinetic theory of Clausius and Maxwell, scarcely
yet afford us sufficient data for estimating the rapidity with which
the vapour proceeding from one of the liquids will diffuse itself
through the air and reach the surface of another liquid at a lower
level. With air at anything approaching to ordinary atmospheric
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density to resist the process, it is probable it would be too slow to
show any results unless in very long continued experiments. But
if the air be removed as perfectly as can be done by well-known
practical methods, it is probable that the process will be very
rapid: it would, indeed, be instantaneous, were it not for the cold
of evaporation in one vessel and the heat of condensation in the
other. Practically, then, the rapidity of the process towards
hydrostatic equilibrium through vapour between detached liquids,
depends on the rate of the conduction of heat between the several
surfaces through intervening solids and liquids. Without having

made either the experiment, or any calculations on the rate of con-
duction of heat in the circumstances, I feel convinced that in a
very short time water would visibly rise in the capillary tube indi-
cated in the diagram, and that, provided care is taken to maintain
equality of temperature all over the surface of the hermetically
sealed vessel, the liquid in the capillary tube would soon take very
nearly the same level as it would have were its lower end open;
sinking to this level if the capillary tube were in the beginning filled
too full, or rising to it if (as indicated in the diagram) there is not
enough of liquid in it at first to fulfil the condition of equilibrium.
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The following formula show precisely the relations between
curvatures, differences of level, and differences of pressure, with
which we are concerned.

Let p be the density of the liquid, and a that of the vapour; and
let T be the cohesive tension of the free surface, per unit of breadth,
in terms of weight of unit mass, as unit of force. Let h denote
the height of any point, P, of the free surface above a certain plane
of reference, which I shall call for brevity the plane level of the
free surface. This will be sensibly the actual level of the free
surface in regions, if there are any, with no part of the edge (or
bounding line of the free surface where liquid ends and solid
begins) at a less distance than several centimetres. Lastly, let
r and r' be the principal radii of curvature of the surface at P.
By Laplace's well-known law, we have, as the equation of equi-
librium,

( ; i ) (1).

Now, in the space occupied by vapour, the pressure is less at the
higher than at the lower of two points whose difference of levels is h,
by a difference equal to ah. And there is permanent equilibrium
between vapour and liquid at all points of the free surface. Hence
the pressure of vapour in equilibrium is less at a concave than at a
plane surface of liquid, and less at a plane surface than at a con-

m

vex surface, by differences amounting to per unit difference
p-cr

of curvature. That is to say, if -& denote the pressure of vapour in
equilibrium at a plane surface of liquid, and p the pressure of
vapour of the same liquid at the same temperature presenting a
curved surface to the vapour, we have

p-<r

- and -, being the curvatures in the principal sections of the sur-

face bounding liquid and vapour, reckoned positive when concave

towards the vapour.

In strictness, the value of o- to be used in these equations, (1)
and (2), ought to be the mean density of a vertical column of
vapour, extending through the height h from the plane of reference.
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But in all cases to which we can practically apply the formulae,
according to present knowledge of the properties of matter, the
difference of densities in this column is very small, and may be
neglected. Hence, if H denote the height of an imaginary homo-
geneous fluid above the plane of reference, which, if of the same
density as the vapour at that plane, would produce by its weight
the actual pressure «r, we have

" I T
Hence by (1) and (2)

For vapour of water at ordinary atmospheric temperatures, H is
about 1,300,000 centimetres. Hence, in a capillary tube which
would keep water up to a height of 13 metres above the plane
level, the curved surface of the wTater is in equilibrium with the
vapour in contact with it, when the pressure of the vapour is less
by about xoVo"^ °f ^ s o w n amount than the pressure of vapour in
equilibrium at a plane surface of water at the same temperature.

For water the value of T at ordinary temperatures is about -08 of
a gramme weight per centimetre; and p, being the mean of a
cubic centimetre, in grammes, is unity. The value of a for vapour
of water, at any atmospheric temperature, is so small that we may
neglect it altogether in equation (1). In a capillary tube thoroughly
wet with water, the free surface is sensibly hemispherical, and
therefore r and rr are each equal to the radius of the inner surface
of the liquid film lining the tube above the free liquid surface; we

•have, therefore,

h = -08 x - .r

Hence, if h = 1300 centimetres, r = -00012 centimetres. There can
be no doubt but that Laplace's theory is applicable without serious
modification even to a case in which the curvature is so great (or
radius of curvature so small) as this. But in the present state of
our knowledge we are not entitled to push it much further. The
molecular forces assumed in Laplace's theory to be " insensible at
sensible distances," are certainly but little, if at all, sensible at
distances equal to or exceeding the wave lengths of ordinary light.
This is directly proved by the most cursory observation of soap
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bubbles. But the appearances presented by the black spot which
abruptly ends the series of colours at places where the bubble
is thinnest before it breaks, make it quite certain that the action
of those forces becomes sensible at distances not much less than a
half wave length, or ¥-Q o~o o" o f a centimetre. There is, indeed,
much and multifarious evidence that in ordinary solids and liquids,
not merely the distances of sensible inter-molecular action, but the
linear dimensions of the molecules themselves, and the average
distance from centre to nearest centre,* are but very moderately
small in comparison with the wave lengths of light. Some
approach to a definite estimate of the dimensions of molecules
is deducible from Clausius' theory of the average spaces travelled
without collision by molecules of gases, and Maxwell's theory
and experiments regarding the viscosity of gases. Having
perfect confidence in the substantial reality of the views which
these grand investigations have opened to us, I find it scarcely
possible to admit that there can be as many as 1027 molecules in
a cubic centimetre of liquid carbonic acid or of water. This makes
the average distance from centre to nearest centre in the liquids
exceed a thousand-millionth of a centimetre !

We cannot, then, admit that the formulce which I have given
above are applicable to express the law of equilibrium between the
moisture retained by vegetable substances, such as cotton cloth or
oatmeal, or wheat-flour biscuits, at temperatures far above the
dew point of the surrounding atmosphere. But although the
energy of the attraction of some of these substances for vapour
of water (when, for example, oatmeal, previously dried at a high
temperature, has been used, as in the original experiment of Sir J.
Leslie, to produce the freezing of water under the receiver of an air-
pump), is so great that it might almost claim recognition from
chemists as due to a " chemical affinity," and resulting in a " chemi-
cal combination," I believe that the absorption of vapour into
fibrous and cellular organic structures is a property of matter
continuous with the absorption of vapour into a capillary tube
demonstrated above.

* B 7 "average distance from centre to nearest centre," I mean the side of
the cube in a cubic arrangement of a number of points equal to the number
of real molecules in any space.
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