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Introduction

Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform
cells, resulting in systemic dysregulation that enables tumor proliferation. High throughput “omics” techniques
allow rapid identification of these mutations with the goal of identifying treatments that target them. However,
the multiplicity of oncogenes required for transformation (oncogenic collaboration) makes mapping treatments
difficult.

To make this problem tractable, we have defined oncogenic collaboration as mutations in genes that interact
with an oncogene that may contribute to its dysregulation, a new genomic feature we term “surrogate
mutations”. By mapping the mutations to a protein/protein interaction network, we can determine significance
of the observed distribution using permutation-based methods.

Workflow and statistical framework

The above figure shows the general workflow and the statistical framework of the surrogateMutation package.
GISTIC files are used to select genes in regions of high copy number variation and their copy number call
in each sample. Mutations for each sample are derived from the Mutation Annotation Format (MAF) files.
These genomic alterations are then superimposed onto a protein/protein interaction network. For a set of
oncogenes of interest (the surrogate gene set), the surrogate analysis is then applied on a per-sample basis.

A permutation-based framework was used to determine significance of a Surrogate Mutation (B). Within
a sample and for each gene in the surrogate set, we ask the question whether the number of neighboring
mutations is higher than an expected background. The background distribution for each surrogate gene is
derived by randomly mutating the entire PPI network with the same number of mutations as observed in
the sample. A p-value can be calculated from the proportion of permuted samples that have the observed
number of neighboring mutations or higher.
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Installing the surrogateMutation package

Because some of the package dependencies are from Bioconductor, we suggest running the following install
commands before you install the package from source.

install.packages(c("igraph", "Rgraphviz"))
source("http://www.bioconductor.org/biocLite.R")
biocLite(c("BioNet", "DLBCL"))

Additionally, if you want to run the multi-core version of the package, you will need to install the following
packages:

install.packages(c("foreach", "doMC"))

Preparing the Data Files for Input

The first step is to load in our protein/protein interaction (PPI) network. We first load in the surrogateMutation
package. We are using a version of HPRD (Human Protein Reference Database) from the DLBCL package
for our PPI network. The Node names from this package are in the format of Gene Symbol(EntrezID), so we
first need to make a mapping table to map gene symbols to these node names in both the copy number data
and the mutation data. We do this with the buildGeneIntTable() function.

library(surrogateMutation)

## Loading required package: igraph
## Loading required package: graph
##
## Attaching package: 'graph'
##
## The following objects are masked from 'package:igraph':
##
## degree, edges
##
## Loading required package: BioNet
## Loading required package: Biobase
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
##
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
##
## The following object is masked from 'package:stats':
##
## xtabs
##
## The following objects are masked from 'package:base':
##
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## anyDuplicated, append, as.data.frame, as.vector, cbind,
## colnames, do.call, duplicated, eval, evalq, Filter, Find, get,
## intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rep.int, rownames, sapply, setdiff, sort,
## table, tapply, union, unique, unlist, unsplit
##
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Loading required package: RBGL
##
## Attaching package: 'RBGL'
##
## The following object is masked from 'package:igraph':
##
## transitivity
##
## Loading required package: DLBCL
## Loading required package: Rgraphviz
## Loading required package: grid

set.seed(333)
#load in HPRD network from the DLBCL package
library(DLBCL)
data(interactome)
intome <- interactome
geneIntTable <- buildGeneIntTable(intome)

Next, we will load the data from the TCGA Breast Cancer patients. We will directly load in the mutation
(MAF) and copy number data (GISTIC calls) from the PanGEA archive from Memorial Sloan Kettering. We
also need a couple files from the Broad GISTIC pipeline to filter the copy number set.

Essentially the MAF files have a single line for each called mutation in each patient sample. The GISTIC
calls are a gene-level summary of the GISTIC call (2 or 1 = copy number gain, 0 = neutral, -2 or -1 = copy
number loss). Each row of the GISTIC file consists of a gene-level call for each of the patient samples in the
data.

We also need to transform the patient identifiers for the GISTIC file and the MAF file so they all map to the
patients in patientsComplete.

#load surrogate package up
options(stringsAsFactors = FALSE)

#grab BRCA patients from pancan that have both Copy Number and Mutation Information
patientsComplete <- read.delim("http://cbio.mskcc.org/cancergenomics/pancan_tcga/case_lists/BRCA_cnamut_complete.txt")
patientsComplete <- patientsComplete[,1]
patientsComplete <- make.names(patientsComplete)

#read in BRCA mutations for all patients
BRCAmuts <- read.delim("http://cbio.mskcc.org/cancergenomics/pancan_tcga/maf/brca.maf")
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#change barcode "-" to "." to match copy number data
BRCAmutsPatient <- make.names(BRCAmuts$Tumor_Sample_Barcode)
#truncate barcode to match patient data
BRCAmutsPatient <- substr(BRCAmutsPatient, 1, 12)
BRCAmuts <- data.frame(BRCAmuts, Sample = BRCAmutsPatient)
#BRCAmuts$Sample <- as.character(BRCAmutsNodeMapped$Sample)
#length(unique(BRCAmutsPatient) ==)

#read in BRCA copy number for all patients
BRCAcns <- read.delim("http://cbio.mskcc.org/cancergenomics/pancan_tcga/cna/brca_CNA_data.txt")
#set rownames in CN data to be the gene symbols
rownames(BRCAcns) <- BRCAcns[,1]
#remove extraneous columns in CN/GISTIC data
BRCAcns <- BRCAcns[,-c(1:3)]
#make sure column names map to patientsComplete by subsetting sample names to tcga patients
colnames(BRCAcns) <- substr(colnames(BRCAcns), 1, 12)
#confirming this is true
length(colnames(BRCAcns) %in% patientsComplete)

## [1] 847

We need additional information from the BROAD institute for the copy number events. Specifically, we limit
our copy number input to those high confidence calls that are available in the amp_genes and del_genes files
from the GISTIC pipeline. These files give the high confidence copy number calls sorted by genomic peak.
We can parse them using the readPeakFile() function.

#download additional GISTIC info from BROAD
download.file("http://gdac.broadinstitute.org/runs/analyses__2012_12_21/data/BRCA/20121221/gdac.broadinstitute.org_BRCA.CopyNumber_Gistic2.Level_4.2012122100.0.0.tar.gz",

destfile = "brcaGistic.tar.gz")
#grab additional GISTIC info from BROAD - we need the amp_genes and del_genes files
untar(tarfile = "brcaGistic.tar.gz")
gisticDir <- "gdac.broadinstitute.org_BRCA-TP.CopyNumber_Gistic2.Level_4.2012122100.0.0/"
ampGenes <- readPeakFile(paste0(gisticDir,"amp_genes.conf_99.txt"))
delGenes <- readPeakFile(paste0(gisticDir, "del_genes.conf_99.txt"))
#cnaGenes is set of high confidence genes that are amplified and deleted across all samples
cnaGenes <- c(ampGenes, delGenes)

#show cnaGenes
cnaGenes[1:10]

## chr11.69400218.694879941 chr11.69400218.694879942 chr8.128657453.128779930
## "CCND1" "ORAOV1" "MYC"
## chr8.37487106.376105051 chr8.37487106.376105052 chr8.37487106.376105053
## "ERLIN2" "ZNF703" "LOC728024"
## chr17.37789433.378996871 chr17.37789433.378996872 chr17.37789433.378996873
## "ERBB2" "GRB7" "PNMT"
## chr17.37789433.378996874
## "TCAP"

Now that we have the high confidence calls from GISTIC, we filter the GISTIC copy number file to these
high confidence calls. Then we can filter both the copy number and the mutation data, limiting them to
patients that have both copy number and mutation calls (i.e., those patients in the patientsComplete vector).

4



#filter the data set to only those genes
focalBRCA <- BRCAcns[rownames(BRCAcns) %in% cnaGenes,]

##subset copy number data to only patients that have copy number and mutation data
inComplete <- intersect(colnames(focalBRCA), patientsComplete)
focalBRCA <- focalBRCA[,inComplete]

#filter mutation data to only patients with both copy number and patient data
BRCAmuts <- BRCAmuts[BRCAmuts$Sample %in% patientsComplete,]

Now we map the copy number and mutation data to nodes that exist in the HPRD network by using our
geneIntTable data frame.

#add gene.symbol column
focalBRCA <- data.frame(Gene.Symbol=rownames(focalBRCA),focalBRCA)
##map copy number data to genes in HPRD network
focalBRCAnodeMapped <- merge(focalBRCA, geneIntTable, by.x = "Gene.Symbol", by.y="Gene")

#map mutation data to network
BRCAmutsNodeMapped <- merge(BRCAmuts, geneIntTable, by.x = "Hugo_Symbol", by.y="Gene")
#BRCAmutsNodeMapped <- data.frame(BRCAmutsNodeMapped, Sample=as.character(BRCAmutsNodeMapped$patientTCGA))

The other input we need to run the analysis is the surrogate mutation set themselves. This is a set of highly
mutated oncogenes and their immediate neighbors. In our analysis we only include neighbors to the oncogene
set that have at least two connections to this set. We map this set to the node names using our geneIntTable.

#load surrogate network genes (included for BRCA)
data("surrogateNodes")
surrogateNodes <- as.character(surrogateNodes[,1])
surrogateNodes <- unique(surrogateNodes)

After all of this preparation, we are ready to run the analysis. For the sake of execution time, we only run the
analysis on the first three patients in the patientsComplete vector, and limit ourselves to 100 permutations
for each patient. Normally, we would run the analysis using at least 10000 permutations and on the entire
dataset.

By setting the cores option, we can run the permutation analysis on multiple processors using the foreach()
package. Note that we limit the analysis by submiting smallPatient (the first three patients) vector as an
argument to samples.

#example run: run results on three patients for 1000 permutations
smallPatient <- patientsComplete[1:3]
smallPatient
surrogateResult <- calcNeighborMutations(intome, nodeset=surrogateNodes, focalBRCAnodeMapped,

BRCAmutsNodeMapped, Samples=smallPatient,
cores=NULL, prefix="pancanBRCA-", numPermutes=100, geneIntTable=geneIntTable)

Examining Surrogate Results within a single sample

Once the surrogate analysis is complete, we can look at the results. We will first look at results for a single
patient. The results object has 3 slots: cellResults, which are the main surrogate results, mutCopyFrames,
which gives information about the mutations and copy number alterations. Additionally, files will be generated
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for each of these structures with the prefix of above and with the sample name in the working directory. Each
of these slots consists of a list, where which each slot corresponds to results for a particular sample.

We first look at the cellResults object, which contains p-values and other information for each surrogate gene.
cellResults is a list with each slot containing a data.frame.

#examine significant surrogates for the first patient
patient <- patientsComplete[1]

sigTable <- surrogateResult$cellResults[[patient]]
sigTable[1:5,]

## NodeName isMutated degree neighborVec pvalue Gene EntrezID
## 1 ABL1(25) 0 88 4 0.25 ABL1 25
## 2 AKAP3(10566) 0 7 0 1.00 AKAP3 10566
## 3 AKT1(207) 0 107 4 0.38 AKT1 207
## 4 APLP2(334) 0 10 0 1.00 APLP2 334
## 5 APPL(26060) 0 11 0 1.00 APPL 26060

Looking at this table, we can see the information that is provided on a per patient basis. The “isMutated”
column reports whether the surrogate gene itself is mutated or not. The “degree” column gives the total
number of connection that surrogate gene has. The “neighborVec” column contains the number of neighboring
mutations observed for that surrogate gene. Note that in this count, we include the surrogate gene if it is
mutated. The “pvalue” column gives the p-value given the permutation analysis. Note that the smallest
p-value is limited by the number of mutations (i.e., for 10000 mutations, the smallest p-value available is
10000ˆ-1 = 1e-4).

Given this table, we can filter our results based on the p-value. If there is a desired number of mutated
neighbors we can also filter on this criteria.

#look at significant surrogate patients for a patient
filteredSig <- sigTable[sigTable$pvalue < 0.05 & sigTable$neighborVec > 2,]

filteredSig

## NodeName isMutated degree neighborVec pvalue Gene EntrezID
## 67 GTF2H1(2965) 0 26 4 0.02 GTF2H1 2965
## 69 HDAC3(8841) 0 57 5 0.03 HDAC3 8841
## 75 HSPCA(3320) 0 74 6 0.01 HSPCA 3320
## 91 MAPK8(5599) 0 63 6 0.01 MAPK8 5599
## 127 PTK2(5747) 0 81 6 0.02 PTK2 5747
## 169 UBB(7314) 0 55 5 0.03 UBB 7314

Once we know the significant surrogate gene / sample pairs, we can plot the individual surrogate mutations
using the renderSubNetSimple() function.

#grab the first significant candidate
nodeSig <- as.character(filteredSig[1,"NodeName"])
geneSig <- geneIntTable[as.character(geneIntTable$NodeName) %in% nodeSig,"Gene"]
geneSig

## GTF2H1
## GTF2H1
## 9384 Levels: 76P A1BG A2BP1 A2M AAMP AANAT AARS AARSL AASDHPPT AATF ... ZZEF1
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#plot a significant network for the surrogates
renderSubNetSimple(NodeName=nodeSig, sampleName=patient, GeneName=geneSig, intome=intome,

resultObj=surrogateResult,fileOut=NULL)

## pdf
## 2

The renderSubNetSimple() function generates an SVG file with name format (Sample)-(Gene).svg. SVG files
are scalable and better for publication quality figures.
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Examining Surrogate Results across Samples

We can also examine patterns across the three patients. The buildSurrogateTable() function aggregates the
results object we created and creates a ‘melted’ data frame (as per Hadley Wickham’s reshape2 package).
Each line of this data frame corresponds to a Sample/Gene pair.

Using the reshape package, we can convert this melted frame into a matrix of p-values. This matrix of p-values
can be filtered according to various criteria to produce interesting candidate surrogate mutations. For more
information about the columns returned, please refer to the documentation for the buildSurrogateTable()
function.

#build a 'melted' version of the surrogate table for all samples
surrogateTable <- buildSurrogateTable(surrogateResult)

We can aggregate the data into matrix form using the dcast() command from reshape.

Additionally, we can filter this table to only significant candidates. If we are only interested in those mutations
that have 4 or more neighbors, we can filter on this crtieria as well.

filteredSurrTable <- surrogateTable[surrogateTable$pvalue < 0.05 & surrogateTable$neighbor > 3,]
filteredSurrTable

## ID Gene Sample
## TCGA.AO.A12D-IRS2 TCGA.AO.A12D-IRS2 IRS2 TCGA.AO.A12D
## TCGA.AO.A12D-PIK3R3 TCGA.AO.A12D-PIK3R3 PIK3R3 TCGA.AO.A12D
## TCGA.AO.A12D-RAF1 TCGA.AO.A12D-RAF1 RAF1 TCGA.AO.A12D
## TCGA.AO.A12D-SKP2 TCGA.AO.A12D-SKP2 SKP2 TCGA.AO.A12D
## TCGA.AO.A12D-SMARCA4 TCGA.AO.A12D-SMARCA4 SMARCA4 TCGA.AO.A12D
## TCGA.AO.A12D-YWHAE TCGA.AO.A12D-YWHAE YWHAE TCGA.AO.A12D
## TCGA.BH.A0DS-CSNK2A1 TCGA.BH.A0DS-CSNK2A1 CSNK2A1 TCGA.BH.A0DS
## TCGA.BH.A0DS-GSK3B TCGA.BH.A0DS-GSK3B GSK3B TCGA.BH.A0DS
## TCGA.BH.A0DS-GTF2H1 TCGA.BH.A0DS-GTF2H1 GTF2H1 TCGA.BH.A0DS
## TCGA.BH.A0DS-IRS4 TCGA.BH.A0DS-IRS4 IRS4 TCGA.BH.A0DS
## TCGA.E2.A1B5-GTF2H1 TCGA.E2.A1B5-GTF2H1 GTF2H1 TCGA.E2.A1B5
## TCGA.E2.A1B5-HDAC3 TCGA.E2.A1B5-HDAC3 HDAC3 TCGA.E2.A1B5
## TCGA.E2.A1B5-HSPCA TCGA.E2.A1B5-HSPCA HSPCA TCGA.E2.A1B5
## TCGA.E2.A1B5-MAPK8 TCGA.E2.A1B5-MAPK8 MAPK8 TCGA.E2.A1B5
## TCGA.E2.A1B5-PTK2 TCGA.E2.A1B5-PTK2 PTK2 TCGA.E2.A1B5
## TCGA.E2.A1B5-UBB TCGA.E2.A1B5-UBB UBB TCGA.E2.A1B5
## NodeName neighbor degree pvalue isMutated
## TCGA.AO.A12D-IRS2 IRS2(8660) 4 35 0.04 1
## TCGA.AO.A12D-PIK3R3 PIK3R3(8503) 4 11 0.00 0
## TCGA.AO.A12D-RAF1 RAF1(5894) 7 89 0.01 0
## TCGA.AO.A12D-SKP2 SKP2(6502) 5 25 0.00 0
## TCGA.AO.A12D-SMARCA4 SMARCA4(6597) 5 36 0.01 0
## TCGA.AO.A12D-YWHAE YWHAE(7531) 7 58 0.01 0
## TCGA.BH.A0DS-CSNK2A1 CSNK2A1(1457) 14 159 0.00 0
## TCGA.BH.A0DS-GSK3B GSK3B(2932) 6 59 0.04 0
## TCGA.BH.A0DS-GTF2H1 GTF2H1(2965) 4 26 0.01 0
## TCGA.BH.A0DS-IRS4 IRS4(8471) 4 14 0.01 0
## TCGA.E2.A1B5-GTF2H1 GTF2H1(2965) 4 26 0.02 0
## TCGA.E2.A1B5-HDAC3 HDAC3(8841) 5 57 0.03 0
## TCGA.E2.A1B5-HSPCA HSPCA(3320) 6 74 0.01 0
## TCGA.E2.A1B5-MAPK8 MAPK8(5599) 6 63 0.01 0
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## TCGA.E2.A1B5-PTK2 PTK2(5747) 6 81 0.02 0
## TCGA.E2.A1B5-UBB UBB(7314) 5 55 0.03 0

We can also plot all of the significant surrogate candidates using plotAllGraphs. Be cautious about using this
- it will produce a lot of graphic files depending on how large the surrogateTable you pass to it.

plotAllGraphs(surrogateTable = filteredSurrTable, surrogateResults = res1, intome = intome)

A Shiny app is available for exploring the surrogate mutations in the breast cancer cell lines here: https:
//tladeras.shinyapps.io/surrogateShiny/ This app presents the surrogate mutation results in the form of a
interactive heatmap where columns are samples and rows are surrogate mutations. The surrogate genes can
be filtered by p-value, sorted by clustering order in both the rows and the columns, by number of mutations
observed in the samples, total number of connections for each surrogate.
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