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1 The lost submarine: details

We presented a situation where N = 2 observations were distributed uni-
formly:

xi
iid∼ Uniform(θ − 5, θ + 5), i = 1, . . . , N

and the goal is to estimate θ, the location of the submarine hatch. Without loss
of generality we denote x1 as the smaller of the two observations. In the text,
we considered five 50% confidence procedures; in this section, we give the
details about the sampling distribution procedure and the Bayes procedure
that were omitted from the text.

1.1 Sampling distribution procedure

Consider the sample mean, x̄ = (x1 + x2)/2. As the sum of two uniform
deviates, it is a well-known fact that x̄ will have a triangular distribution with
location θ and minimum and maximum θ − 5 and θ + 5, respectively. This
distribution is shown in Figure 1.

It is desired to find the width of the base of the shaded triangle in Figure 1
such that it has an area of .5. To do this we first find the width of the base
of the unshaded triangular area marked “a” in Figure 1 such that the area of
the triangle is .25. The corresponding unshaded triangle on the left side will
also have area .25, which means that since the figure is a density, the shaded
region must have the remaining area of .5. Elementary geometry will show
that the width of the base of triangle “a” is 5/

√
2, meaning that the distance

between θ and the altitude of triangle “a” is 5− 5/
√

2 or about 1.46m.
We can thus say that

Pr(−(5− 5/
√

2) < x̄− θ < 5− 5/
√

2) = .5
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Figure 1: The sampling distribution of the mean x̄ in the submarine scenario.
The shaded region represents the central 50% of the area. The unshaded
triangle marked “a” has area .25.
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which implies that, in repeated sampling,

Pr(x̄− (5− 5/
√

2) < θ < x̄ + (5− 5/
√

2)) = .5

which defines the sampling distribution confidence procedure. This is an
example of using x̄− θ as a pivotal quantity (Casella & Berger, 2002).

1.2 Bayesian procedure

The posterior distribution is proportional to the likelihood times the prior.
The likelihood is

p(x1, x2 | θ) ∝
2

∏
i=1
I(θ − 5 < xi < θ + 5);

where I is an indicator function. Note since this is the product of two indica-
tor functions, it can only be nonzero when both indicator functions’ conditions
are met; that is, when x1 + 5 and x2 + 5 are both greater than θ, and x1 − 5
and x2− 5 are both less than θ. If the minimum of x1 + 5 and x2 + 5 is greater
than θ, then so to must be the maximum. The likelihood thus can be rewritten

p(x1, x2 | θ) ∝ I(x2 − 5 < θ < x1 + 5);

where x1 and x2 are the minimum and maximum observations, respectively.
If the prior for θ is proportional to a constant, then the posterior is

p(θ | x1, x2) ∝ I(x2 − 5 < θ < x1 + 5),

This posterior is a uniform distribution over all a posteriori possible values of
θ (that is, all θ values within 5 meters of all observations), has width

10− (x2 − x1),

and is centered around x̄. Because the posterior comprises all values of θ the
data have not ruled out – and is essentially just the classical likelihood – the
width of this posterior can be taken as an indicator of the precision of the
estimate of θ.

The middle 50% of the likelihood can be taken as a 50% objective Bayesian
credible interval. Proof that this Bayesian procedure is also a confidence pro-
cedure is trivial and can be found in Welch (1939).

2 Credible interval for ω2: details

In the manuscript, we compare Steiger’s (2004) confidence intervals for ω2 to
Bayesian highest posterior density (HPD) credible intervals. In this section we
describe how the Bayesian HPD intervals were computed.
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Consider a one-way design with J groups and N observations in each
group. Let yij be the ith observation in the jth group. Also suppose that

yij
indep.∼ Normal(µj, σ2)

where µj is the population mean of the jth group and σ2 is the error variance.
We assume a “non-informative” prior on parameters µ, σ2:

p(µ1, . . . , µJ , σ2) ∝ (σ2)−1.

This prior is flat on (µ1, . . . , µJ , log σ2). In application, it would be wiser to
assume an informative prior on these parameters, in particular assuming a
population over the µ parameters or even the possibility that µ1 = . . . =
µJ = 0 (Rouder, Morey, Speckman, & Province, 2012). However, for this
manuscript we compare against a “non-informative” prior in order to show
the differences between the confidence interval and the Bayesian result with
“objective” priors.

Assuming the prior above, an elementary Bayesian calculation (Gelman,
Carlin, Stern, & Rubin, 2004) reveals that

σ2 | y ∼ Inverse Gamma(J(N − 1)/2, S/2)

where S is the error sum-of-squares from the corresponding one-way ANOVA,
and

µj | σ2,y
indep.∼ Normal(x̄j, σ2/N)

where µj and x̄j are the true and observed means for the jth group. Following
Steiger (2004) we can define

αj = µj −
1
J

J

∑
j=1

µj

as the deviation from the grand mean of the jth group, and

λ = N
J

∑
j=1

( α

σ

)2

ω2 =
λ

λ + NJ
.

It is then straightforward to set up an MCMC sampler for ω2. Let M be
the number of MCMC iterations desired. We first sample M samples from the
marginal posterior distribution of σ2, then sample the group means from the
conditional posterior distribution for µ1, . . . , µJ . Using these posterior sam-
ples, M posterior samples for λ and ω2 can be computed.

The following function will sample from the marginal posterior distribu-
tion of ω2:
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## Assumes that data.frame y has two columns:
## $y is the dependent variable
## $grp is the grouping variable, as a factor
Bayes.posterior.omega2

## function (y, conf.level = 0.95, iterations = 10000)
## {
## J = nlevels(y$grp)
## N = nrow(y)/J
## aov.results = summary(aov(y ~ grp, data = y))
## SSE = aov.results[[1]][2, 2]
## sig2 = 1/rgamma(iterations, J * (N - 1)/2, SSE/2)
## lambda = matrix(NA, iterations)
## group.means = tapply(y$y, y$grp, mean)
## for (m in 1:iterations) {
## mu = rnorm(J, group.means, sqrt(sig2[m]/N))
## lambda[m] = N * sum((mu - mean(mu))^2/sig2[m])
## }
## mcmc(lambda/(lambda + N * J))
## }

The Bayes.posterior.omega2 function can be used to compute the poste-
rior and HPD for the first example in the manuscript. The fake.data.F func-
tion, defined in the file steiger.utility.R (available with the manuscript
source code at https://github.com/richarddmorey/ConfidenceIntervalsFallacy),
generates a data set with a specified F statistic.

cl = .683 ## Confidence level corresponding to standard error
J = 3 ## Number of groups
N = 10 ## observations in a group

df1 = J - 1
df2 = J * (N - 1)

## F statistic from manuscript
Fstat = 0.1748638

set.seed(1)
y = fake.data.F(Fstat, df1, df2)

## Steiger confidence interval
steigerCI = steigerCI.omega2(Fstat,df1,df2, conf.level=cl)
samples.omega2 = Bayes.posterior.omega2(y, cl, 100000)
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Posterior distribution for ω2

ω2

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

12

68%

Figure 2: Histogram of the posterior MCMC samples for ω2. The 68%
Bayesian HPD credible interval is highest density region than captures 68%
of the posterior density, shown in gray. The vertical dashed line denotes the
upper bound of the HPD. The 68% Steiger confidence interval is shown as the
interval near the top.

We can compute the Bayesian HPD interval with the ‘HPDinterval‘ func-
tion in the package ‘coda‘:

library(coda)

HPDinterval( samples.omega2, prob = cl )

## lower upper
## var1 5.219606e-06 0.08299102
## attr(,"Probability")
## [1] 0.683
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