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Interval estimates – estimates of parameters that include an allowance for sampling uncertainty
– have long been touted as a key component of statistical analyses. There are several kinds of
interval estimates, but the most popular are confidence intervals (CIs): intervals that contain
the true parameter value in some known proportion of repeated samples, on average. The width
of confidence intervals is thought to index the precision of an estimate; the parameter values
contained within a CI are thought to be more plausible than those outside the interval; and the
confidence coefficient of the interval (e.g. 95%) is thought to index the plausibility that the
true parameter is included in the interval. We show in a number of examples that CIs do not
necessarily have any of these properties, and can lead to unjustified or arbitrary inferences.
For this reason, we caution against the sole use of confidence interval theory to justify interval
estimates.

“You keep using that word. I do not think it means what you think
it means.”

Inigo Montoya, The Princess Bride (1987)

The development of statistics over the past century has
seen the proliferation of methods designed to allow infer-
ences from data. Methods vary widely in their philosophi-
cal foundations, the questions they are supposed to address,
and their frequency of use in practice. One popular and
widely-promoted class of methods comprises interval esti-
mates. There are a variety of approaches to interval estima-
tion, differing in their philosophical foundation and compu-
tation, but informally are all supposed to be estimates of a
parameter that account for measurement or sampling uncer-
tainty by yielding a range of values for the parameter instead
of a single value.

Of the many kinds of interval estimates, the most popular
is the confidence interval (CI). Confidence intervals are intro-
duced in almost all introductory statistics texts; they are rec-
ommended or required by the methodological guidelines of
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many prominent journals (e.g., Psychonomics Society, 2012;
Wilkinson & the Task Force on Statistical Inference, 1999);
and they form the foundation of methodological reformers’
proposed programs (G. Cumming, 2014; Loftus, 1996). In
the current atmosphere of methodological reform, a firm un-
derstanding of what sorts of inferences confidence interval
theory does, and does not, allow is critical to decisions about
how science is done in the future.

In this paper, we argue that the advocacy of CIs is based
on a folk understanding of CI theory, rather than a statistical
understanding. We outline three fallacies of CIs, and place
these in the philosophical and historical context of CI theory
proper. Through an easily-accessible example adapted from
the statistical literature, we show how CI theory differs from
the folk theory of CIs. Finally, we show the fallacies of con-
fidence in the context of a CI advocated and commonly-used
for ANOVA and regression analysis, and discuss the implica-
tions of the mismatch between CI theory and the folk theory
of CIs.

Our main point is this: confidence intervals may not be
used as suggested by modern proponents because this usage
is not justified by confidence interval theory. If used in the
way CI proponents suggest, some CIs will provide severely
misleading inferences for the given data; other CIs will not.
Because such considerations are outside of CI theory, devel-
opers of CIs do not test them, and it is therefore often not
known whether a given CI yields a reasonable inference or
not. For this reason, we believe that appeal to CI theory is
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redundant in the best cases, when inferences can be justified
outside CI theory, and unwise in the worst cases, when they
cannot.

The folk theory of confidence intervals

If there is one thing that everyone who writes about confi-
dence intervals agrees on, it is the basic definition: A confi-
dence interval for a parameter — which we call θ, but might
be a mean, median, variance, probability, or any number of
other quantities — is an interval generated by a procedure
that, on repeated sampling, has a fixed probability of con-
taining the parameter. If the probability that the process gen-
erates an interval including θ is .5, it is a 50% CI; likewise,
the probability is .95 for a 95% CI.

Definition 1 (Confidence interval) A X% confidence inter-
val for a parameter θ is an interval (L,U) generated by a
procedure that in repeated sampling has an X% probability
of containing the true value of θ (Neyman, 1937).

The confidence coefficient of a confidence interval derives
from the procedure which generated it. It is therefore help-
ful to differentiate a procedure (CP) from a confidence in-
terval: an X% confidence procedure is any procedure that
generates intervals containing θ on X% of repeated samples,
and a confidence interval is a specific interval generated by
such a process. A confidence procedure is a random process;
a confidence interval is a set of two, fixed numbers.

It seems clear how to interpret a confidence procedure: it
is any procedure that generates intervals that will contain the
true value in a fixed proportion of samples. However, when
we compute specific interval from the data and must inter-
pret it, we are faced with difficulty. It is not obvious how to
move from our knowledge of the properties of the confidence
procedure to the interpretation of some observed confidence
interval.

Textbook authors and proponents of confidence intervals
bridge the gap seamlessly by claiming that confidence inter-
vals have three desirable properties: first, that the confidence
coefficient can be read as a measure of the uncertainty one
should have that the interval contains the parameter; second,
that the CI width is a measure of estimation precision; and
third, that the interval contains the “likely” or “reasonable”
values for the parameter. These all involve reasoning about
the parameter from the observed data: that is, they are “post-
data” inferences.

For instance, with respect to 95% confidence intervals,
Masson and Loftus (2003) state that “[t]he interpretation of
the confidence interval constructed around that specific mean
would be that there is a 95% probability that the interval is
one of the 95% of all possible confidence intervals that in-
cludes the population mean. Put more simply, in the absence
of any other information, there is a 95% probability that the
obtained confidence interval includes the population mean.”

G. Cumming (2014) writes that “[w]e can be 95% confident
that our interval includes [the parameter] and can think of the
lower and upper limits as likely lower and upper bounds for
[the parameter].”

This understanding of confidence intervals is not correct.
We call this mistake the “Fundamental Confidence Fallacy”
(FCF) because it seems to flow naturally from the definition
of the confidence interval:

Fallacy 1 (The Fundamental Confidence Fallacy) “If the
probability that a random interval contains the true value
is X%, then the plausibility or probability that a particular
observed interval contains the true value is also X%,” or “We
have X% confidence that the observed interval contains the
true value.”

The reasoning behind the Fundamental Confidence Fal-
lacy seems plausible: on a given sample, we could get any
one of the possible confidence intervals. If 95% of the pos-
sible confidence intervals contain the true value, without any
other information it seems reasonable to say that we have
95% certainty that we obtained one of the confidence inter-
vals that contain the true value. This interpretation is sug-
gested by the name “confidence interval” itself: the word
“confident”, in lay use, is closely related to concepts of plau-
sibility and belief. The name “confidence interval” — rather
than, for instance, the more accurate “coverage procedure”
— encourages the Fundamental Confidence Fallacy.

We will show in two examples how the reasoning fails.
We note here that it has never been an advertised feature
of CI theory; the error has been understood since CI the-
ory was born. Neyman said “Consider now the case when
a sample...is already drawn and the [confidence interval]
given...Can we say that in this particular case the probabil-
ity of the true value of [the parameter] falling between [the
limits] is equal to [X%]? The answer is obviously in the
negative” (Neyman, 1937, p. 349). According to frequen-
tist philosopher Mayo (1981) “[the misunderstanding] seems
rooted in a (not uncommon) desire for [] confidence intervals
to provide something which they cannot legitimately pro-
vide; namely, a measure of the degree of probability, belief,
or support that an unknown parameter value lies in a specific
interval.” Recent work has shown that this misunderstanding
is pervasive among researchers, who likely learned it from
textbooks, instructors, and the confidence interval literature
(Hoekstra, Morey, Rouder, & Wagenmakers, 2014).

If confidence intervals cannot be used to assess the cer-
tainty with which a parameter is in a particular range, what
can they be used for? Proponents of confidence intervals of-
ten claim that confidence intervals are useful for assessing
the precision with which a parameter can be estimated. This
is cited as one of the primary reasons confidence procedures
should be used over null hypothesis significance tests (e.g.,
G. Cumming & S. Finch, 2005; G. Cumming, 2014; Fidler
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& Loftus, 2009; Loftus, 1993, 1996). For instance, G. Cum-
ming (2014) writes that “[l]ong confidence intervals (CIs)
will soon let us know if our experiment is weak and can give
only imprecise estimates” (p. 10). Young and Lewis (1997)
state that “[i]t is important to know how precisely the point
estimate represents the true difference between the groups.
The width of the CI gives us information on the precision of
the point estimate” (p. 309). This is the second fallacy of
confidence intervals, the “precision fallacy”:

Fallacy 2 (The Precision fallacy) “The width of a confi-
dence interval indicates the precision of our knowledge
about the parameter. Narrow confidence intervals show pre-
cise knowledge, while wide confidence errors show imprecise
knowledge.”

There is no necessary connection between the precision of
an estimate and the size of a confidence interval. To see this
most easily, consider that the width of a confidence interval
is dependent on the confidence coefficient. Changing from
50% to a 95% confidence will make the confidence interval
wider; however, nothing about the precision of the estimate
has changed. What has changed is the average frequency
at which the dichotomous claim “the parameter is in the in-
terval” is correct for the underlying confidence procedure.
Later, we will provide several examples where the width of
a CI and the uncertainty with which a parameter is estimated
are are inversely related for a fixed confidence coefficient, or
not related at all.

We cannot interpret confidence intervals as containing the
true value with some probability; we also cannot interpret
confidence intervals as indicating the precision of our es-
timate. There is a third common interpretation of confi-
dence intervals: Loftus (1996), for instance, says that the
CI gives an “indication of how seriously the observed pattern
of means should be taken as a reflection of the underlying
pattern of population means.” This logic is used when when
confidence intervals are used to test theory (Velicer et al.,
2008) or to argue for the null (or practically null) hypothe-
sis (Loftus, 1996). This is a another fallacy of confidence
interval that we call the “likelihood fallacy”.

Fallacy 3 (The Likelihood fallacy) “A confidence interval
contains the likely values for the parameter. Values inside the
confidence interval are more likely than those outside.” This
error exists in several varieties, sometimes involving plausi-
bility, credibility, or reasonableness of beliefs about the pa-
rameter.

A confidence procedure may have a fixed average proba-
bility of including the true value, but whether on any given
sample it includes the “reasonable” values is a different ques-
tion. As we will show, confidence intervals — even good
confidence intervals, as we will see — can exclude almost

all reasonable values, and can be empty or infinitely narrow,
excluding all possible values (Blaker & Spjøtvoll, 2000; Du-
four, 1997; Steiger, 2004; Steiger & Fouladi, 1997; Stock &
Wright, 2000). But Neyman (1941) writes,

“it is not suggested that we can ‘conclude’ that
[the interval contains θ], nor that we should ‘be-
lieve’ that [the interval contains θ]...[we] decide
to behave as if we actually knew that the true
value [is in the interval]. This is done as a result
of our decision and has nothing to do with ‘rea-
soning’ or ‘conclusion’. The reasoning ended
when the [CI procedure was derived]. The above
process [of using CIs] is also devoid of any ‘be-
lief ’ concerning the value [] of [θ].” (Neyman,
1941, pp. 133-134)

It may seem strange to the modern user of CIs, but Neyman
is quite clear that CIs do not support any sort of reasonable
belief about the parameter. Even from a frequentist testing
perspective where one accepts and rejects specific parame-
ter values, Mayo and Spanos (2006) note that just because a
specific value is in an interval does not mean it is warranted
to accept it; they call this the “fallacy of acceptance.” If a
confidence procedure does not allow an assessment of the
probability that an interval contains the true value, if it is not
a measure of precision, and if it is not a way of assessing
the likelihood or plausibility of the values inside the interval,
what is it?

The theory of confidence intervals

In a classic paper, Neyman (1937) laid the formal founda-
tion for confidence intervals. It is easy to describe the prac-
tical problem that Neyman saw CIs as solving. Suppose a
researcher is interested in estimating a parameter, which we
may call θ. This parameter could be a population mean, an
effect size, a variance, or any other quantity of interest. Ney-
man suggests that researchers perform the following three
steps:

a. Perform an experiment, collecting the relevant data.

b. Compute two numbers – the smaller of which we can call
L, the greater U – forming an interval (L,U) according to
a specified procedure.

c. State that L < θ < U – that is, that θ is in the interval.

This recommendation is justified by choosing an procedure
for step (b) such that in the long run, the researcher’s claim
in step (c) will be correct, on average, X% of the time. A
confidence interval is any interval computed using such a
procedure.

We first focus on the meaning of the statement that θ is in
the interval, in step (c). As we have seen, according to CI
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theory, what happens in step (c) is not a belief, a conclusion,
or any sort of reasoning from the data. Furthermore, it is not
associated with any level of uncertainty about whether θ is,
actually, in the interval. It is merely a dichotomous statement
that is meant to have a specified probability of being true, in
the long-run.

Evaluation of confidence procedures is based on what can
be called the “power” of the procedures, which is the fre-
quency with which false values of a parameter are excluded.
Better intervals are shorter on average, excluding false values
more often (Lehmann, 1959; Neyman, 1937, 1941; Welch,
1939). Although a “best” confidence procedure does not
always exist, we can always compare one procedure to an-
other to decide whether one is better than the other in this
way (Neyman, 1952). Confidence procedures are therefore
closely related to hypothesis tests: confidence procedures
control the rate of including the true value, and better con-
fidence procedures have more power to exclude false values.

Skepticism about the usefulness of confidence intervals
arose as soon as Neyman first articulated the theory (Ney-
man, 1934).1 In the discussion of Neyman (1934), Bow-
ley — pointing out what we call the fundamental confidence
fallacy, expresses skepticism that the confidence interval an-
swers the right question:

“I am not at all sure that the ‘confidence’ is not a
‘confidence trick.’ Does it really lead us towards
what we need – the chance that in the universe
which we are sampling the proportion is within
these certain limits? I think it does not. I think
we are in the position of knowing that either an
improbable event has occurred or the proportion
in the population is within the limits. To balance
these things we must make an estimate and form
a judgment as to the likelihood of the proportion
in the universe [that is, a prior probability] – the
very thing that is supposed to be eliminated.” (p.
609)

In the same discussion, Fisher critiqued the theory for possi-
bly leading to mutually contradictory inferences: “The [the-
ory of confidence intervals] was a wide and very handsome
one, but it had been erected at considerable expense, and it
was perhaps as well to count the cost. The first item to which
he [Fisher] would call attention was the loss of uniqueness in
the result, and the consequent danger of apparently contra-
dictory inferences.” (p. 618; see also Fisher, 1935). Though,
as we will see, the critiques are accurate, in a broader sense
they missed the mark. Like modern proponents of confidence
intervals, the critics failed to understand that Neyman’s goal
was different from theirs: Neyman had developed a behav-
ioral theory designed to control error rates, not a theory for
reasoning from data (Neyman, 1941).

In spite of the critiques, confidence intervals have grown
in popularity to be the most widely used interval estimators.

Bubbles

Likelihood

Samp. Dist.

Nonpara.

UMP

Fid./Bayes

Location

θ − 10 θ − 5 θ θ + 5 θ + 10

A

Location

θ − 10 θ − 5 θ θ + 5 θ + 10

B

Figure 1. Submersible rescue attempts. Note that likelihood
and CIs are depicted from bottom to top in the order in which
they are described in the text. See text for details.

The alternatives — such as Bayesian credible intervals and
Fisher’s fiducial intervals — are not commonly used. We
suggest that this is largely because people believe that confi-
dence intervals, Bayesian intervals, and fiducial intervals are
the same thing. In the next section, we will demonstrate the
logic of confidence interval theory by building several confi-
dence intervals and comparing them to one another. We will
also show how the three fallacies affect inferences with these
intervals.

Example 1: The lost submarine

In this section, we present an example taken from the con-
fidence interval literature (J. O. Berger & Wolpert, 1988;
Lehmann, 1959; Pratt, 1961; Welch, 1939) designed to bring
into focus the how CI theory works. This example is inten-
tionally simple; unlike many demonstrations of CIs, no sim-
ulations are needed, and almost all results can be derived by
readers with some training in probability.

A 10-meter-long research submersible with several peo-
ple on board has lost contact with its surface support vessel.
The submersible has a rescue hatch exactly halfway along
its length, to which the support vessel will drop a rescue
line. Because the rescuers only get one rescue attempt, it
is crucial that when the line is dropped to the craft in the
deep water that the line be as close as possible to this hatch.
The researchers on the support vessel do not know where
the submersible is, but they do know that it forms two dis-
tinctive bubbles. These bubbles could form anywhere along
the craft’s length, independently, with equal probability, and
float to the surface where they can be seen by the support
vessel.

The situation is shown in Figure 1A. The rescue hatch is
the unknown location θ, and the bubbles can rise from any-
where with uniform probability between θ − 5 meters (the
bow of the submersible) to θ+ 5 meters (the stern of the sub-

1Neyman first articulated the theory in another paper before his
major theoretical paper in 1937.
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mersible). The rescuers want to use these bubbles — which
we will denote x1 and x2, x1 always denoting the smaller of
the two for convenience — to infer where the hatch is lo-
cated.

The rescuers first note that from observing two bubbles, it
is easy to rule out all values except those within five meters
of both bubbles because no bubble can occur further than
5 meters from the hatch. If the two bubble locations were
x1 = 4 and x2 = 6, then the possible locations of the hatch
are between 1 and 9, because only these locations are within
5 meters of both bubbles. The function that describes the
probability density of the observed bubbles for a particular
value of θ is called the “likelihood,” and it indexes the in-
formation provided by the data about the parameter. In this
case, it is positive only when a value θ is possible given the
observed bubbles (see Figures 1 and 4).

Five confidence procedures

A group of four statisticians happen to be on board, and
the rescuers decide to ask them for help improving their judg-
ments using statistics. The four statisticians suggest four dif-
ferent 50% confidence procedures. We will outline the four
confidence procedures; first, we describe a trivial procedure
that no one would ever suggest.

0. A trivial procedure. A trivial 50% confidence pro-
cedure can be constructed by flipping a fair coin. If the
coin shows “heads”, the interval contains the whole ocean,
(−∞,∞). If the coin shows “tails”, the interval contains only
the single, exact point directly under the middle of the rescue
boat. This procedure is obviously a 50% confidence pro-
cedure; exactly 50% of the time — when the coin shows
“heads” — the rescue hatch will be within the interval. We
describe this interval merely to show that by itself, a proce-
dure including the true value X% of the time means nothing
(see also Basu, 1981). We must obviously consider some-
thing more than the confidence property, which we discuss
subsequently. We call this procedure the “trivial” procedure.

1. A procedure based on the sampling distribution of
the mean. The first statistician suggests building a confi-
dence procedure using the sampling distribution of the mean,
x̄ = (x1 + x2)/2. The sampling distribution of x̄ has a known
triangular distribution with θ as the mean. We can thus use
x̄−θ as a so-called “pivotal quantity” (Casella & R. L. Berger,
2002, see the supplement to this manuscript for more details)
by noting that there is a 50% probability that θ is within this
same distance of x̄ in repeated samples. There is a 50% prob-
ability that x̄ will differ from θ by less than 5−5/

√
2, or about

1.46m. This leads to the confidence procedure

x̄ ± (5 − 5/
√

2),

which we call the “sampling distribution” procedure.

2. A nonparametric procedure. The second statisti-
cian notes that θ is both the mean and median bubble loca-
tion. Olive (2008) and Rusu and Dobra (2008) suggested a
confidence procedure for the median that in this case is sim-
ply the interval between the two observations:

x̄ ±
x2 − x1

2
.

It is easy to see that this must be a 50% confidence proce-
dure; the probability that both observations fall below θ is
25%, and likewise for both falling above. There is thus a
50% chance that the two observations encompass θ. Coin-
cidentally, this is the same as 50% Student’s t procedure for
n = 2. We call this the “nonparametric” procedure.

3. The uniformly most-powerful procedure. The third
statistician, citing Welch (1939), describes a procedure that
can be thought of as a slight modification of the nonpara-
metric procedure. Suppose we obtain a particular confidence
interval using the nonparametric procedure. If the nonpara-
metric interval is more than 5 meters wide, then it must con-
tain the hatch, because the only possible values are within 5
meters from both bubbles. Moreover, in this case the interval
will contain impossible values, because it will be wider than
the likelihood. We can exclude these impossible values by
truncating the interval to the likelihood whenever the width
of the interval is greater than 5 meters:

x̄±
{ x2−x1

2 if x2 − x1 < 5 (Nonparametric procedure)
5 − x2−x2

2 if x2 − x1 ≥ 5 (Likelihood)

This will not change the probability that the interval contains
the hatch, because it is simply replacing one interval that is
sure to contain it with another. Pratt (1961) noted that this in-
terval can be justified as an inversion of the uniformly most-
powerful (UMP) test. We thus call this procedure the “UMP
procedure”.

4. An objective Bayesian procedure. The fourth statis-
tician suggests an objective Bayesian procedure. Using this
procedure, we simply take the central 50% of the likelihood
as our interval:

x̄ ±
1
2

(
5 −

x2 − x1

2

)
.

From the objective Bayesian viewpoint, this can be justified
by assuming a prior distribution that assigns equal probabil-
ity to each possible hatch location. In Bayesian terms, this
procedure generates “credible intervals” for this prior. It can
also be justified under Fisher’s fiducial theory; see Welch
(1939).

Properties of the procedures

The four statisticians report their four confidence proce-
dures to the rescue team, who are understandably bewildered
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by the fact that there appear to be at least four ways to sum-
marize the data about the hatch location from two bubbles.
Just after the statisticians present their confidence procedures
to the rescuers, two bubbles appear at locations x1 = 1 and
x2 = 1.5. The resulting likelihood and the four confidence
intervals are shown in Figure 1A.

After using the observed bubbles to compute the four con-
fidence intervals, the rescuers wonder how to interpret them.
It is clear, first of all, why the fundamental confidence fallacy
is a fallacy. As Fisher pointed out, for any given problem, as
for this one, there are many possible confidence procedures.
These confidence procedures will lead to different confidence
intervals. In the case of our submersible confidence proce-
dures, all confidence intervals are centered around x̄, and so
the intervals will be nested within one another. If all intervals
had a 50% probability of containing the true value, then all
the probability must be contained in the shortest of the inter-
vals. Because each procedure is by itself a 50% procedure,
the procedure which chooses the shortest of 50% intervals
will contain the true value less than 50% of the time. Hence,
believing the FCF results in logical contradiction.

This is not, by itself, a critique of confidence interval the-
ory proper. Neyman was very clear that this interpretation
was not permissible, using similarly nested confidence in-
tervals to demonstrate the fallacy (Neyman, 1941, pp. 213-
215). It is a warning, however, that the improper interpreta-
tion of confidence intervals can lead to mutually contradic-
tory inferences, just as Fisher warned.

Even without nested confidence procedures, one can see
that the FCF must be a fallacy. Consider Figure 1B, which
shows the resulting likelihood and confidence intervals when
x1 = 0.5 and x2 = 9.5. When the bubbles are far apart, as
in this case, the hatch can be localized very precisely: the
bubbles are far enough apart that they must have come from
the bow and stern of the submersible. The sampling distri-
bution, nonparametric, and UMP confidence intervals all en-
compass the likelihood, meaning that there is 100% certainty
that these 50% confidence intervals contain the hatch. Re-
porting 50% certainty in an interval that surely contains the
parameter would clearly be a mistake.

This set of confidence procedures also makes clear the
precision fallacy. Consider Figure 2, which shows how the
width of each of the intervals produced by the four confi-
dence procedures changes as a function of the width of the
likelihood. Because the likelihood represents the possible lo-
cations for the hatch, the likelihood’s width is a natural mea-
sure of the uncertainty in the data. When it is 0, the location
of the hatch is known with certainty; when it is wider, there
is greater uncertainty.

Intervals from the sampling distribution procedure have
a fixed width, and so cannot reveal any information about
the precision of the estimate. The nonparametric procedure
generates intervals whose widths are inversely related to the
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Figure 2. The relationship between CI width and the uncer-
tainty in the estimation of the hatch location for the four con-
fidence procedures. SD: Sampling distribution procedure;
NP: Nonparametric procedure; UMP: UMP procedure; B:
Bayes procedure. The diagonal gray line represents the width
of the likelihood against itself.

width of the likelihood. Even more strangely, intervals from
the UMP procedure initially increase in width with the un-
certainty in the data, but when the width of the likelihood
is greater than 5 meters, the width of the UMP interval is
inversely related to the uncertainty in the data, like the non-
parametric interval. Only the Bayes procedure tracks the un-
certainty in the data. This is not a coincidence; we will dis-
cuss why subsequently.

To see how the likelihood fallacy manifests in this ex-
ample, consider again Figure 2. When the uncertainty is
high, the likelihood is wide; yet the nonparametric and UMP
intervals are extremely narrow, indicating both false preci-
sion and excluding almost all likely values. Furthermore, the
sampling distribution procedure and the nonparametric pro-
cedure can contain impossible values.2

Evaluating the confidence procedures

The rescuers who have been offered the four intervals
above have a choice to make: which confidence procedure
to choose? We have shown that several of the confidence
procedures have counter-intuitive properties, but thus far, we

2In order to construct a better interval, a frequentist would typ-
ically truncate the interval to only the possible values, as was done
with in generating the UMP procedure from the nonparametric pro-
cedure. This is guaranteed to lead to a better procedure. Our point
here is that naively assuming that a procedure has good properties
on the basis that it is a confidence procedure is a mistake. However,
see Velicer et al. (2008) for an example of CI proponents including
impossible values in confidence intervals, and Fidler and Thompson
(2001) for a defense of this practice.
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Figure 3. The probability that each confidence procedure
includes false values θ′. T: Trivial procedure; SD: Sam-
pling distribution procedure NP: Nonparametric procedure;
UMP: UMP procedure; B: Bayes procedure. The line for the
sampling distribution procedure (dashed line) is between the
lines for the Bayes procedure and the UMP procedure.

have not made any firm commitments about which confi-
dence procedures would be preferred to the others. For the
sake of our rescue team, who have a decision to make about
which interval to use, we now compare the four procedures
directly. We begin with the evaluation of the procedures from
the perspective of confidence interval theory, then evaluate
them according to Bayesian theory.

As previously mentioned, confidence interval theory spec-
ifies that better intervals will include false values less often.
Figure 3 shows the probability that each of the procedures
include a value θ′ at a specified distance from the hatch θ.
All procedures are 50% confidence procedures, and so they
include the true value θ 50% of the time. Importantly, how-
ever, the procedures include false values θ′ , θ at different
rates.

The trivial procedure (T; gray horizontal line) is obviously
a bad interval because it includes every false value with the
same frequency as the true value. The trivial procedure will
be worse than any other procedure, unless the procedure is
specifically constructed to be pathological. The UMP pro-
cedure (UMP), on the other hand, is better than every other
procedure for every value of θ′. This is due to the fact that
it was created by inverting a most-powerful test. No other
confidence procedure can be better.

The ordering among the three remaining procedures can
be seen by comparing their curves. The sampling distribution
procedure (SD) is always superior to the Bayes procedure
(B), but not to the nonparametric procedure (NP). The non-
parametric procedure and the Bayes procedure curves over-
lap, so one is not preferred to the other. Welch (1939) re-
marked that the Bayes procedure is “not the best way of con-

structing confidence limits” using precisely the frequentist
comparison shown in Figure 3 with the UMP interval.3

The frequentist comparison between the procedures is in-
structive, because we have arrived at an ordering of the pro-
cedures employing the criteria suggested by Neyman and
used by the modern developers of new confidence proce-
dures: coverage and power. The UMP procedure is the best,
followed by the sampling distribution procedure. The sam-
pling distribution procedure is better than the Bayes proce-
dure. The nonparametric procedure is not preferred to any
interval, but neither is it the worst.

We can also examine the procedures from a Bayesian per-
spective, which primarily concerned with whether the infer-
ences are reasonable in light of the data and what was known
before the data were observed (Howson & Urbach, 2006).
We have already seen that interpreting the non-Bayesian pro-
cedures in this way leads to trouble, and that the Bayesian
procedure, unsurprisingly, has better properties in this re-
gard. We will show how the Bayesian interval was derived in
order to provide insight into why it has good properties.

Consider the left column of Figure 4, which shows
Bayesian reasoning from prior and likelihood to posterior
and so-called credible interval. The prior distribution in the
top panel shows that prior to observing the data, all the lo-
cations are equally probable. Upon observing the bubbles
shown in Figure 1A — also shown in the top of the “likeli-
hood panel” — the likelihood is a function that is 1 for all
possible locations for the hatch, and 0 otherwise. To com-
bine our prior knowledge with the new information from the
two bubbles, we multiply the prior by the likelihood, which
results in the posterior distribution in the bottom row. The
central 50% credible interval contains all values in the cen-
tral 50% of the area of the posterior, shown as the shaded
region. The right column of Figure 4 shows a similar com-
putation using a prior distribution that does not assume that
all locations are equally likely, as might occur if some other
information about the location of the submersible were avail-
able.

It is now obvious why the Bayesian credible interval has
the properties typically ascribed to confidence intervals. The
credible interval can be interpreted as having a 50% proba-
bility of containing the true value, because the values within
it account for 50% of the posterior probability. It reveals the
precision of our knowledge of the parameter, in light of the
data and prior, through its relationship with the posterior and
likelihood.

Of the five procedures considered, intervals from the

3Several readers of a previous draft of this manuscript have
noted that frequentists use the likelihood as well, and so may pre-
fer the Bayesian procedure in this example. However, as Neyman
(1977) points out, the likelihood has no special status to a frequen-
tist; what matters is the frequentist properties of the procedure, not
how it was constructed.
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Figure 4. Forming Bayesian credible intervals. Prior in-
formation (top) is combined with the likelihood information
from the data (middle) to yield a posterior distribution (bot-
tom). In the likelihood plots, the shaded regions show the
locations within 5 meters of each bubble; the dark shaded
regions show where these overlap, indicating the possible lo-
cation of the hatch θ. In the posterior plots, the central 50%
region (shaded region within posterior) shows one possible
50% credible interval, the central credible interval.

Bayesian procedure are the only ones that can be said to have
50% probability of containing the true value, upon observ-
ing the data. Importantly, the ability to interpret the interval
in this way arises from Bayesian theory and not from con-
fidence interval theory. Also importantly, it was necessary
to stipulate a prior to obtain the desired interval; the inter-
val should be interpreted in light of the stipulated prior. Of
the other four intervals, none can be justified as providing
a “reasonable” inference or conclusion from the data, be-
cause of their strange properties and that there is no possible
prior distribution that could lead to these procedures. In this
light, it is clear why Neyman’s rejection of “conclusions” and
“reasoning” from data naturally flowed from his theory. It is
also clear why scientists seeking a method to draw inferences
from data might want want to reject confidence interval the-
ory as a basis for evaluating intervals, if they care about the
making reasonable inferences from data.

We can now review what we know concerning the four
procedures procedures. Only the Bayesian procedure —
when its intervals are interpreted as credible intervals — al-
lows the interpretation that there is a 50% probability that
the hatch is located in the interval. Only the Bayesian pro-
cedure properly tracks the precision of the estimate. Only
the Bayesian procedure covers the plausible values in the ex-
pected way: the other procedures produce intervals that are
known with certainty — by simple logic — to contain the true
value, but still are “50%” intervals. Yet the Bayesian proce-
dure is rejected by frequentist confidence interval theory as
inferior.

The disconnect between frequentist theory and Bayesian
theory arises from the different goals of the two theories. Fre-
quentist theory is a “pre-data” theory. It looks forward, devis-
ing procedures that will have particular average properties in
repeated sampling (Jaynes, 2003; Mayo, 1981, 1982) in the
future (see also Neyman, 1937, p. 349). This thinking can be
clearly seen in Neyman (1942) as quoted above: reasoning
ends once the procedure is derived. Confidence interval the-
ory is vested in the average frequency of including or exclud-
ing true and false parameter values, respectively. Any given
inference may — or may not — be reasonable in light of the
observed data, but this is not Neyman’s concern; he disclaims
any conclusions or beliefs on the basis of data. Bayesian
theory, on the other hand, is a post-data theory: a Bayesian
analyst uses the information in the data to determine what is
reasonable to believe, in light of the model assumptions and
prior information.

Using an interval justified by a pre-data theory to make
post-data inferences can lead to unjustified, and possibly ar-
bitrary, inferences. This problem is not limited to the ped-
agogical pedagogical submersible example (J. O. Berger &
Wolpert, 1988; Wagenmakers et al., 2014), but having a sim-
ple example is instructive when identifying these issues. In
the next section we show how a commonly-used confidence
interval leads to similarly flawed post-data inferences.

Example 2: A confidence interval in the wild

The previous example was designed to show, in a simple,
accessible example, the logic of confidence interval theory.
Further, it shows that confidence procedures cannot be as-
sumed to have the properties that analysts desire.

When presenting the confidence intervals, CI proponents
almost always focus on estimation of the mean of a normal
distribution. In this simple case, frequentist, fiducial, and
objective Bayesian answers coincide.4 However, the propo-
nents of confidence intervals suggest the use of confidence
intervals for many other quantities: for instance, standard-
ized effect size Cohen’s d (G. Cumming & S. Finch, 2001),
medians, (Bonett & Price, 2002; Olive, 2008), correlations
(Zou, 2007), ordinal association (Woods, 2007), and many
others. Quite often authors of such articles provide no anal-
ysis of the properties of the proposed confidence intervals
beyond showing that contains the true value in the correct
proportion of samples: that is, that it is a confidence interval.
Sometimes the authors provide an analysis of the frequen-
tist properties of the interval, such as average width. The
developers of new confidence procedures do not, however,
examine whether their procedures allow for quality post-data
reasoning.

4This should not be taken to mean that inference by confidence
intervals is not problematic even in this simple case; see e.g., Brown
(1967), Buehler and Feddersen (1963).
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As the first example showed, a sole focus on frequentist
properties of procedures is potentially disastrous for users
of these confidence procedures because a confidence proce-
dure has no guarantee of supporting reasonable inferences
about the parameter of interest. Casella (1992) underscores
this point with confidence intervals, saying that “we must
remember that practitioners are going to make conditional
(post-data) inferences. Thus, we must be able to assure the
user that any inference made, either pre-data or post-data,
possesses some definite measure of validity” (p. 10). Any
development of an interval procedure that does not, at least
in part, focus on its post-data properties is incomplete at best
and extremely misleading at worst: caveat emptor.

Can such misleading inferences occur using procedures
suggested by proponents of confidence intervals, and in use
by researchers? The answer is yes, which we will show by
examining a confidence interval for ω2, the proportion of
variance accounted for in ANOVA designs. The parameter
ω2 serves as a measure of effect size when there are more
than two levels in a one-way design. This interval was sug-
gested by Steiger (2004, see also Steiger & Fouladi, 1997),
cited approvingly by G. Cumming (2014), implemented in
software for social scientists (e.g., Kelley, 2007a, 2007b),
and evaluated, solely for its frequentist properties, by W. H.
Finch and French (2012). The problems we discuss here are
shared by other related confidence intervals, such as confi-
dence intervals for η2, partial η2, the noncentrality parameter
of the F distribution, the signal-to-noise ratio f , RMSSE Ψ,
and others discussed by Steiger (2004).

Steiger (2004) introduces confidence intervals by empha-
sizing a desire to avoid significance tests, and to focus more
on the precision of estimates. Steiger says that “the scien-
tist is more interested in knowing how large the difference
between the two groups is (and how precisely it has been de-
termined) than whether the difference between the groups is
0” (pp. 164-165). Steiger and Fouladi (1997) say that “[t]he
advantage of a confidence interval is that the width of the
interval provides a ready indication of the precision of mea-
surement...” (p. 231). Given our knowledge of the precision
fallacy this should raise a red flag.

Steiger then gives a confidence interval on the ω2 by in-
verting a significance test. Given the strange behavior of the
UMP procedure in the submersible example, this too should
raise a red flag. A confidence procedure based on a test, even
a good, high-powered test, will not in general yield a pro-
cedure that provides for reasonable inferences. We will out-
line the logic of building a confidence interval by inverting
a significance test before showing how Steiger’s confidence
interval behaves with data.

In order to understand how a confidence interval can be
built by inverting a significance test, consider that a two-
sided significance test of size α can be thought of as a com-
bination of two one-sided tests at size α/2: one for each tail.
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Figure 5. Building a confidence interval by inverting a sig-
nificance test. The two noncentral F distributions with 16%
of F values less than, or greater than, F = 5 respectively.
When F = 5, the 100 - 16 - 16 = 68% confidence interval is
[.1, .36].

The two-sided test rejects when one of the one-tailed tests
rejects. To build a 68% confidence interval (e.g., to approxi-
mate a standard error), we can use two one-sided tests of size
(1 − .68)/2 = .16. Suppose we have a one-way design with
three groups and N = 10 participants in each group. The
effect size ω2 in such a design indexes how large we expect
F to be. The distribution of F given the effect size ω2 is
called the noncentral F distribution. When ω2 = 0 — that
is, there is no effect — the familiar central F distribution is
obtained.

Figure 5 shows that the value F(2, 27) = 5 yields p = .16
for two one-sided tests: the one-sided test of ω2 = .1 that
rejects when F is large, and the one-sided test of ω2 = .36
that rejects when F is small. For any ω2 value in [.1, .36], the
p value for both one-sided tests will be greater than p > .16,
and hence will not be rejected. A 68% confidence interval
for when F = 5 can be defined as all ω2 values that are not
rejected by one of the two-tailed tests, and so [.1, .36] is taken
as a 68% confidence interval. Because ω2 cannot be less than
0, sometimes there is no one-sided test that yields p = .16.
When the p value from the ANOVA F test is greater than
α/2 = .16, there is no upper-tailed test that will yield .16,
so no lower bound on the CI exists. If the F test p value is
greater than 1 − α/2, neither bound exists. If a bound does
not exist, Steiger (2004) arbitrarily sets it at 0.

To see how this CI works in practice, suppose we design a
three-group, between-subjects experiment with N = 10 par-
ticipants in each group and obtain an F(2, 27) = 0.18, p =

0.84. Following recommendations for good analysis prac-
tices (e.g. Psychonomics Society, 2012; Wilkinson & the
Task Force on Statistical Inference, 1999), we would like
to compute a confidence interval on the standardized effects
size ω2. Using software to compute Steiger’s CI, we obtain
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the 68% confidence interval [0, 0.01].
Figure 6A (top interval) shows the resulting 68% interval.

If we were not aware of the fallacies of confidence intervals,
we might publish this confidence interval thinking provides
a good measure of the precision of the estimate of ω2. Note
that the lower limit of the confidence interval is exactly 0,
because the lower bound did not exist. In discussing this
situation Steiger and Fouladi (1997) say

“[Arbitrarily setting the confidence limit at 0]
maintains the correct coverage probability for
the confidence interval, but the width of the con-
fidence interval may be suspect as an index of
the precision of measurement when either or
both ends of the confidence interval are at 0. In
such cases, one might consider obtaining alter-
native indications of precision of measurement,
such as an estimate of the standard error of the
statistic.” (Steiger and Fouladi, 1997, p. 255)

Steiger (2004) further notes that “relationship [between CI
width and precision] is less than perfect and is seriously com-
promised in some situations for several reasons” (p. 177).
This is rather startling; a major part of the justification for
confidence intervals, including the one computed here, is that
confidence intervals supposedly allow an assessment of the
precision with which the parameter is estimated. The con-
fidence interval fails to meet the purpose for which it was
advocated in the first place.

We can confirm the need for Steiger’s caution — essen-
tially, a warning about the precision fallacy — by looking at
the likelihood, which is probability density of the observed
F statistic computed for all true values of ω2. Notice how
narrow the confidence interval is compared to the likelihood
of ω2. The likelihood falls much more slowly as ω2 gets
larger than the confidence interval would appear to imply,
if we believed the precision fallacy. We can also compare
the confidence interval to a 68% Bayesian credible interval,
computed assuming standard “noninformative” priors on the
means and the error variance5. The Bayesian credible in-
terval is substantially wider, revealing the imprecision with
which ω2 is estimated.

Figure 6B shows the same case, but for a slightly smaller
F value. The precision with which ω2 is estimated has not
changed to any measurable degree; yet now the confidence
interval contains only the value ω2 = 0: or, more accurately,
the confidence interval is empty because this F value would
always be rejected by one of the pairs of one-sided tests that
led to the construction of the confidence interval. As Steiger
points out, a “zero-width confidence interval obviously does
not imply that effect size was determined with perfect preci-
sion,” (p. 177), nor can it imply that there is a 68% probabil-
ity thatω2 is exactly 0. This can be clearly seen by examining
the likelihood and Bayesian credible interval.
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Figure 6. Likelihoods, confidence intervals, and Bayesian
credible intervals (highest posterior density, or HPD, inter-
vals) for four hypothetical experimental results. The top in-
terval is Steiger’s (2004) confidence interval for ω2; the bot-
tom interval is the Bayesian HPD. See text for details.

Some authors (e.g., Dufour, 1997) interpret empty con-
fidence intervals as indicative of model misfit. In the case
of this one sample design, if the confidence interval is empty
then the means are more similar than would be expected even
under the null hypothesis α/2 of the time; that is, p > 1−α/2,
and hence F is small. If this model rejection significance test
logic is used, the confidence interval itself becomes uninter-
pretable as the model gets close to rejection, because it ap-
pears to indicate false precision (Gelman, 2011). Moreover,
in this case the p value is certainly more informative than the
CI; the p value provides graded information, while the CI is
simply empty for all values of p > 1 − α/2.

Panel C shows what happens when we increase the confi-
dence coefficient slightly to 70%. Again, the precision with
which the parameter is estimated has not changed, yet the
confidence interval now again has nonzero width.

Figure 6D shows the results of an analysis with F(2, 27) =

4.24, p = 0.03, and using a 95% confidence interval.
Steiger’s interval has now encompassed most of the likeli-

5See supplement for details. We do not generally advocate
non-informative priors on parameters of interest (Rouder, Morey,
Speckman, & Province, 2012; Wetzels, Grasman, & Wagenmak-
ers, 2012); in this instance we use them as a comparison because
many people believe, incorrectly, that confidence intervals numeri-
cally correspond to Bayesian credible intervals with noninformative
priors.
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hood, but the lower bound is still “stuck” at 0. In this situ-
ation, Steiger and Fouladi advise us that the width of the CI
is “suspect” as an indication of precision, and that we should
“obtain[] [an] alternative indication[] of precision of mea-
surement.” As it turns out, here the confidence interval is
not too different from the credible interval, though the con-
fidence interval is longer and is unbalanced. However, we
would not know this if we did not examine the likelihood and
the Bayesian credible interval; the only reason we know the
confidence interval has a reasonable width in this particular
case is its agreement with the actual measures of precision
offered by the likelihood and the credible interval.

How often will Steiger’s confidence procedure yield a
“suspect” confidence interval? This will occur whenever the
p value for the corresponding F test is p > α/2; for a 95%
confidence interval, this means that whenever p > 0.025,
Steiger and Fouladi recommend against using the confidence
interval for precisely the purpose that they — and other pro-
ponents of confidence intervals — recommend it for. This is
not a mere theoretical issue; moderately-sized p values often
occur. In a cursory review of papers using Steiger’s confi-
dence intervals, we found many that obtained and reported,
without note, suspect confidence intervals bounded at 0 (e.g.,
S. P. Cumming, Sherar, Gammon, Standage, & Malina,
2012; Gilroy & Pearce, 2014; Hamerman & Morewedge,
2015; Lahiri, Maloney, Rogers, & Ge, 2013; Hamerman &
Morewedge, 2015; Todd, Vurbic, & Bouton, 2014; Winter
et al., 2014). The others did not use confidence intervals,
instead relying on point estimates of effect size and p values
(e.g. Hollingdale & Greitemeyer, 2014); but from the p val-
ues it could be inferred that if they had followed “good prac-
tice” and computed such confidence intervals, they would
have obtained intervals that according to Steiger could not
be interpreted as anything but an inverted F test.

It makes sense, however, that authors using confidence in-
tervals would not note that the interpetation of their confi-
dence intervals is problematic. If a confidence intervals truly
contained the most likely values, or if it were an index of the
precision, or if the confidence coefficient indexed the uncer-
tainty we should have that the the parameter is in the interval,
then it would seem that a CI is a CI: what you learn from one
is the same as what you learn from another. The idea that
the p value can determine whether the interpretion of a con-
fidence interval is possible is not intuitive in light of the way
CIs are typically presented.

We see no reason, however, why our ability to interpret
an interval should be compromised simply because we ob-
tained a p value that was not low enough. Certainly, the
confidence coefficient is arbitrary; if the width is suspect
for one confidence coefficient, it makes little sense that the
CI width would become acceptable just because we changed
the confidence coefficient so the interval bounds did not in-
clude 0. Also, if the width is too narrow with moderate p

values, such that it is not an index of precision, it seems that
the interval will be too wide in other circumstances, possibly
threatening the interpretation as well. This was evident with
the UMP procedure in the submersible example: the UMP
interval was too narrow when the data provided little infor-
mation, and was too wide when the data provided substantial
information.

Steiger and Fouladi (1997) summarize the central problem
with confidence intervals when they say that in order to main-
tain the correct coverage probability — a frequentist pre-data
concern — they sacrifice the very thing researchers want con-
fidence intervals to be: a post-data index of the precision of
measurement. If our goal is to move away from significance
testing, we should not use methods which cannot be inter-
preted except as inversions of significance tests. We agree
with Steiger and Fouladi that researchers should consider ob-
taining alternative indications of precision of measurement;
luckily, Bayesian credible intervals fit the bill rather nicely,
rendering confidence intervals unnecessary.

Discussion

Using the theory of confidence intervals and the support
of two examples, we have shown that CIs do not have the
properties that are often claimed on their behalf. Confidence
interval theory was developed to solve a very constrained
problem: how can one construct an procedure that produces
intervals containing the true parameter a fixed proportion of
the time? Claims that confidence intervals yield an index of
precision, that the values within them are plausible, and that
the confidence coefficient can be read as a measure of cer-
tainty that the interval contains the true value, are all errors
and unjustified by confidence interval theory.

Good intentions underlie the advocacy of confidence in-
tervals: it would be excellent to have procedures with the
properties claimed. The FCF is driven by a desire to assess
the plausibility that an interval contains the true value; the
likelihood fallacy is driven by a desire to determine which
values of the parameter should be taken seriously; and the
precision fallacy is driven by a desire to quantify the pre-
cision of the estimates. We support these goals (Morey,
Rouder, Verhagen, & Wagenmakers, 2014), but confidence
interval theory is not the way to achieve them.

Guidelines for interpreting and reporting intervals

Frequentist theory can be counter-intuitive at times; as
Fisher was fond of pointing out, frequentist theorists often
seemed disconnected with the concerns of scientists, devel-
oping methods that did not suit their needs (e.g., Fisher,
1955, p. 70). This has lead to confusion where practitioners
assume that methods designed for one purpose were really
meant for another. In order to help mitigate such confusion,
here we would like to offer readers a clear guide to interpret-
ing and reporting confidence intervals.
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Once one has collected data and computed a confidence
interval, how does one then interpret the interval? The an-
swer is quite straightforward: one does not – at least not
within confidence interval theory.6 As Neyman and others
pointed out repeatedly, and as we have shown, confidence
limits cannot be interpreted as anything besides the result of
a procedure that will contain the true value in a fixed pro-
portion of samples. Unless an interpretation of the interval
can be specifically justified by some other theory of infer-
ence, confidence intervals must remain uninterpreted, lest
one make arbitrary inferences or inferences that are contra-
dicted by the data. This applies even to “good” confidence
intervals, as these are often built by inverting significance
tests and may have strange properties (e.g. Steiger, 2004).

In order to help mitigate confusion in the scientific liter-
ature, we suggest the following guidelines for reporting of
confidence intervals, all informed by our discussion in this
manuscript.

Report credible intervals instead. We believe any au-
thor who chooses to use confidence intervals should ensure
that the intervals correspond numerically with credible inter-
vals under some reasonable prior. Many confidence intervals
cannot be so interpreted, but if the authors know they can
be, they should be called “credible intervals”. This signals to
readers that they can interpret the interval as they have been
(incorrectly) told they can interpret confidence intervals. Of
course, the corresponding prior must also be reported.

This is not to say that one can’t also call them confidence
intervals if they are; however, readers are likely more inter-
ested in the post-data properties of the procedure — not the
long-run coverage — if they are interested arriving at sub-
stantive conclusions from the interval.

Do not use procedures whose Bayesian properties are
not known. As Casella (1992) pointed out, the post-data
properties of a procedure are necessary for understanding
what can be inferred from an interval. Any procedure whose
Bayesian properties have not been explored can have prop-
erties that make it unsuitable for post-data inference. Proce-
dures whose properties have not been adequately studied are
inappropriate for general use.

Warn readers if the confidence procedure does not cor-
respond to a Bayesian procedure. If it is known that a
confidence interval does not correspond to a Bayesian pro-
cedure, warn readers that the confidence interval cannot be
interpreted as having a X% probability of containing the pa-
rameter, that it cannot be interpreted in terms of the precision
of measurement, and that cannot be said to contain the val-
ues that should be taken seriously: the interval is merely an
interval that, prior to sampling, had a X% probability of con-
taining the true value. Authors choosing to report CIs have
a responsibility to keep their readers from invalid inferences,
because it is almost sure that readers will misinterpret them
without a warning (Hoekstra et al., 2014).

Never report a confidence interval without noting the
procedure and the corresponding statistics. As we have
described, there are many different ways to construct confi-
dence intervals, and they will have different properties. Some
will have better frequentist properties than others; some will
correspond to credible intervals, and others will not. It is
unfortunately common for authors to report confidence in-
tervals without noting how they were constructed. As can
be seen from the examples we’ve presented, this is a terri-
ble practice because without knowing which confidence in-
tervals was used, it is unclear what can be inferred. In the
submersible example, consider a 50% confidence interval .5
meters wide. This could correspond to very precise informa-
tion (Bayesian interval) or very imprecise information (UMP
and nonparametric interval). Not knowing which procedure
was used could lead to very poor inferences. In addition,
enough information should be presented so that any reader
can compute a different confidence interval or credible in-
terval. In most cases, this is covered by standard reporting
practices, but in other cases more information may need to
be given.

Consider reporting likelihoods or posteriors instead.
An interval provides fairly impoverished information. Just
as proponents of confidence intervals argue that CIs provide
more information than a significance test (although this is
debatable for many CIs), a likelihood or a posterior pro-
vides much more information than an interval. Recently, G.
Cumming (2014) has proposed so-called “cat’s eye” intervals
which correspond to either fiducial distributions or Bayesian
posteriors under a “non-informative” prior. With modern sci-
entific graphics so easy to create, we see no reason why like-
lihoods and posteriors cannot augment or even replace inter-
vals in most circumstances (e.g. Kruschke, 2010). With a
likelihood or a posterior, the arbitrariness of the confidence
or credibility coefficient is avoided altogether.

Confidence intervals versus credible intervals

One of the misconceptions regarding the relationship be-
tween Bayesian inference and frequentist inference is that
they will lead to the same inferences, and hence all con-
fidence intervals can simply be interpreted in a Bayesian
way. In the case where data are normally distributed, for in-
stance, there is a particular prior that will lead to a confidence
interval that is numerically identical to Bayesian credible

6Some recent writers have suggested replacing Neyman’s be-
havioral view on confidence intervals with a frequentist view fo-
cused on tests at various levels of “stringency” (see, e.g., Mayo &
Cox, 2006; Mayo & Spanos, 2006). Readers who prefer a frequen-
tist paradigm may wish to explore this approach; however, we are
unaware of any comprehensive account of CIs within this paradigm,
and regardless, it does not offer the properties desired by CI propo-
nents. This is not to be read as an argument against it, but rather a
warning that one must make a choice.
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intervals computed using the Bayesian posterior (Jeffreys,
1961; Lindley, 1965). This might lead one to suspect that
it does not matter whether one uses confidence procedures or
Bayesian procedures. We showed, however, that confidence
intervals and credible intervals can disagree markedly. The
only way to know that a confidence interval is numerically
identical to some credible interval is to prove it. The corre-
spondence cannot — and should not — be assumed.

More broadly, the defense of confidence procedures by
noting that, in some restricted cases, they numerically corre-
spond to Bayesian procedures is actually no defense at all.
One must first choose which confidence procedure, of many,
to use; if one is committed to the procedure that allows a
Bayesian interpretation, then one’s time is much better spent
simply applying Bayesian theory. If the benefits of Bayesian
theory are desired — and they clearly are, by proponents of
confidence intervals — then there is no reason why Bayesian
inference should not be applied in its full generality.

It is important to emphasize, however, that for many of
the confidence procedures presented in the applied statistical
literature, no effort has been made to show that the intervals
have the properties that proponents of confidence intervals
desire. We should expect, as a matter of course, that devel-
opers of new confidence intervals show that their intervals
have the desired inferential properties, instead of just proper
coverage of the true value and “short” width. Because de-
velopers of confidence intervals have not done this, the push
for confidence intervals rests on uncertain ground. Adopt-
ing Bayesian inference, where all inferences arise within a
logical, unified framework, would render the problems of as-
sessing the properties of these confidence procedures moot.
If desired, coverage can also be assessed, but if one is inter-
ested primarily in reasonable post-data inference, then those
properties should be the priority, not coverage (c.f. Gelman,
2008; Wasserman, 2008).

For advocates of reasoning by intervals, adopting
Bayesian inference would have other benefits. The end-
points of a confidence interval are always set by the data.
Suppose, however, we are interested in determining the plau-
sibility that a parameter is in a particular range; for instance,
in the United States, it is against the law to execute criminals
who are intellectually disabled. The criterion used for intel-
lectual disability in the US state of Florida is having an IQ
lower than 70. Since IQ is measured with error, one might
ask what confidence we have that a particular criminal’s IQ
is between 0 and 70. In this case, the interval is no longer a
function of the sample. The long-run probability that the true
value is inside a fixed interval is unknown and is either 0 or 1,
and hence no confidence procedure can be constructed, even
though such information may be critically important to a re-
searcher, policy maker, or criminal defendant (Pratt, Raiffa,
& Schlaifer, 1995).

Even in seemingly simple cases where a fixed interval is

nested inside a CI, or vice versa, one cannot draw conclu-
sions about the probability of a fixed interval. One might
assume that an interval nested within a CI must have lower
confidence than the CI; however, as shown in Figure 1B, a
100% confidence interval (the likelihood) is nested within
some of the 50% confidence intervals. Likewise, one might
believe that if a CI is nested within a fixed interval, then the
fixed interval must have greater probability than the interval.
But in Figure 1A, one can imagine a fixed interval just larger
than the 50% UMP interval; this will have much lower than
50% probability of containing the true value, due to the fact
that it occupies a small proportion of the likelihood. Knowl-
edge of the FCF prohibits one from using confidence inter-
vals to assess the probability of fixed intervals. Bayesian pro-
cedures, on the other hand, offer the ability to compute the
plausibility of any given range of values. Because all such
inferences must be made from the posterior distribution, in-
ferences must remain mutually consistent (Lindley, 1985; see
also Fisher, 1935, for a similar argument).

Moving to credible intervals from confidence intervals
would necessitate a shift in thinking, however, away from
a test-centric view (e.g., “is 0 in the interval?”). Although
every confidence interval can be interpreted as a test, this is
not true of credible intervals. Assessing the Bayesian credi-
bility of a specific parameter value by whether it is included
in a credible interval is, as James O. Berger (2006) puts it,
“simply wrong.” When testing a specific value is of interest
(such as a null hypothesis), that specific value must be as-
signed non-zero probability a priori. While not conceptually
difficult, it is beyond the scope of this paper; see Rouder,
Speckman, Sun, Morey, and Iverson (2009), Wagenmakers,
Lee, Lodewyckx, and Iverson (2008), or Dienes (2011) for
accessible accounts.

Finally, we believe that in science, the meaning of our
inferences are important. Bayesian credible intervals sup-
port an interpretation of probability in terms of plausibility,
thanks to the explicit use of a prior. Confidence intervals,
on the other hand, are based on a philosophy that does not al-
low inferences about plausibility, and does not require priors.
Using confidence intervals as if they were credible intervals
is an attempt to smuggle Bayesian meaning into frequentist
statistics, without proper consideration of a prior. As they
say, there is no such thing as a free lunch; one must choose.
We suspect that researchers, given the choice, would rather
specify priors and get the benefits that come from Bayesian
theory. We should not pretend, however, that the choice need
not be made. Confidence interval theory and Bayesian theory
are not interchangeable, and should not be treated so.

Conclusion

We have suggested that confidence intervals do not sup-
port the inferences that their advocates believe they do. It is
an interesting question how the theory of confidence inter-
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vals began with Neyman as a method of avoiding the prob-
lem of reasoning from data by making dichotomous state-
ments (Neyman, 1937, 1941), eventually becoming a method
that many believe is the best way to reason from data (e.g.
G. Cumming & S. Finch, 2005; G. Cumming & Fidler,
2009) and a way to avoid dichotomous statements (e.g. G.
Cumming, 2014; Hoekstra, Finch, Kiers, & Johnson, 2006;
Wilkinson & the Task Force on Statistical Inference, 1999).
However this confusion ultimately started, we think it is crit-
ical in the current atmosphere of statistical reform that we
ensure that claims made on behalf of confidence interval the-
ory have a firm foundation. We show here that they do not.

We do not believe that the theory of confidence intervals
provides a viable foundation for the future of psychological
methods. Confidence procedures that do not have Bayesian
properties have other undesirable properties; confidence pro-
cedures that do have Bayesian properties can be justified us-
ing Bayesian theory. If we were to give up the use of con-
fidence procedures, what would we lose? Abandoning the
use of confidence procedures means abandoning a method
that merely allows us to create intervals that include the true
value with a fixed long-run probability. We suspect that if
researchers understand that this is the only thing they will
be losing, they will not consider it a great loss. By adopting
Bayesian inference, they will gain a way of making princi-
pled statements about precision and plausibility. Ultimately,
this is exactly what the advocates of CIs have wanted all
along.
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