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1. Introductory.

Most of the groups of finite order which occur in connexion with
problems of higher analysis can be defined by means of congruences.
This is true, for example, of the group of the modular equation, and
of the groups on which the division of the periods of the hyper-
elliptic functions depends. In his standard treatise (Traité des
Substitutions et des Equations Algébriques) M. Camille Jordan has
investigated at length the more important properties of the general
linear group, defined by sets of congruences of the form

2 = g2+ b2+ ...+,
2 = oty + b5t .+ 62 (mod p),

Zh = 4.2, + b Tyt oo 0

where the coefficients are ordinary integers.
VOL. XXV.—No. 482, I
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The group of the modular equation, which is isomorphous with the
general linear group when the number of variables is two, has formed
the subject of a large number of memoirs; but it was first
exhanstively analysed in a paper by Herr J. Gierster (Math. 4nn.,
Vol. xviiw.), in which the order and type of all possible sub-groups
contained in the modular group for a prime transformation are com-
pletely determined. Though the congruences defining the groups
dealt with in these investigations involve only real coefficients, both
the authors mentioned find it of great advantage to introduce in their
discussions the imaginaries which Galois* first used in analysis.

If these imaginaries are introduced in the congruences defining the
groups, a new class of groups arises, altogether distinct from those
defined by congruences whose coefficients are real integers ; that is to
say, the simple groups occurring in the composition-series (Reihe der
Zusammensetzung) of these new groups are new simple groups. In
the present paper some of the more important properties of the:
fractional linear group to a prime modulus, z.e., the group defined by

2 = s%—g (mod p, prime),

when a, 5, y, 8 are any rational functions of the roots of an irre-
ducible congruence of the n** degree (mod p), are investigated. It is:
shown that in this way new simple groups of orders 2" (2*—1) and
19" (p"—1), p an odd prime and = any integer, are defined; the
latter being in many respects closely analogous to the group of
the modular equation. The orders of the separate operations of the
groups and their distribution in conjugate sets are determined, and the
order and type of some of the simpler sub-groups. For the case of
P =2, a complete discussion is given of all possible types of sub-
group; to carry this out, for » an odd prime, would probably
necessitate the separate treatment of each value of n.

In two memoirs in Liouville’'s Journal, 1860-1, M. E. Mathieu has
shown the existence of the triply-transitive group, called @ in this
paper, of which the simple group of order 3p" (p*—1) is a self-
conjugate sub-group. These memoirs deal, however, in the main,
with the formation of functions which are unaltered by the operations
of transitive groups, and the nature and propertles of the groups
themselves are not entered upon.

* ¢f. Liouville’s Journal, 1846, p- 381. Galois’ papers have also been printed
separatcly in a German translation by J. Springer, Berlin, 1889. (., also, St.rret
Coura &’ Algibre Sup., Vol. 1., p. 179, and Jordan’s work mentioned above, p. 14.
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In asubsequent paper the author hopes to deal with the simple
groups that arise in connexion with systems of congruences involving
n variables when the coefficients are imaginaries.

2. Definition and Order of the Groups.
Let # be & primitive root of the congruence
2 -1-1=0 (mod p),
80 that z satisfies an irreducible congruence of the the form
"+ a, 2"+ ... +a, =0 (mod p),

where a,, ... a, are real integers.

Then the p" quantities

‘ @+ 0@ Pt an e (A),

where a,, a;, ... a, may have any of the values 0, 1,2, ... p—1, are all
incongruent, and it is known that in & proper order they are the
same as the series of quantities

0, z, w’? e zp“-l.
If, now, a, 8, v, ¢ are any four of these quantities, such that
ad—By # 0,

the system of congruences 2’ = ;;:g

form a group; for the result of combining any two congruences of
this form is & third congruence of the same form.

The congruences

. az+ and z,_:')naz-{-mﬁ

yz+0 myz+md

@;;9 identical, and it may therefore be assumed that the determinant

ad—~Py

of the substitution is either unity or a determinate quadratic non-
residue, which may conveniently be taken as .

._=_a____z+ﬁ a;ml z'E——_u:—ﬁ
vz+d —y3—38

are not distinct substitutions, the order of the group will -be one half
12

Since .z
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of the sum of the number of distinct solutions of the two separate
congruences aW—fy=1
and ad —ﬂy =2

In the first of these congruences, if a is zero, é may have any one
of the p" possible values, and B and y satisfy

By=-1.

~ This congruence has clearly p*—1 distinct solutions, and hence the
number of solutions when a is zero is p" (p"—1).

If a is different from zero, and & such that
ad =1,
then 3, y have 2p"—1 sets of values; while, if
- wEl,
B, vy have p"—1 sets of values, as in the first case.
Hence for each finite value of a there are
2" —1+(p"-1)'=p"
solutions of the congruence.
The total number of solutions is therefore
P (p"=1)+p" (p"=1) =p" (P"-1).
It is easy to show that the second congruence
ad—fy==
has an equal number of solutions, and therefore
7 @=D)
is the order of the group.

The order of the group may also be simply determined as follows.
The substitutions of the group permute the p"+1 symbols consisting
of the set (A) with co among themselves. If ), 2, 2, i, 23, 23 are
any six of these symbols, the substitution

’ U ’ 4

22— Ty—a3 =) Ty—2y
’ ’ ’ ,» —

2= W—x  Z—xy XX,

is evidently a substitution of the group, and it replaces the three
symbols z,, a,, @, by. zi, 23, «; respectively. The group is therefore
triply-transitive in the p°+1 symbols, and its order is therefore
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divisible by (p"+1)p" (p"—1); while, since it clearly contains no
substitution, except identity, which keeps more than two symbols
fixed, the order must be equal to this number.

3. The Generating Operations.
It will now be shown that the group can be generated by the
combination and repetition of the three substitutions
= :}, =24+, 2=as
which may be conveniently represented by the symbols T, 8, X.

If 8 be transformed by X!, the resulting substitution X-‘SX‘ is

given by the congruence 7 =z4at
r_az+f3
Let now 3 or z = o¥d

be any substitution of the group; then ¢ may be so chosen that
3X-8X' or

’ az+B {
7= vz+4 +@
is of the form 2 =- 4 .
vz+34
It follows that SX-*SX‘T is given by
o= vi ; ,5’
and j may then be so chosen that 3 X~*SX,TX-/SX or
o yz+
z = — 42
-B
is the same as 7= 7—:3, = z'z.

Hence any substitution of the group can be expressed in the form

X SX°TX'SX™,
and the three substitutions T, 8, X are therefore, as stated above,
generating operations of the group.

It has been seen that one half of the substitutions of the group
have unity, or & quadratic residue, for their determinant. These
‘evidently form a self-conjugate sub-group, and it may be shown that
the generating substitutions of this sub-group are T, S, and X*;
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indeed, the previous proof will hold, as it stands, so soon 4s it i

1 d
shown that e ———

can be formed from these operations, whatever ' may be. Now,
every operation of this form in which «f is a quadratic residue may
be formed by transforming S by the powers of X*; and, by combining
these operations, every operation of the above form in which 2* is the
sum of any number of quadratic residues may be formed. But among
these quantities non-residues must occur, for, if unity be added in
turn to every quadratic residue, the sums are all different, and unity
does not occur among them.

When p =2, there are no quadratic non-residues, for the two
solutions of the congruence

Z* = z” (mod 2)

are congruent with each other, and therefore every one of the 2"
quantities (A) is in this case & quadratic residue.

In calculating the order of the group in this case the congruence
ad—pBy =z (mod 2)

does not occur. On the other hand, a, 8, v,  and —a, —@8, —y, —&
are not now different solutions of the congruence

ad—By=1 (mod 2),

go that the order of the group is the total number of solutions of this
congruence, viz., 2" (2*"—1). In this case also there is evidently no
self-conjugate sub-group of index 2, corresponding to the one just
referred to when p is an odd prime.

It will be convenient, to avoid repetition, to deal with the case
p = 2 by itself, after considering the general case of p any odd prime.
In what follows the triply-transitive group of order p* (p*—1) will
be referred to as the group G, and the sub-group of order 3p* (p**—1)
as the group H. It will also be a useful abbreviation to speak of
the substitution defined by the congruence

az+f

vz+38

’

az+3
yz+d'

as the substitution
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4. On the Orders of the Operations of @, and their Distribution in
Conjugate Sets.

When @ is regarded as a triply-transitive group in p"+1 symbols,
its operations either change all the symbols, all but one or all but
two. Those that keep either one or two symbols fixed are necessarily
regular, as otherwise their powers would keep more than two symbols
fixed. On the other hand, some of those that change all the symbols
may be.such that their squares keep two symbols fixed; otherwise
they also must be regular. Since the group is triply-transitive, there
must occur among the substitutions conjugate to a substitution which
contains a given transposition substitutions containing any other

chosen transposition. If now the substitution ‘i}@ transposes
yz+48

0 and o, then a =8=0, and the substitution is therefore necessarily
of order 2. Hence irregular substitutions, such as those suggested,
cannot occur, and all the substitutions of G are regular.

The sub-groups which keep each one of the p"+1 symbols
successively unchanged are all conjugate, and that which keeps o
unchanged may be taken as their type.

This is clearly the group of order p* (p"—1) which is generated by
2=z+1 and 2 =az
It is evident that this group contains the group of order p",

U]
=2z 2Z=z+1, Z=z+x, ... 7 =2zs+a" },

self-conjugately. Hence this is the type of the single conjugate set
of groups of order p*, which according to Sylow’s theorem is con-
tained in G'; and their number is p*+1. Thissub-group is such that
all its operations, except identity, are of order p, and are permutable
with each other.

Since X~'SX‘ is the substitution z+4a, the p"—1 operations of
order p form a single conjugate set within the sub-group which keeps
o unchanged, and therefore the (p"+1)(p"—1) operations of order
p contained in the group G form a single conjugate set. The
remaining operations of the sub-group keeping o unchanged (which
all keep one other symbol fixed) consist of operations conjugate to z=
and its powers, and therefore m can always be chosen so that any
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operation of the group which keeps two symbols unchanged is conju-
gate to z”z.  Since the first power of  which is congruent to unity
is the (p"—1)*, the order of zz or X is p"—1; and therefore the
order of every operation which keeps two symbols fixed is a sub-
multiple of p*—1, while every such operation is a power of an opera-
tion of order p"—1.

Since the operations which change all the symbols are regular,
their orders must be sub-multiples of p"+1; and, in close analogy
with the operations which keep two symbols fixed, it may be shown
that among the operations changing all the symbols there are
operations of order p"+1, while every operation changing all the
symbols is the power of an operation of order "+ 1. '

Thus, if the substitation

18 thrown into the form

’

-]

-“=AE_—_E
T -y’
X is given by »+(2- 5‘;—_*_’%) A+1=0.

Now the coefficient of A in this congruence can take all possible
values, for, when

as—ﬁ‘y = 1:
( 3
;+f3) may be any quadratic residue, and, when
ad—py
adl—fy ==z,

it may be any quadratic non-residue.
Now the congruence  AN'—azA+1=0
is reducible when j can be found such that
2 =a'+a,
and, if this congruence can be satisfied at all, it can only be satisfied
in one way, for

ot =42t

gives at once a=a or a7t
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For all other values of a the congruence is irreducible. But

"~1
]oI (\'—2A+1)
= b)F (e 3-2)
A (X+A i A+A v

- (3 [(+37 1

(el 51

= (\"H-_1)(\""1-1).

Those quadratic congruences which are reducible give the quadratic

factors of A”"'l—l, and the factors A—1 and )H-]: of )t"n"'l—l; and
therefore the irreducible quadratic congruences give the remaining

factors of AP"+1—1,
Now, since - W11 =0
has primitive roots, MHl1=0
must also have primitive roots.
Hence among the quantities A, defined by the irreducible con-
gruences N—2zA+1=0,
there must be some for which the first power of A which is congruent

to unity is the (p"+1)". There are therefore operations ::—iag»

whose order is p"+1, since the order of the operation is equal to the:

index to which the corresponding A belongs.

1t 248 54 fransformed into %ZHE
vz+0 Y244

minant unity, it is well known that

by any substitution of deter--

a'+d0=a+d and o'¥—F%Y = ad—Py,
and this result is still true when the transforming substitution has

az+ 8’ .
o be brought into.
its standard form so as to have unity or  for its determinant.

It may, however, be further shown that for the group @ all the

determinant z, if the transformed substitution
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.substitutions for which a+8 and ad— By have given values form a
Az+B

-pingle conjugate set. Thus, if Tot D

be the transforming substitu-
tion, a’, 3, ¥/, &' are given by
Aa+By =d4+8C, AB+Bd=dB+3D,
Oa+Dy=yA+0C, CB+Dd=yB+dD,
and, since here AD—B(0 may be either 1 or z, it is clear that, except
when a=d=1and f=y=0, o a,nd ' may be chosen arbitrarily,

.and therefore that every substitution < +§, , for which

a’+0=a+d and a’d’'—f'y’ = ad—pBy,

az+pB

yo 49

Now, the multlpher A of a substitution 3 of order p"+1 has been
.shown to satisfy an irreducible quadratic congruence of the form

is conjugate to

)\’—-w‘;\-}-l =0,
-and the multipliers A% A’, &c., of its successive powers satisfy similar
congruences. If A" satisfied the same congruence as X', then
At =1;
-and hence, since A is a primitive root of the congruence

A1 =0,
r+8=p"+1

The . multipliers . of successive powers of 3, with the excep-
tion of the  (p"+1)*, therefore satisfy £ 5 ~1 different irreducible

quadratic congruences of the above form. But this is the total
number of such congruences, and therefore among the powers of 3

1
.all possible values of Qﬁl , for substitutions whose orders are sub-

ad—PBy
maultiples of p"+1, occur. Combining this with the previous result,
it follows that every operation changing all the symbols is conjugate
with a power of an operation of order p"+1, and is therefore itself a
power of an operation of order p"+1.
az+f3 and —22— =8 being identical, the result just
yz49 —yz—9

proved may be stated in the form that all operations for which

The operations
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{a+?)" and ad—LBy have given values constitute a single conjugate
set of operations.

Since (a+9)* may be zero, or any one of the 1':2_—1 quadratic
residues, while ad—fy may be either 1 or z, there must be p"+1
.conjugate sets of operations, exclusive of identity.

This discussion of the orders. of the operations of &, and their
-distribution into conjugate sets, may be applied to simplify con-
siderably the corresponding investigation for the group H.

5. On the Distribution of the Operations of H in Conjugate Sets.

The cyclical substitutions of p"+1 and p"—1 symbols that G
contains are odd substitutions, 7.e., substitutions that are equivalent
to an odd number of transpositions. Hence the self-conjugate sub-
group H of index 2 consists of the even substitutions of G.

It follows at once that all the substitutions of order p contained in

G belong to H, and that operations of G of orders Pl gng 221

‘will belong to H when p and v are even. # ’
Hence the operations of H which keep no symbols fixed have for

their orders sub-multiples of L;l ,-and every such operation is the

power of an operation of order &"-24—'1‘; while the operations which

keep two symbols fixed are powers of operé.tiops of order P—':2——1

It is not, however, now the case that a]l the operations for which
{a+8)* is the same form a single conjugate set. For, if the substitn-

tion z+1 is transformed into z+2' by az+f .
vz+39
AaE‘&v‘ and y=0;

but ad=1;

and therefore 2! must be a quadratic residue.

The operations of order p therefore fall into two conjugate sets,
‘each containing § (p™"—=1).
az+fB
vz+9

If, now, be any substitution whose order is a sub-multiple of
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4

L' +1 21 if this be transformed into 228 by 42+ B 1o ombining

2 vz+¢ Cz+D
the first two of the equations for the transformed coeficients already
given with AD—BO =1

it is easily shown that
B [0B+0D (3—a)—Dy] =a"—(a+d)a'+1.

Now, 8+ -'g (6—a)— g y cannot vanish for any value of % , for,
when equated to zero, it would give the fixed elements of the opera-
tion, and no elements remain fixed ; and, when the p” different possible
D
T

take ﬂ;—l different values, since the congruence

values of —- are successively substituted for it, this expression will

B+ 5 (B—a)— Zy =B+a’ (—a) =y

will always have two and only two roots, and for one value of z” these

will be equal. Moreover, there are only EQ:—]' quadratic residues, so

that the expression in question can, by suitably choosing g, be made
either a residue or a non-residue.

It follows that, when all possible values are given to ¢ and D,
C'B+ 0D (d—a)—Dy
can take every possible value except zero.
Hence, when o’ is chosen arbitrarily, 8’ may have every possible
value except zero. But since
ad—By=1 and o'+ =2,
where N—zA4+1=0

is irreducible, the value 8 = 0 is in any case inadmissible.

It follows from this discnssion that all the.operations which keep
no symbols fixed, and for which (a+3)* has the same value, form a
single conjugate set.

A closely similar discussion of the congruence connecting o’, 8°, 0, D-
leads to the same result for operations whose orders are sub-multiples.

of %1
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There are, therefore, two conjugate sets of substitutions for which
(a+d)? =4,
and one set of every other possible value. The total number of

conjugate sets, exclusive of identity, is 2’;’—3

6. Proof that H is a Simple Group.

The proof which Herr Weber gives in his Elliptische Functionen
und Algebraische Zahlen that the group of the modular equation is
simple may be applied directly, with suitable modifications, to show
that the analogous group H is simple. The following proof of this
property, founded on the discussion just given of the distribution of
the operations in conjugate sets, is, however, considerably shorter.

Let K be a self-conjugate sub-group of H, and suppose first that K
contains an operation of order p. It must then contain the whole of
one of the two conjugate sets of operations of order p, and therefore
the whole of both sets, since by a previous remark a sub-group which
contains all the operations z+a° where 2' is a quadratic residue must
also contain those where #f is & non-residue. The group K therefore
contains the two operations Y__:i;li - and z+2', where a, y and z*
may be chosen arbitrarily. The result of combining these two is

(a+y2) s+B+(2—a) o'
vz+2—a !

and the sum of the first and last coefficients in this substitution,
namely, 2+ yz!, may be made anything whatever.

Hence, in this case, K coincides with H.

Suppose now that K contains a substitution keeping two symbols

? . . 3
fixed, say -:-:z; It will then contain :::/a , where
a+d=a+z"
These combined give M,
va'z+ oz~
and, if now a=g, d=a, y=0 B0,
this substitution is 2+ Bz,

which is of order p. Hence, again, K coincides with H.
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Suppose, lastly, that K contains an operation, displacing all the
symbols, for which atd=2a;
= ?

’ _
then K contains zz-lz-l and 1+ .» and these combined give z—24',
an operation of order p.” Hence, once again, K coincides with H.

It follows, therefore, that, since H contains no self-conjugate sub-
group different from itself, it is a simple group.

7. On H, regarded as a Sub-,G-rodp of H,,.

If a suffix be now used to denote the degree of the irreducible
congruence on which the coefficients of the substitutions of G or H
depend,'it is immediately clear that Hy will contain H,, if p"—1is a.
factor of p¥—1. For, if

PI=1=A(p"-1),
and if y is & primitive root of the congruence

y”"f'll-l =0,

then 3 is & primitive root of

“l-1=0,
and the group H, is derived from '
2:"~.=.“_1 =z+1, ZEI—.
%

The sub-group of Hy with which H, is permutable may be deter-

mined as follows. If :g a substitution of H, is transformed into
a'; ':g: by any substitution 3::% of Hy, then

= . ADa—A0B+BDy~BCs,
‘= —ABa+ A8 —B'y +ABS,
v = CDa—0'3 +Dy —0OD3,
= —BCa+A0S—BDy+ ADS.

Now Az+B

Ot D' where AD—B0 = 1, is permutable with H,, if, when
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these congruences are applied to the three generating substitutions:
of H,, the values of a', ', ¥, &' obtained are all powers of 3.

The respective values of a, 3, y, & are

o -1, 1, 0,
1, 1, 0 1,
¥, 0, 0, y;

and therefore A0+ BD, A*+ B, C*+-D*, 1—40, 4, 0’ .ADy“ B(Jy",.
AB(y—~y"), OD(y*—y™*), and ADy>—BCy* are powers of 3.
Hence, sincethe sum of any number of powers of 4* is again a power of
vy, it follows that 4°, B*, C*, D*, 4B, A0, 4D, BO, BD, 0D must all of’
them be powers of 3*. If, then, A be odd, 4, B, 0, D must themselves
be powers of 3*, and the group H, is only permutable with itself;
if, however, A be even, the coefficients may also be of the form y™+¥2,
if —= az+ ——_ is any substitution of H,,, Y ETEY _:H'ﬁ — i8 a substitution
yz+38 z4dy~»
of the second kind which transforms H mto 1tself and in this way
each such substitution is obtained once and once only. It follows.
that, when X is even, the order of the group with which H, is per-
mutable is twice the order of H,. This group is evidently G,. '
Now p"—1 will only divide p*—1, when # divides N and A is odd

Now,

or even according as .%T is odd or even. The group H, is therefore.
one of & conjugate set of sub-groups of H,, whose number is
Pu 8=1) (pﬂn(c-l)_l_PZn(n—B)_*_". +P2n+1)’

ov-one half of this number according as s is odd oreven. In particular
H, the group of the modular equation is always contained as a sub-
group in H,.

Consider now the case of s =2, and H, as a sub-group of H,,.
Since p"+1 is not & factor of p*+1, none of the operations of H,
dnsplace all the symbols of H,,; and therefore any operation of H,

of the order L2 occurs as the p"—1 power of some operation of Hy,

of order 2272_— which keeps two symbols fixed. But the cyclical

sub-groups of H,, of order L—— are all conjugate to the sub-group:
arising from 4"/— i and therefore H, must contain opera.tmns of order

) : BN . -1, -
2_'2*_1 which are conjugate, within Hy,, to &—2. It follows that
: . y
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among the groups conjugate to H,, within H,, which are all

isomorphous with H,, there must be one at least containing the
p"-1,

-operation el

Y

A group H,, contained in Hy,, which is isomorphous with H,, and

p"_l
which contains the operation }Lp’-_.: , consists of all operations of the
form ¥y

az+8" v s
'ylz+az1 (aa’ B‘y - 1)’

for which o', B, ¥', &’ are given in form by
o =rts(@ 1=y P, B =t -y P,

Y=r—s(@ =y, Y =—uto (PN -y T,
where 7, s, u, v are powers of g,

That these operations actually form & group may be verified at
once by forming the operation which is compounded of any two
operations of the above form, when it will be found that the
coefficients in the resulting operation are again of the same form.
That the group thus defined may be obtained by transforming H, by
Az+B
Oz+D

‘If the formulm given at the foot of the last page but one for a’, §',
', & are equivalent to the above-written forms, the quantities 7, u,

s (3" ' —y™"*) and o (""" —y™7"") must be given by
r=a+i,
u = (0D+4B)(6—a) +(4'+C*) B—(B'+ D),
s (" "'—y 7 *') = (4D+ BC)(a—3)~2408 +2BDy,
v(y" 1=y P ) = (AB—CD)(5—a) + (4~ C*) B+(D'—B) .

an operation may be proved as follows.

It has therefore to be shown that an operation ‘ézig can be
. 2

found, such that, when 7, 4, s, v are given powers of z satisfying
Pal =@ o) -y Ty =1,

the above congruences determine a, 3, ¥, ¢ as powers of z or y”"“.
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Now it has been shown above that, since y? ~!

of the congruence

is a primitive root

MWL) =0,
it must satisfy an irreducible quadratic congruence
2%—zfa’+1 =0,
where z=y"+!
is a primitive root of M-l_1=0.

It follows that ¢?"~14y 7"+l ig g power of 2, and therefore so also

is (y*""'—y ?"*1)3, which will be called & On the other hand, § is
.clearly not expressible rationally in terms of z.

If, now, m and = are any powers of z, the expression
m+nk
n

- includes, with zero, p" incongruous values; and therefore every
integral power of y can be expressed in this form.

Since & is a power of 2, 8o also is (m+nE)(m—nt), and m+nt,

m—nk are therefore either both even or both odd powers of y. ’

Suppose then that
A = m +nd, B = m' +2'¢,
0 = m—aik, D} = m'—a'E,
where m+nk, m'+n'f are odd powers of y, and m®—a', m®—n"0

are odd powers of 2. They can obviously be chosen so in a variety
of ways satisfying

A*D'4+ BC'—24BCD = (AD—BO)* = 1.

From these forms it at once follows that A*+C* and B'*+ D' are
powers of z, while A'—C% B'—1I7, AC and BD are, each of them,
powers of 2 multiplied by &.

Also " AD+BC = A'D*—B'C* = 2 (m'n—mw’) §,
and (CD—AB)(CD+A4B) = —2 (m'n+ma') ¢,
while (CD—AB)(4D—BC) = AC (B'+D)—BD (A'+0Y)

is also a power of  multiplied by £; and therefore CD—4B is a

power of & multiplied by £, while CD+ 4B is a power of 2. The

values assumed for 4, B, C, D satisfy therefore all the conditions
YOL. Xxv.—No. 483. K
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given at the beginning of this investigation, and the group whose
operations are of the form

(r+6d) 24utok
(—u+vd)zs+r—sf

A2+ B
Cz+ D’

does not belong to Hy,, since 4, B, C, D are

is obtained from the transformation of H, by

Az+B
Cz+D
not rationally expressible in terms of y; it will, however, evi-
dently be an operation of the group H,,; and the group H, is
therefore conjugate with H, within H,, but not within H,. It
necessarily follows that H,, contains at least two different conjugate
sets of sub-groups, each isomorphous with H,,

The operation

The values

r=i@" Tty Y, s=1, wu=o0=0,
of which the first has been shown to be a power of 2, give the opera-

p-1
tion 2 contained in H,
y-zf‘+1
This transformed form of the group may be used to bring out the
analogy .between the cyclical sub-groups of orders % (p"—1) and
1 (p"+1). Thus in the orig'ina.l form of the group a typical cyclical

sub-group of order § (p"—1) is that arising from ;—”5 This keeps

=
the symbols 0, w unchanged, and can therefore only be trans-
formed into itself by operations which either keep 0, 0 unchanged,
or by operations which interchange them. The former are the
operations of the sub-group itself, and the latter are the § (p"—1)

—at .
operations of order 2 of the form z—_f'i contained in H,. Each of the
z

latter transforms any operation of the cyclical sub-group into its own
inverse; and the } (p"—1) operations of order 2, taken with the
operations of the cyclical sub-group, form a sub-group of dihedral type
of order p*—~1.

In the transformed group II;, a typical cyclical sub-group of order
pu'_l .

z- . .
;- - Considered as an operation

}(7"+1) is that arising from L3
y
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in the group H,,, this keeps the symbols 0, 0 unchanged, and there-
fore is only transformed into itself by the operations g—% and 1%?;‘ of
H’,,,. Those of the former type which belong to H, are the operations

of the cyclical sub-group itself, while those of the latter type are the
operations included under the form

uto (g =y
{—uto(y? -y P} z

where w— gt (P "y F Y 5
This congruence has for its solutions
w=£} @V 4y "),

m (v"-l)._y—fn(p"—l)

y
v=% % " — ot ’
gty

m=20,1,..p"
and these correspond to the  (p"+ 1) operations

m(P"—l)
_y-m(p"-l)z’ ['m =01, .. %(p"—l)].

Finally, these } (p"+1) operations of order 2, taken with the
. Pi~1

cyclical sub-group arising from u_—p,,‘—f, give a dihedral group of
order p"+1. y :
" The sub-groups of tetrnhedral type, and those of octahedral and
icosahedral types for the cases of p* = £ 1 (mod 8 and mod 5, respec-
tively), the existence of which Herr Gierster demonstrates in his
memoir for the case » =1, may also be shown to exist in the general
case.

The complete discussion which is given in the following paragraph
of all possible sub-groups for the case p =2 indicates the lines on
which a similar discussion may be carried out for the case of p am
odd prime ; and suggests that the types of sub-group which have
been shown to exist, including those mentioned in the last sentence
probably exhaust all types that actually exist.

K2
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8. On the Group @, when p = 2.

The necessary modifications of the foregoing theorems with respect
to the omitted case of p=2 are now very readily made, and it seems
hardly necessary to repeat proofs which are almost identical with
those already given. '

As was shown in §3, when n =2, there are no quadratic non-
residues, and therefore all the operations of the group G of order
2" (2**—1) may be brought to the standard form in which the deter-
minant is unity. Considered as a permutation group of 2'+1
symbols, the operations which displace all the symbols are all powers
of operations of order 2"+ 1, those which keep one symbol fixed are
all of order 2, and those which keep two symbols fixed are powers of
operations of order 2°—1.

The operations of order 2 form a single conjugate set, as also do all
the operations for which (a+d)? has a given value; but here (a+4)?,
including the value zero which gives the operations of order 2, may
have any one of 2" values, and there are, therefore, 2" different con-
jugate sets of operations, exclusive of identity. ’

The proof that H, for p an odd prime, is a simple group will apply
exactly to show that G is simple, when p = 2.

It may also be shown, exactly as in the corresponding case for H,
that corresponding to each cyclical sub-group of order 2"+1 or 2"—1
there is a sub-group of dihedral type of order 2 (2"+1) or 2 (2*—1)
containing the cyclical group as a self-conjugate sub-group, and that
no cyclical sub-group is contained self-conjugately in any sub-group
of higher order than these dihedral groups. As regards sub-groups of
tetrahedral, octahedral, and icosahedral types, there can clearly be
none of octahedral type, since the groups contain no operations of
order 4. If nis odd, 5 divides neither 2"+1 nor 2"—1, and hence,
for an odd =, G cannot contain an icosahedral sub-group. If, how-
ever, » is even, G, contains (; as a sub-group, and this, being of order
60, is necessarily an icosahedral group. Since the icosahedral group
contains tetrahedral sub-groups, @,, when n is even, will have sub-
groups of tetrahedral type. Finally, when # is odd, 2"+1 is divisible
by 3 and not 2"—1, and, since a sub-group of order 4 cannot be
transformed into itself by an operation changing all the symbols, a
tetrahedral sub-group, which must contain a group of order 4
self-conjugately, cannot exist in this case.

It will now be shown that the sub-groups already enunciated,
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together with the sub-group that keeps one symbol fixed, and ts
sub-groups, and the sub-group of type G, where ' is a factor of =,
exhaust all existing types. This will be proved by a modification
and extension of the process used by Herr Gierster in his often
referred to memoir in discussing the corresponding question for the

modular group.

Let T be any sub-group of @, of order 2"¢’ =g, where ¢ is
a factor of 2"—1, and let % be an operation of odd order p,
contained in T, there being no operations in I' of higher order
than p,. Then the sub-group arising from 2 is permutable with-
in T, elther with itself or with a dihedral group of order 2p,
and it therefore forms one of a set of either - or Qg; conjugate

nh 1
sub-groups. No two of these sub-groups contain a common operation,

for, if they did, all their operations would be common. Hence,
omitting identity from each such sub-group, they contain in all

Q——)- or u different operations. Let, now, % be an

oper atxon of odd ordel s contained among the remaining operations,
there being no remaining operation of a higher order than p,. Then,
as before, the set of sub-groups conjugate with the cyclical sub-group
arising from 3’ contain either (n=Dg or -(]1"'1:-1)—'(-] different opera-

P 2p,
tions of odd order, and no one of these can coincide either with

another of the same set or with one of the previous set. If this pro-
cess is continued till the operations of odd order are exhausted,
there remain only operations of order 2. Any one S of these is
permutable with a sub-group of order 2", and thevefore forms one

of a set of ~ or g’ conjugate operations. If among these g’ opera-

tions there occurs none of the group of order 2" with which § is
permutable, then each operation, except identity, of this group will
give rise to a similar set, no two sets containing a common operation,
and the number of operations of order 2 contained in I' will be
(2"—1)g¢’. It is necessary therefore to determine in what cases
the sub-group of order 2™ contains operations conjugate within T

The general type of group of order 2™ contained in G is the group
arising from the m permutable operations of order 2,

z+an, z+am, ... 242",

where a,, ay, ... @, are any m chosen integers from 1,2, ... 2"=1.
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No operation of this sub-group can be transformed into another,
except by the operations of the sub-group arising from

241 and =z

Hence I' must contain the operation 2'z, or an operation conjugate
to it within the sub-group which keeps oo fixed, if the sub-group of

order 2™ contains conjugate operations. Now, the -1 powers of

z'z transform 242" into a set of 2":1 conjugate operations of the

same form 2+ 2, and these must all be contained in the sub-group of
order 2", as otherwise 2™ would not be the highest power of 2
dividing g.

Hence, if a is the symbol that any sub-group of I' of order 2" keeps

fixed, and if 2":1 is the order of the highest operation of odd order

contained both in I and in the sub-group keeping a fixed, the opera-
tions of the sub-group of order 2" will be conjugate in sets of
2"—1 1
Ty

This involves that 2”: is a factor of 2™—1, and is also one

of the numbers p,, p;, ... . If, then,
2r—1

1 4

= Prs

the number of operations of order 2 contained in I' is L"'-;I)_g_

Adding together the numbers of different operations thus obtained,
including the identical operation, there results

g=143®m-1g @=Dg
SiP

2»: P

where each s is either 1 or 2.

1
Hence g= —
1_zp=l_Z-1
57 2"p,

If m is zero, so that " conta.iné no operations of order 2, each s
must be unity, and the relation becomes

1
g=—-————‘ .
1-s&=!
: "
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Now g is a positive integer, and each p is an odd number. Hence
in this case there can be only one term under the sign of summation,
and :

g =n
It follows that the only sub-groups not containing operations of
order 2 are the cyclical sub-groups.

Again =l
s

8o that, when m is not zero, there can be at most two terms under
the sign of summation; and, if there are two terms, s, = s = 2;

while, if there is one term only, s, may be either 1 or 2.

With one term only, if 5 =1,

1 1 2n—1

9. n 2’
where p, is either unity or p,.

If p.=p, g=2"p,, and I'is a sub-group of the sub-group that
keeps one symbol fixed.
2m
If p=1, go—ctia—
b @ -
80 when p, = 1. T is then a sub-group of order 2".
With one term only, and s, = 2,

must be an integer, and this can only be

1_1,.1 _ 2-1
g .2 2 2~
1 2!»-1 — 21»—1_

If p, = p, i p|2”'(p, L,

and, since p, is a factor of 2" —1, g can only be an integer when p,=1;
leading again to a sub-group of order 2".
If p, = 1, m must be unity, and I’ ig a dihedral group of order 2p,.
When there are two terms under the sign of summation, both s,
and s, must be 2 that g may be a positive integer. Hence
1 1 2n—1

3 ’
zm .

1
=
g 2p 2p, 'p

where p, is either 1, p, or p,.

Since p,, p, are odd integers, g cannot be positive if p, is unity, and
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therefore it may be taken as p,. Then
1_gmip—(@=Dp,
g 2"pipy
If q is the G.C.M. of p, and p,, so that
Pi=qpi, Ps= GPi
where pj, p; are relatively prime, then
1 _gmipi-@'=l)y
g 2"9pi pi '
The numerator of this fraction is prime relatively to 27p;ps;, and
hence, if g is an integer,
2 lpi—(@2 =) pr = ¢,

a factor of q.
The general values of p; and p; which satisfy this equation are
given by pi=q+k(@-1),
Fi= R
and therefore = qf +kq (@"'=1),

Py =qq' +kg 2"

Now p, is a factor of 2"—1, so that kg cannot be greater than 2.
Also ¢ is odd and is therefore unity, as also must therefore be ¢’.

Hence = 1+k(2"'—1),
py=1+4+Ek27)
where k can only be 1 or 2, and must be 2 since p, is odd. Then
P =2"—1, py=2"+L

Also, since p, is a factor of 2"—1, m must be a factor of ». Hence
this last possible case leads to the sub-groups of type G, where »’ is.
a factor of n.

9. On certain Special Oases of the Groups G and H.

There are three values of p* for which the corresponding groups
are already known. When
pu = 22'

@ is a simple group of order 60, and must therefore be a form of the
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icosahedral group. Thus a new and very simple specification is.
obtained for this group, as consisting of all substitutions of the form

¢ = Ei@}
yz+38 » (mod 2),
ad—fy=1
where the coefficients are either 0, 1, z, or 2*; = being such that
2+z+1=0 (mod 2).
When pt =24

G is a simple group of order 504. This group was first discovered by
Dr. Cole (Admerican Journal of Mathematics, Vol. xv.).

When " =3,

H is a simple group of order 360, and must therefore be a form of
the alternating group of 6 symbols. @ is a triply-transitive group
of 10 symbols, order 720, containing H self-conjugately.

It is curious to notice that, as is well known, the symmetric group
of 6 symbols, order 720, which also contains the alternating group
gelf-conjugately, can be expressed as a doubly-transitive group of
10 symbols ; so that there are two distinet transitive groups of 10
symbols, one doubly and the other triply transitive, both of order
720, and both containing the same doubly-transitive simple group of
order 360 as & self-conjugate sub-group.

10. On a Property of certain Transitive Groups.

The sub-group of G which keeps one symbol fixed is doubly
transitive in p" symbols while its order is p" (p"—1). Now the
order of a doubly-transitive group in m symbols is necessarily
divisible by m (m—1), and it may be shown that, when it is equal to
this number, m is the power of a prime, and moreover that, as has
been seen to be the case with @, the operations of the sub-group of
order m must all be permutable with each other. Thus, assuming
the existence of a doubly-transitive group in m symbols of order
m (m—1), its operations must displaté all the symbols or all but
one; and therefore the m—2 symbols into which a given symbol is
changed, by the operations of a sub-group keeping one symbol fixed,
are all different. Hence among the operations of the m sub-groups,
each of which keeps one symbol unchanged, there must be m —2
operations which change a given symbol @ into another given symbol.
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b; for each sub-group contains one such operation except those that
keep a and b respectively unchanged.

Now the group contains m—1 operations changing a into b, and
hence among the m—1 operations which change all the symbols
there is one, and only one, which changes a into b. It follows, there-
fore, that these m—1 operations with identity form a sub-group of
order i, since the product of any two of them necessarily changes all
the symbols. This sub-group of order m is evidently self-conjugate.

If, now, P is any particular operation of this sub-group of order m,
and if A is any operation of the sub-group that keeps a fixed, the
operations A-'PA

are clearly all different, for the symbols into which they change @ are
all different. Hence the m—1 operations which change all the
symbols form a single conjugate set within the main group, and they
-are therefore all of the same order. Since with identity these opera-
tions form a group, their common order must be a prime, and hence
finally m must be the power of a prime.

Since P is one of a set of m—1 conjugate operations, the operations
permutable with P form a sub-group whose order is

m (m—1) + (m—1),

i.e., m. Hence every operation of the sub-group of order m is per-
mutable with every other, and the sub-group is therefore Abelian.
The type of doubly-transitive group of order p"(p"—1) which
appears as that sub-group of @ which keeps one symbol fixed is not,
however, the only possible type. Thus Dr. Cole in his analysis of
the transitive groups of 9 letters (Bulletin of the New York Mathe-
matical Soctety, July, 1893) has shown that there are two such
doubly-transitive groups of order 82. All possible types may be
obtained by the following considerations. The sub-group of order
p" is generated by » permutable operations P,, P, ... P, of order p.
Let 3 be any operation of the sub-group K that keeps one symbol

ﬁxed, and let E-‘PIE = P"hP"'- . Pau

. n?

YY) aee oae

3-1P,3%=PrP}.. P™,

80 that 3P P;... .3

24l 4. +ms T+ by CuT +0u Y 4.+ 1,
=Pll'| W +my P;- by 4.ty e .P"” I M.
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Since no operation of the sub-group K is permutable with any
.operation of the sab-group of order p", it follows that, if the p*—1
operations of this sub-group other than identity be transformed by
all the operations of the sub-group K in succession, a permutation
group is obtained which is holohedrically isomorphous with K. The
operations of this sub-group are, as the last equation shows, defined
by congruences of the form

2 =aqz+byt..+nz
y’ = aag$+bgy+... +n,z (modp) ;

7 =ax+by+..+nz2

-and therefore the problem of determining all possible forms of the
sub-group K is equivalent to that of finding all the sub-groups of the
.general homogeneous linear group in n variables which are of order
p"—1, and all of whose operations displace all the p"—1 symbols in
terms of which the group can be expressed transitively.

Thursday, March 8th, 1894.
Mr. A. B. KEMPE, F.R.S., President, in the Chair.

- Mr. Adam Brand, M.A., Fellow of Pembroke College, Cambridge,
was elected & member. Mr. F. W. Hill, M.A., and Major Hippisley,
R.E., were admitted into the Society.

The following communications were made :—

Groups of Points on Curves: Mr. F. S. Macaulay.

On a Simple Contrivance for Compounding Elliptic Motions :
Mr. G. H. Bryan.*

On the Buckling and Wrinkling of Plating supported on a
Framework under the Influence of Oblique Stresses: Mr. G. H.
Bryan.

On the Motion of Paired Vortices with a Common Axis: Mr.
A. E. H. Love.

On the Existence of a Root of a Rational Integral Equation :
Prof. E. B. Elliott. ‘

¢ For an account of this contrivance, see Nature, March 22nd, 1894, p. 498.
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The following presents to the Library were received : —

¢ Vierteljahreschrift der Naturforschenden Gesellschaft in Ziirich,” 38¢r Jahr-.
gang, Hefte 3, 4 ; Zurich, 1893. ’

¢¢ Beiblitter zu den Annalen der Physik und Chemie,””” Bd. xvmr., St. 2;:
Leipzig, 1894.

¢ Proceedings of the Royal Society,”’ Vol. rrv., Nos. 330, 331.

¢ Jahrbuch iiber die Fortschritte der Mathematlk ! Bd. xxmr., Jahrgang 1891,
Heft 1; Berlin, 1894.

‘¢ Proceedings of the Royal Society of Edinburgh,’” Vol. xrx., Session 1891-2.

¢ Nyt Tidsskrift for Mathematik,”” A. Fjerde Aargang, Nos. 7, 8; B. Fjerde-
Aargang, No. 4; Copenhagen, 1893.- '

¢ Mittheilungen der Mathematischen Gesellschaft..ih Hamburg,”” Bd. m.,
Heft 4.

D’Ocagne, M.—*¢ Abaque général de la Trigonométrie Sphérique,’’ pamphlet.

¢« Berichte iiber die Verhandlungen der Koniglich séichsischen Gesellschaft der-
‘Wissenschaften zu Leipzig, Math. Phys. Classe,”’ 1893, 7-9.

¢t Jornal de Sciencias Mathematicas e Astronomicas,’”” Vol. xr1., No. 6; Coimbra,
1894.

‘“Bulletin des Sciences Mathématiques,” Tome xvnr., Janvier, 1894 ; Paris.

Macfarlane, A.—‘‘On the Definitions of the Trigonometric Functions,” 8vo ;.
Boston.

¢ Bulletin of the New York Mathematical Society,’”’ Vol. mr., No. §; February,
1894.

‘“ Rendiconti del Circolo Matematico di Palermo,’’ Tomo vr1., Fasc. 6 ; November,.
December, 1893.

¢ Atti dells Reale Accademia dei Lincei—Rendiconti,”” Sem. 1, Vol. 1x., Fasc..
2, 3; Roma.

¢¢ Journal de I'Ecole Polytechnique,’” 63¢me Cahier ; Paris, 1893.

‘¢ Educational Times,”” March, 1894.

‘¢ Journal fiir die reine und angewandte Mathematik,”” Bd. oxm.,, Heft 1;.
Berlin, 1894.

¢ Annals of Mathematics,’” Vol. vor., No. 2 ; University of Virginia.

¢ Indian Engineering,’’ Vol. xv., Nos. 3-6.

¢¢ American Journal of Mathematics,”” Vol. xvr., No. 1; Baltimore.





