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1. Introductory.

Most of the groups of finite order which occur in connexion with
problems of higher analysis can be defined by means of congruences.
This is true, for example, of the group of the modular equation, and
of the groups on which the division of the periods of the hyper-
elliptic functions depends. In his standard treatise (Traite des
Substitutions et des Equations Algebriques) M. Camille Jordan has
investigated at length the more important properties of the general
linear group, denned by sets of congruences of the form

x[ s

x\ = aMx, + bHxt+... + cM

where the coefficients are ordinary integers.
VOL. XXV.—NO. 482. I
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The group of the modular equation, which is isomorphous with the
general linear group when the number of variables is two, has formed
the subject of a large number of memoirs; but it was first
exhaustively analysed in a paper by Herr J. Gierster (Math. Ann.,
Vol. XVIIL), in which the order and type of all possible sub-groups
contained in the modular group for a prime transformation are com-
pletely determined. Though the congruences defining the groups
dealt with in these investigations involve only real coefficients, both
the authors mentioned find it of great advantage to introduce in their
discussions the imaginaries which Galois* first used in analysis.

If these imaginaries are introduced in the congruences defining the
groups, a new class of groups arises, altogether distinct from those
defined by congruences whose coefficients are real integers ; that is to
say, the simple groups occurring in the composition-series (Beihe der
Zusammensetzung) of these new groups are new simple groups. In
the present paper some of the more important properties of the
fractional linear group to a prime modulus, i.e., the group defined by

z = ——^ (modjp, prime),

when a, /3, y, h are any rational functions of the roots of an irre-
ducible congruence of the n"1 degree (modp), are investigated. It is:
shown that in this way new simple groups of orders 2" (22n—1) and
\pn (ptn — 1), p an odd prime and n any integer, are defined; the
latter being in many respects closely analogous to the group of
the modular equation. The orders of the separate operations of the
groups and their distribution in conjugate sets are determined, and the
order and type of some of the simpler sub-groups. For the case of
p = 2, a complete discussion is given of all possible types of sub-
group ; to carry this out, for p an odd prime, would probably
necessitate the separate treatment of each value of n.

In two memoirs in Liouville's Journal, 1860-1, M. E. Mathieu has
shown the existence of the triply-transitive group, called 0 in this
paper, of which the simple group of order \pn(pin—1) is a self-
conjugate sub-group. These memoirs deal, however, in the main,,
with the formation of functions which are unaltered by the operations
of transitive groups, and the nature and properties of the groups
themselves are not entered upon.

• Cf. Liouville'a Journal, 1846, p.- 381. Galoia' papers have also been printed
Kcparatcly in a German translation by J. Springer, Berlin, 1889. Cf., also, Sorret,
Court d'Algibre Hup., Vol. n., p. 179, and Jordan's work mentioned above, p. 14.
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In a subsequent paper the author hopes to deal with the simple
groups that arise in connexion with systems of congruences involving
n variables when the coefficients are imaginaries.

2. Definition and Order of the Groups.

Let x be a primitive root of the congruence

/" ' - ISO (modjj),

so that x satisfies an irreducible congruence of the the form

x" + a1a;"-1 + ...+a,, = 0 (modjp),

where a,, ... a,, are real integers.

Then the pn quantities

a 1 ar l +o ,af -»+. . .+« . (A),

where av a2, ... a,, may have any of the values 0,1, 2, ... p— 1, are all
incongruent, and it is known that in a proper order they are the
same as the series of quantities

o,«, A .„ »pB-1.
If, now, a, /3, y, $ are any four of these quantities, such that

at-(Sy & 0,

the system of congruences z = ——^

form a group; for the result of combining any two congruences of
this form is a third congruence of the same form.

The congruences

,' s«£±fi and ,'-.
yz+h ni

are identical, and it may therefore be assumed that the determinant

of the substitution is either unity or a determinate quadratic non-
residue, which may conveniently be taken as x.

Since . z = —-£ and z = ^
+

and z ^
yz + O —yz—d

are not distinct substitutions, the order of the group will be one half
I 2
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of the sum of the number of distinct solutions of the two separate
congruences a 3 _ / S y s j

and al—/3y = x.

In the first of these congruences, if a is zero, 8 may have any one
of the pn possible values, and /? and y satisfy

This congruence has clearly^"—1 distinct solutions, and hence the
number of solutions when a is zero is pn (y—1).

If a is different from zero, and $ such that

then |3, y have 2pn—1 sets of values; while, if

«a^i,
/?, y have pn—1 sets of values, as in the first case.

Hence for each finite value of a there are

2pn—l + ( p n - l ) s = i ?
t o

solutions of the congruence.

The total number of solutions is therefore

pn (pn-l) + / " (2>n-l) =pn (P2n-1).

I t is easy to show that the second congruence

aS—jSy = x

has an equal number of solutions, and therefore

is the order of the group.

The order of the group may also be simply determined as follows.
The substitutions of the group permute the pn + l symbols consisting
of the set (A) with oo among themselves. If x,, xv xt1 x'u a&f a£ are
any six of these symbols, the substitution

Z—Xj Xj — Xj __ Z — Xy Xt — Xt

z'—x% Xz—x[ z—xt xt—xl

is evidently a substitution of the group, and it replaces the three
symbols JE,, a;,, xt by x[, a&, x'3 respectively. The group is therefore
triply-transitive in the jp"+l symbols, and its order is therefore
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divisible by (pn+l)pn(pn—1); while, since it clearly contains no
substitution, except identity, which keeps more than two symbols
fixed, the order must be equal to this number.

3. The Generating Operations.

It will now be shown that the group can be generated by the
combination and repetition of the three substitutions

a' = ^—, z' = z+1, z = xz,
z

which may be conveniently represented by the symbols T, 8, X.

If 8 be transformed by X*, the resulting substitution X^SX* is
given by the congruence z' = z+x*

Let now S or z = ??+£
yz+S

be any substitution of the group; then i may be so chosen that

ff
i s of t h e fo rm z' = .• • • .

yz + S
It follows that 2X-*SX'T is given by

&ndj may then be so chosen that ZX^SXiTX-'SX? or

= yz+t
z -

is the same as z = - ^ - = atz.

Hence any substitution of the group can be expressed in the form

and the three substitutions T, 8, X are therefore, as stated above,
generating operations of the group.

It has been seen that one half of the substitutions of the group
have unity, or a quadratic residue, for their determinant. These
evidently form a self-conjugate sub-group, and it may be shown that
the generating substitutions of this sub-group are T, 8, and X};
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indeed, the previous proof will hold, as it stands, so soon as it is*
shown that z> s 2+fl,<

can be formed from these operations, whatever x* may be. Ndw,
every operation of this form in which x* is a quadratic residue may
be formed by transforming 8 by the powers of X*; and, by combining
these operations, every operation of the above form in which x* is the
sum of any number of quadratic residues may be formed. But among
these quantities non-residues must occur, for, if unity be added in
turn to every quadratic residue, the sums are all different, and unity
does not occur among them.

When p = 2, there are no quadratic non-residues, for the two
solutions of the congruence

xt = x'2 (mod 2)

are congruent with each other, and therefore every one of the 2"
quantities (A) is in this case a quadratic residue.

In calculating the order of the group in this case the congruence

a$—f$y = x (mod 2)

does not occur. On the other hand, o, |S, y, B and —a, —/3, — y, — d
are not now different solutions of the congruence

aS-/3y = 1 (mod 2),

so that the order of the group is the total number of solutions of this
congruence, viz., 2" (2**—1). In this case also there is evidently no
self-conjugate sub-group of index 2, corresponding to the one just
referred to when p is an odd prime-

It will be convenient, to avoid repetition, to deal with the case
p = 2 by itself, after considering the general case of p any odd prime.
In what follows the triply-transitive group of order pn (pin—l) will
be referred to as the group 0, and the sub-group of order \pn (pln—1)
as the group H. It will also be a useful abbreviation to speak of
the substitution defined by the congruence

_ az+(S
~ yz + 8

as the substitution az+'Z.
yz+i
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4. On the Orders of the Operations of G, and their Distribution in

Conjugate Sets.

When G is regarded as a triply-transitive group in pn + 1 symbols,
its operations either change all the symbols, all but one or all but
two. Those that keep either one or two symbols fixed are necessarily
regular, as otherwise their powers would keep more than two symbols
fixed. On the other hand, some of those that change all the symbols
may be.such that their squares keep two symbols fixed; otherwise
they also must be regular. Since the group is triply-transitive, there
must occur among the substitutions conjugate to a substitution which
contains a given transposition substitutions containing any other

chosen transposition. If now the substitution ~ transposes
yz + o

0 and co, then a = 5 = 0, and the substitution is therefore necessarily
of order 2. Hence irregular substitutions, such as those suggested,
cannot occur, and all the substitutions of G are regular.

The sub-groups which keep each one of the pn + l symbols
successively unchanged are all conjugate, and that which keeps oo
unchanged may be taken as their type.

This is clearly the group of order pn (p" — 1) which is generated by

z = z +1 and z = xz.

It is evident that this group contains the group of order p'\

z = z, z' = z + l , z'= z+x, ... 2* = z+a/ '"1,

self-conjugately. Hence this is the type of the single conjugate set
of groups of ox'der pn, which according to Sylow's theorem is con-
tained in G ; and their number is pn + l. This sub-group is such that
all its operations, except identity, are of order p, and are permutable
with each other.

Since X~'SX' is the substitution z+.x*, the pn—1 operations of
order p form a single conjugate set within the sub-group which keeps
oo unchanged, and therefore the (pn + l)(pn — 1) operations of order
p contained in the group G form a single conjugate set. The
remaining operations of the sub-group keeping oo unchanged (which
all keep one other symbol fixed) consist of operations conjugate to xz
and its powers, and therefore m can always be chosen so that any
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operation of the group which keeps two symbols unchanged is conju-
gate to xmz. Since the first power of x which is congruent to unity
is the (pn— l)to, the order of xz or X is pn— 1; and therefore the
order of every operation which keeps two symbols fixed is a sub-
multiple of pn—1, while every such operation is a power of an opera-
tion of order pn—1.

Since the operations which change all the symbols are regular,
their orders must be sub-multiples of y + 1 ; and, in close analogy
with the operations which keep two symbols fixed, it may be shown
that among the operations changing all the symbols there are
operations of order jp" + l» while every operation changing all the
symbols is the power of an operation of order pn + l.

Thus, if the substitution

z' ~

is thrown into the form

z'—v z—v

X is given by X'+ ( 2 - (°+%

Now the coefficient of X in this congruence can take all possible
values, for, when

\ J' may be any quadratic residue, and, when
ad—(iy

aS—fty = x,

it may be any quadratic non-residue.

Now the congruence X*—a'X + 1 = 0

is reducible when j can be found such that

and, if this congruence can be satisfied at all, it can only be satisfied
in one way, for

gives at once a? = xk or x~k.
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For all other values of x* the congruence is irreducible. But

n (\»_
0

Those quadratic congruences which are reducible give the quadratic

factors of X*"""1—1, and the factors X—1 and X+l of X5"4"1 — 1 ; and
therefore the irreducible quadratic congruences give the remain ing-
factors of X p " + 1 -1 .

Now, since X ^ " " 1 - ! = 0

has primitive roots, Xp>+1—1 = 0

must also have primitive roots.

Hence among the quantities X, defined by the irreducible con-

there must be some for which the first power of X which is congruent

to unity is the (pn + l)th. There are therefore operations az *; »
yz+o

whose order is pn + 1 , since the order of the operation is equal to the-
index to which the corresponding X belongs.

If *f is transformed into %—% by any substitution of deter-
yz + 6 yz+S

minant unity, it is well known that

a' + 3' = a + S and oT-jS'y' = ad—/3y,

and this result is still true when the transforming substitution has-
determinant %, if the transformed substitution —; be brought inta>

yz+d
its standard form so as to have unity or x for its determinant.

It may, however, be further shown that for the group O all the
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substitutions for which a +5 and ad—fiy have given values form a
Az-\-B

single conjugate set. Thus, if - — - be the transforming substitu-
te-f- 1)

tion, a', /3', y\ & are given by

Aa+By =

Oa+By == y'A + VC, 0/3 + 2)3 =

and, since here AD—BO may be either 1 or x, it is clear that, except
when a = 8 = 1 and /3 = y = 0, a' and /3' may be chosen arbitrarily,

and therefore that every substitution a , ,,, for which
ys+d

a' + 3'=a + a and a'l'-fi'y' S o5-/8y,

is conjugate to ^—^ •
yz+o

Now, the multiplier X of a substitution 2 of order p" 4-1 has been
shown to satisfy an irreducible quadratic congruence of the form

and the multipliers Xs, X8, &c, of its successive powers satisfy similar
congruences. If Xr satisfied the same congruence as X', then

\ = x,

and hence, since X is a primitive root of the congruence

The. multipliers . of successive powers of 2, with the excep-

tion of the ^Cp" + l)th, therefore satisfy -̂jf— different irreducible

quadratic congruences of the above form. But this is the total
number of such congruences, and therefore among the powers of 2

all possible values of ^ — ^ - , for substitutions whose orders are sub-
ao—(3y

multiples of jp" + l, occur. Combining this with the previous result,
it follows that every operation changing all the symbols is conjugate
with a power of an operation of order pn +1 , and is therefore itself a
power of an operation of order pn + 1 .

The operations a- ^ and ~az~P being identical, the result just
yz+o —yz—o

proved may be stated in the form that all operations for which
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.-(a-l-3)1 and eiS—(3y have given values constitute a single conjugate
set of operations.

vn —-1Since (a + 5)1 may be zero, or any one of the *—-— quadratio

residues, while al—fiy maybe either 1 or a*, there must be pn + l
conjugate sets of operations, exclusive of identity.

This discussion of the orders of the operations of 0, and their
distribution into conjugate sets, may be applied to simplify con-
siderably the corresponding investigation for- the group H.

5. On the Distribution of the Operations of H in Conjugate Sets.

The cyclical substitutions of p" + l and pn—l symbols that O
contains are odd substitutions, i.e., substitutions that are equivalent
to an odd number of transpositions. Hence the self-conjugate sub-
group H of index 2 consists of the even substitutions of 0.

It follows at once that all the substitutions of order p contained in

0 belong to JET, and that operations of 0 of orders *— and *-

will belong to H when p and v are even.

Hence the operations of H which keep no symbols fixed have for
U I 1

their orders sub-multiples of * 1~ , and every such operation is the
2

power of an operation of order % *-; while the operations which
2

keep two symbols fixed are powers of operations of order ^ ~~ .
2

It is not, however, now the case that all the operations for which

(a + 3)1 is the same form a single conjugate set. For, if the substitu-

tion z+lia transformed into z+xl by 2fLXc

yz+o

a = Sx* and y = 0;

but tt$ = 1;

and therefore x* must be a quadratic residue.

The operations of order p therefore fall into two conjugate sets,
each containing | (p2n—1).

If, now, — ^ j be any substitution whose order is a sub-multiple of
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? J" , and if this be transformed into af \, by z , by combining-
& yz-\-o Cz+D

the first two of the equations for the transformed coefficients already
given with

it is easily shown that

Now, /3+ -pr (5—a) — —j- y cannot vanish for any value of — , for,

when equated to zero, it would give the fixed elements of the opera-
tion, and no elements remain fixed; and, when the pn different possible

values of —=- are successively substituted for it, this expression will

take **—=— different values, since the congruence

will always have two and only two roots, and for one value of x' these-

will be equal. Moreover, there are only * ~ quadratic residues, so-

that the expression in question can, by suitably choosing -=-, be made
either a residue or a non-residue.

It follows that, when all possible values are given to 0 and JD,

can take every possible value except zero.
Hence, when a is chosen arbitrarily, /3' may have every possible

value except zero. But since

a T - j 8 V = = l and a '+a' = 3',

where X ' - a / A + l s O

is irreducible, the value /3 = 0 is in any case inadmissible.
It follows from this discussion that all the.operations which keep-

no symbols fixed, and for which (a + £)' has the same value, form a
single conjugate set.

A closely similar discussion of the congruence connecting a', j3', 0, JD*
leads to the same result for operations whose orders are sub-multiples-
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There are, therefore, two conjugate sets of substitutions for which

one set of every other possible value. The total number of

conjugate sets, exclusive of identity, is *"T .

6. Proof that M is a Simple Qroup.

The proof which Herr Weber gives in his Elliptische Functionen
und Algebraische Zahlen that the group of the modular equation is
simple may be applied directly, with suitable modifications, to show
that the analogous group H is simple. The following proof of this
property, founded on the discussion just given of the distribution of
the operations in conjugate sets, is, however, considerably shorter.

Let K be a self-conjugate sub-group of H, and suppose first that K
contains an operation of order p. I t must then contain the whole of
one of the two conjugate sets of operations of order p, and therefore
the whole of both sets, since by a previous remark a sub-group which
contains all the operations z+xi where x{ is a quadratic residue must
also contain those where x* is a non-residue. The group K therefore

contains the two operations —-—̂J— and z+x\ where o, y and x*
yz + Z—a

may be chosen arbitrarily. The result of combining these two is

yz + 2—a '

and the sum of the first and last coefficients in this substitution,
namely, 2 + yx\ may be made anything whatever.

Hence, in this case, K coincides with H.
Suppose now that K contains a substitution keeping two symbols

fixed, say —;. It will then contain -^, where
x yz-\-o

These combined give *&»+fa~\

and, if now a = «-', $ = x\ y = 0, /3 §£ 0,

this substitution is z+(5x~l,

which is of order p. Hence, again, K coincides with H.
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Suppose, lastly, that K contains an operation, displacing all the
symbols, for which , • s= < #

then K contains - and ., and these combined give z—2xi
>

—z —z+x%

an operation of order p.' Hence, once again, K coincides with H.
It follows, therefore, that, since S contains no self-conjugate sub-

group different from itself, it is a simple group.

7. On Hn regarded as a Sub-Group of Sm.

If a suffix be now used to denote the degree of the irreducible
congruence on which the coefficients of the substitutions of 0 or BT
depend, it is immediately clear that J9Ty will contain Hn} if p

n—1 is a
factor of pK— 1. For, if

and if y is a primitive root of the congruence

then ^ is a primitive root of

s^-lsO,

and the group Hn is derived from

y *

The sub-group of HN with which J9T,, is pennutable may be deter-
as follows. If y - . a substitution of

yz + B

by any substitution ^ r ^ o f E»>then

Uz+IJ

mined as follows. If y - . a substitution of Hn is transformed inta
yz + B

- J B J y

y' = CDa-&p +I?V -OD8,

V =-BCa+AOP-BDy+AI)t.

> where AD—BO = 1, is pennutable with Hn, if, when
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these congruences are applied to the three generating substitutions:
of Hm the values of a', /3', y', V obtained are all powers of j / \

The respective values of a, /3, y, 5 are

0, - 1 , 1, 0,
1, 1, 0, 1,

3f, 0, 0, j r x ;
and therefore AO+BD, A'+B\ C'+D", 1-40, A\ 01, ADtf-B0y-\
AB(y*—y-x), OB (f—y~x), and ABy^—BOy* are powers of y\
Hence, since the sum of any number of powers of y* is again a power of
f, it follows that A\ B*, C%, D\ AB, AO, AD, BO, BD, OD must all of
them be powers of T/\ If, then, X be odd, A, Bt 0, B must themselves
be powers of y*, and the group Hn is only permutable with itself;
if, however, X be even, the coefficients may also be of the form yw*»>\

Now, if ——v is any substitution of JSn, -
a^.f—v i> is & substitution

yz+S yy~ixz+ey~*x

of the second kind which transforms Hn into itself, and in this way
each such substitution is obtained once and once only. I t follows
that, when \ is even, the order of the group with which HH is per-
mutable is twice the order of Hn. This group is evidently On.

Now jpn—1 will only divide pK— 1, when n divides N and X is odd
Nor even according as — is odd or even. The group Hn is therefore

' w , "
one of a conjugate set of sub-groups of J3",u whose number is

ovone half of this number according as s is odd or even. In particular
# , the group of the modular equation is always contained as a sub-
group in Hn.

Consider now the case of a = 2, and Hn as a sub-group of Hin.
>3ince^)n+l is not a factor of pin+l, none of the operations of Hn

displace all the symbols of H2n; and therefore any operation of Hn

of the order'ff 7" occurs as the pn—1 power of some operation of H2u

v2n—1 •

of ox'der Vrj— which keeps two symbols fixed. But the cyclical

sub-groups of Hu of order *—-— are all conjugate to the sub-group

arising from - ^ ; and therefore JHTn must contain operations of order
¥ p which are conjugate, within H2n, to "——. I t follows that
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-among the groups conjugate to Hm within H2M which are all
isomorphous with H,,, there must be one at least containing the

operation _

A group JB*m contained in H2n, which is isomorphous with #„, and

PI
which contains the operation -̂  , consists of all operations of the
form V

, («a--py -1) .

for which o', j3', y', 5* are given in form by

«' = r+s (f^-y-*"*1), P = u + v

8' = r - s ( / ^ - y - ^ 1 ) , y' = -u+v

where r, s, w, v are powers of yp .

That these operations actually form a group may be verified at
once by forming the operation which is compounded of any two
operations of the above form, when it will be found that the
coefficients in the resulting operation are again of the same form.
That the group thus defined may be obtained by transforming Hn by

an operation may be proved as follows.
\jz-\-D

If the formulae given at the foot of the last page but one for a, /3',
y', & are equivalent to the above-written forms, the quantities r, w,

and v (/>-1-*Tpn-1) must be given by

r =

It has therefore to be shown that an operation "*" can be

found, such that, when r, u, s, v are given powers of x satisfying

rJ+tt»-(f i
l+v«)(/-1-y-1)"+1)J = l,

the above congruences determine o, /3, y, 8 as powers of x or j / p B + 1 .
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Now it has been shown above that, since yv ~l is a primitive root

•of the congruence XP"+I_I = o

it must satisfy an irreducible quadratic congruence

as^-ate '+ls-O,

where x = yv + 1

is a primitive root of Xp -1— 1 = 0.

It follows that yv ~1 + y~p'+l is a power of x, and therefore so also
is (yv~1—y~v+1y, which will be called ?. On the other hand, £ is
clearly not expressible rationally in terms of x.

If, now, m and n are any powers of x, the expression

in + nl

includes, with zero, p2n incongruous values; and therefore every
integral power of y can be expressed in this form.

Since |* is a power of a;, so also is (m-J-n£)(m—n£), and
m—nt are therefore either both even or both odd powers of y.

Suppose then that

0s = m-n*, D» = m'-n%

whore m+n£, m'+»'{ are odd powers of y, and m8—n*l?t vi^—ii*!?
are odd powers of x. They can obviously be chosen so in a variety
of ways satisfying

AiDi+BiGi-2ABGD = (AD-BO)* = 1.

From these forms it at once follows that -4* + 0 s and fi* + D' are
powers of x, while A%—C*t B*—D8, AG and BB are, each of them,
powers of x multiplied by £.

Also ( ) £ ,

and (CD-AB)(GD-MJB) = - 2 (m'n + vm1) (,

while (0D-AB)(AD-BC) = AG

is also a power of x multiplied by 4; and therefore GD—AB is a
power of a; multiplied by $, while GD+AB is a power of a\ The
values assumed for A, B, 0, D satisfy therefore all the conditions

VOL. xxv.—NO. 483. K
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given at the beginning of this investigation, and the group whose
operations are of the form

(r + sl) z+u + vl

is obtained from the transformation of Hn by .
Cz+D

The operation z does not belong to H3n, since A, B, C, D are

not rationally expressible in terms of y; it will, however, evi-
dently be an operation of the group Hia\ and the group H'n is
therefore conjugate with Hn within Htw but not within jET2n. It
necessarily follows that H2n contains at least two different conjugate
sets of sub-groups, each isomorphous with Hn.

The values

of which the first has been shown to be a power of x, give the opera-
p"-i

tion * z contained in H'u.

This transformed form of the group may be used to bring out the
analogy .between the cyclical sub-groups of orders j (pn— 1) and
i Cp" + 1). Thus in the original form of the group a typical cyclical

sub-group of order % (pn— 1) is that arising from —. This keeps
3 5 "

the symbols 0, GO unchanged, and can therefore only be trans-
formed into itself by operations which either keep 0, co unchanged,
or by operations which interchange them. The former are the
operations of the sub-group itself, and the latter are the |(p"—1)

—x*operations of order 2 of the form —T- contained in if,,. Each of the
35~*Z

latter transforms any operation of the cyclical sub-group into its own
inverse; and the i(i>"—1) operations of order 2, taken with the
operations of the cyclical sub-group, form a sub-group of dihedral type
of order p"—1.

In the transformed group Wn a typical cyclical sub-group of order
yVn'~lz.

is that arising from y Z»+i • Consider-ed as an operation
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in the group H2n, this keeps the symbols 0, oo unchanged, and there-

fore is only transformed into itself by the operations *—-. and ^—*- of
y y~f*

J3"to. Those of the former type which belong to Hn are the operations
of the cyclical sub-group itself, while those of the latter type are the
operations included under the form

where M«-»» ( / " ^ - S T ' " * 1 ) 1 = I.

This congruence has for its solutions

m = 0, 1, ... pn

and these correspond to the | (pn 4- J) operations

Finally, these ^ (̂ )" +1) operations of order 2, taken with the

if'1*cyclical sub-group arising from '—J~T, give a dihedral gix>up of
order pu + 1 . 2/

The sub-groups of tetrahedral type, and those of octahedral and
icosahedral types for the cases of pH = ± 1 (mod 8 and mod 5, x"espeo-
tively), the existence of Avhich Herr Giei'ster demonstrates in his
memoir for the case w= 1, may also be shown to exist in the general
case.

The complete discussion which is given in the following paragraph
of all possible sub-groups for the case p = 2 indicates the lines on
which a similar discussion may be carried out for the case of p an
odd prime j and suggests that the types of sub-group which have
been shown to exist, including those mentioned in the last sentence
probably exhaust all types that actually exist.
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8. On tJie Group 0, when p = 2.

The necessary modifications of the foregoing theorems with respect
to the omitted case of p = 2 are now very readily made, and it seems
hardly necessary to repeat proofs which are almost identical with
those already given.

As was shown in § 3, when n = 2, there are no quadratic non-
residues, and therefore all the operations of the group 0 of order
2" (22"—1) may be brought to the standard form in which the deter-
minant is unity. Considered as a permutation group of 2" + 1
symbols, the operations which displace all the symbols are all powers
of operations of order 2n + l, those which keep one symbol fixed are
all of order 2, and those which keep two symbols fixed are powers of
operations of order 2n—1.

The operations of order 2 form a single conjugate set, as also do all
the operations for which (a + $)* has a given value ; but here (a + 2)*,
including the value zero which gives the operations of order 2, may
have any one of 2" values, and there are, therefore, 2" different con-
jugate sets of operations, exclusive of identity.

The proof that JET, for p an odd prime, is a simple group will apply
exactly to show that G is simple, when p = 2.

It may also be shown, exactly as in the corresponding case for H,
that corresponding to each cyclical sub-group of order 2" + l or 2"—1
there is a sub-group of dihedral type of order 2 (2"-fl) or 2 (2" —1)
containing the cyclical group as a self-conjugate sub-group, and that
no cyclical sub-group is contained self-con jugately in any sub-group
of higher order than these dihedral groups. As regards sub-groups of
tetrahedral, octahedral, and icosahedral types, there can clearly be
none of octahedral type, since the groups contain no operations of
order 4. If n is odd, 5 divides neither 2" + l nor 2"—1, and hence,
for an odd n, G cannot contain an icosahedral sub-group. If, how-
ever, n is even, Gn contains G% as a sub-group, and this, being of order
60, is necessarily an icosahedral group. Since the icosahedral group
contains tetrahedral sub-groups, Gn, when n is even, will have sub-
groups of tetrahedral type. Finally, when n is odd, 2" + l is divisible
by 3 and not 2n—1, and, since a sub-group of order 4 cannot be
transformed into itself by an operation changing all the symbols, a
tetrahedral sub-group, which must contain a group of order 4
self-con jugately, cannot exist in this case.

It will now be shown that the sub-groups already enunciated,
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together with the sub-group that keeps one symbol fixed, and its
sub-groups, and the sub-group of type C?n», where ri is a factor of n,
exhaust all existing types. This will be proved by a modification
and extension of the process used by Herr Gierster in his often
referred to memoir in discussing the corresponding question for the
modular group.

Let F be any sub-group of Gn of order 2m<jr' = g, where g' is
a factor of 2'"—1, and let 2 be an operation of odd order pt

contained in F, there being no operations in F of higher order
t h a n p , . Then the sub-group arising from £ is permutable with-
in F, either with itself or with a dihedral group of order 2pj,

and i t therefore forms one of a set of either -*- or -"- conjugate

sub-groups. No two of these sub-groups contain a common operation,
for, if they did, all their operations would be common. Hence,
omitting identity from each such sub-group, they contain in all

LEi 13. or ^——" different operations. Let, now, 2 ' be an
Pi *P\

operation of odd order p2 contained among the remaining operations,
there being no remaining operation of a higher order than pr Then,
as before, the set of sub-groups conjugate with the cyclical sub-group
arising from 2 ' contain either ^-^ — or ---* —- different opera-

tions of odd order, and no one of these can coincide either with
another of the same set or with one of the previous set. If this pro-
cess is continued till the operations of odd order are exhausted,
there remain only operations of order 2. Any one S of these is
permu table with a sub-group of order 2"', and therefore forms one

of a set of •£- or g' conjugate operations. If among these g' opera-

tions there occurs none. of the group of order 2m with which 8 is
permutable, then each operation, except identity, of this group will
give rise to a similar Bet, no two sets containing a common operation,
and the number of operations of order 2 contained in F will be
(2'" — 1) g'. I t is necessary therefore to determine in what cases
the sub-group of order 2m contains operations conjugate within F.

The general type of group of order 2m contained in G is the group
arising from the m permutable operations of order 2,

where ax, a,, ... am are any m chosen integers from 1, 2, ... 2"—l.
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No operation of this sub-group can be transformed into another,
except by the operations of the sub-group arising from

2 + 1 and xz.

Hence F must contain the operation x% or an operation conjugate
to it within the sub-group which keeps oo fixed, if the sub-group of

order 2m contains conjugate operations. Now, the powers of

2"—1
x'z transform z+x"1 into a set of conjugate operations of the

same form z+x\ and these must all be contained in the sub-group of
order 2m, as otherwise 2m would not be the highest power of 2
dividing g.

Hence, if a is the symbol that any sub-group of F of order 2'" keeps

fixed, and if is the order of the highest operation of odd order

contained both in F and in the sub-group keeping a fixed, the opera-
tions of the sub-group of order 2m will be conjugate in sets of
2» \ 2" 1

. This involves that is a factor of 2n>—1, and is also one
v v

of the numbers jp,, p3, . . . . If, then,

2 n - l
P

the number of operations of order 2 contained in F is
> V) g'

'-*-

Adding together the numbers of different operations thus obtained,
including the identical operation, there results

where each s is either 1 or 2.

Hence g =

If m is zero, so that F contains no operations of order 2, each $
must be unity, and the relation becomes

Pi
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Now g is a positive integer, and each p is an odd number. Hence
in this case there can be only one term under the sign of summation,
and

9 - Pv
It follows that the only sub-groups not containing operations of
order 2 are the cyclical sub-groups.

Again >h
siPi

so that, when m is not zero, there can be at most two terms under
the sign of summation; and, if there are two terms, s, = s, = 2;
while, if there is one term only, sl may be either 1 or 2.

With one term only, if sx = 1,

1 - 1 _ 2 ' " - l
9 i>i 2 > r '

where pr is either unity or pv

If pr ?=pv g = 2mp1, and F is a sub-group of the sub-group that
keeps one symbol fixed.

2mv
If pf — 1, ——• "' — must be an integer, and this can only be

I —{I —i)Pi

so when pl=xl. F is then a sub-group of order 2m.
With one term only, and s, = 2,

1 = 1 1 2"1-!
g . 2 + 2 P l 2 > '

and, since pt is a factor of 2'" —1, g can only be an integer
leading again to a sub-group of order 2'".

If pr = 1, m must be unity, and V is a dihedral group of order 2px.
When there are two terms under the sign of summation, both st

and st must be 2 that g may be a positive integer. Hence

g 2Pl 2Pi 2"p, '

where pr is either 1, px or p2.

Since pu pt are odd integers, g cannot be positive if p, is unity, and
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therefore it may be taken as pv Then

9

If q is the G.C.M. of pl and piy so that

Pi = IPn Pi =
where p'it p[ are relatively prime, then

The numerator of this fraction is prime relatively to 2™p[pi, and
hence, if g is an integer,

i(
a factor of q.

The general values of p\ and <p'2 which satisfy this equation are

and therefore px = g-g'+kq (2m~l—1),

Now 2?, is a factor of 2'"—1, so that kq cannot be greater than 2.
Also q is odd and is therefore unity, as also must therefore be q.
Hence ,„ .

where k can only be 1 or 2, and must be 2 since px is odd. Then

Also, since px is a factor of 2n—1, m must be a factor of n. Hence
this last possible case leads to the sub-groups of type G^t where »' is
a factor of n.

9. On certain Special Cases of the Groups G and H.

There are three values of pn for which the corresponding groups
are already known. When

„« __ OJ

G is a simple group of order 60, and must therefore be a form of th&
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icosahedral group. Thus a new and very simple specification is-
obtained for this group, as consisting of all substitutions of the form

~~ + 8 Wmod2),

where the coefficients are either 0, 1, x, or a?; x being such that

aj*+a;-|-l==O (mod 2).

When pn = 25,

O is a simple group of order 504. This group was first discovered by
Dr. Cole (American Journal of Mathematics, Vol. xv.).

When p" = 3J,

H is a simple group of order 360, and must therefore be a form of
the alternating group of 6 symbols. G is a triply-transitive group-
of 10 symbols, order 720, containing H self-conjugately.

It is curious to notice that, as is well known, the symmetric group
of 6 symbols, order 720, which also contains the alternating group
self-conjugately, can be expressed as a doubly-transitive group of
10 symbols ; so that there are two distinct transitive groups of 10
symbols, one doubly and the other triply transitive, both of order
720, and both containing the same doubly-transitive simple group of
order 360 as a self-conjugate sub-group.

10. On a Property of certain Transitive Groups.

The sub-group of G which keeps one symbol fixed is doubly
transitive in pn symbols while its order is pn (pn— 1). Now the
order of a doubly-transitive group in rtx symbols is necessarily
divisible b y m ( m - l ) , and it may be shown that, when it is equal to-
this number, m is the power of a prime, and moreover that, as has
been seen to be the case with G, the operations of the sub-group of
order w must all be permutable with each other. Thus, assuming
the existence of a doubly-transitive group in m symbols of order
m(m—1), its operations must displace all the symbols or all but
one ; and therefore the m—2 symbols into which a given symbol is
changed, by the operations of a sub-group keeping one symbol fixed,
are all different. Hence among the operations of the m sub-groups,
each of which keeps one symbol unchanged, there must be m—2
operations which change a given symbol a into another given symbol.
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b ; for each sub-group contains one such operation except those that
keep a and b respectively unchanged.

Now the group contains m—1 operations changing a into b, and
hence among the m—1 operations which change all the symbols
there is one, and only one, which changes a into 6. It follows, there-
fore, that these m—1 operations with identity form a sub-group of
order m, since the product of any two of them necessarily changes all
the symbols. This sub-gx»oup of order m is evidently self-conjugate.

If, now, P is any particular operation of this sub-group of order m,
and if A is any operation of the sub-group that keeps a fixed, the
operations A _ i p j

are clearly all different, for the symbols into which they change a are
all different. Hence the vi — 1 operations which change all the
symbols form a single conjugate set within the main group, and they
are therefore all of the same order. Since with identity these opera-
tions form a group, their common order must be a prime, and hence
finally m must be the power of a prime.

Since P is one of a set of m— 1 conjugate operations, the operations
permutable with P form a sub-group whose order is

m (m—1) -7- (in—1),

i.e., m. Hence every operation of the sub-group of order m is per-
mutable with every other, and the sub-group is therefore Abelian.

The type of doubly-transitive group of order pn(p"—l) which
appears as that sub-group of 0 which keeps one symbol fixed is not,
however, the only possible type. Thus Dr. Cole in his analysis of
the transitive groups of 9 letters (Bulletin of the New York Mathe-
matical Society, July, 1893) has shown that there are two such
doubly-transitive groups of order 82. All possible types may be
obtained by the following considerations. The sub-group of order
pn is generated by n permutable operations P u P,, ... Pn of order p.
Let 2 be any operation of the sub-group K that keeps one symbol
fixed, and let * - i p * _ p«ip«. po,,

so that S-1P?Pi;...P*n:S
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Since no operation of the sub-group K is permutable with any
operation of the sab-group of order p\ it follows that, if the ptl— 1
operations of this sub-group other than identity be transformed by
all the operations of the sub-group K in succession, a permutation
group is obtained which is holohedrically isomorphous with K. The
operations of this sub-group are, as the last equation shows, defined
by congruences of the form

x =

y =. (mod^);

z = anx + b,,y+ ...+nnz ,

and therefore the problem of determining all possible forms of the
sub-group K is equivalent to that of finding all the sub-groups of the
general homogeneous linear group in n variables which are of order
pn— 1, and all of whose operations displace all the p"—l symbols in
terms of which the group can be expressed transitively.

Thursday, March 8tk, 1894.

Mr. A. B. KEMPE, F.R.S., President, in the Chair.

Mr. Adam Brand, M.A., Fellow of Pembroke College, Cambridge,
was elected a member. Mr. F. W. Hill, M.A., and Major Hippisley,
R.E., were admitted into the Society.

The following communications were made:—

Groups of Points on Curves : Mr. F. S. Macaulay.
On a Simple Contrivance for Compounding Elliptic Motions:

Mr. G. H. Bryan.*
On the Buckling and Wrinkling of Plating supported on a

Framework under the Influence of Oblique Stresses: Mr. G. H.
Bryan.

On the Motion of Paired Vortices with a Common Axis: Mr.
A. E. H. Love.

On the Existence of a Boot of a Rational Integral Equation :
Prof. E. B. Elliott.

* For an account of this contrivance, see Nature, March 22nd, 1894, p. 498.
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The following presents to the Library were received:—
" Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich," 38er Jahr-

gang, Hefte 3, 4 ; Zurich, 1893.
"Beiblatter zu den Annalen der Physik und Chemie," Sd. xvm., St. 2;:

Leipzig, 1894.
" Proceedings of the Royal Society," Vol. uv., Nos. 330, 331.
" Jahrbuch iiber die Fortschritte der Mathematik," Bd. xxni., Jahrgang 1891,.

Heft 1; Berlin, 1894.
11 Proceedings of the Royal Society of Edinburgh," Vol. XJX., Session 1891-2.
" Nyt Tidsskrift for Mathematik," A. Fjerde Aargang, Nos. 7, 8; B. Fjerde

Aargang, No. 4; Copenhagen, 1893;
" Mittheilungen der Mathematischen G-eaellschaft.. in Hamburg," Bd. in.,

Heft 4.
D'Ocagne, M.—" Abaque g6n6ral de la Trigonom6trie Spherique," pamphlet.
" Berichte iiber die Verhandlungen der Koniglich sachsischen (Gesellschaft der

Wissenschaften zu Leipzig, Math. Phys. Classe," 1893, 7-9.
" Jornal de Scienoias Mathematicas e Astronomicas," Vol. si., No. 6; Coimbra,

1894.
"Bulletin des Sciences Mathdmatiques," Tome xvni., Janvier, 1894 ; Paris.
Macfarlane, A.—"On the Definitions of the Trigonometric Functions," 8vo ;.

Boston.
" Bulletin of the New York Mathematical Society," Vol. in., No. 5; February,

1894.
" Rendiconti del Circolo Matematico di Palermo," Tomo vn., Fasc. 6 ; November,.

December, 1893.
" Atti della Reale Accademia dei Lincei—Rendiconti," Sem. 1, Vol. in., Fasc.

2, 3; Roma.
" Journal de l'Ecole Polytechnique," 634me Cahier; Paris, 1893.
"Educational Times," March, 1894.
"Journal fur die reine und angewandte Mathematik," Bd. oxm., Heft 1;,

Berlin, 1894.
" Annals of Mathematics," Vol. vm., No. 2 ; University of Virginia.
"IndianEngineering," Vol. xv., NOB. 3-6.
" American Journal of Mathematics," Vol. xvz., No. 1; Baltimore.




