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XVI.—On Cases of Instability in Open Structures. By E. SANG, LL.D.

(Read February 7, 1887.)

In the course of some remarks on the scheme proposed for the Forth Bridge,
which remarks are published in the eleventh volume of the Transactions of the
Royal Scottish Society of Arts, I was led to enunciate, among other theorems,
one of a somewhat unexpected character, to the effect that any symmetric
structure built on a rectangular basis, having no redundant parts, and depend-
ing on longitudinal strain alone, is necessarily unstable. This theorem was
established by arguments restricted to the single matter under consideration;
it is one of an extensive class, and I now propose to discuss the subject from a
general abstract point of view.

The whole subject is evolved in the Avorking out of two inverse geometrical
problems and their corresponding mechanical applications. The relative posi-
tions of a number of points being prescribed, we may have to secure these by
linear connections; or, the lengths of these connections being given, we may
seek to discover the relative positions of the points. And we may have to
compute the strengths needed to enable these connections to resist strains
applied at the various points.

The relative position of tivo points is determined by the length of the
straight line joining them, and the material connection can only serve as the
medium for the equipoise of equal and opposite strains applied at its two ends ;
it can offer no resistance to stresses directed obliquely to it. The opposing
pressures may be directed inwardly so as to cause compression, or outwardly
so as to cause distension; the former is an example of unstable, the latter an
example of stable equilibrium.

The instability in the case of compression is familiarly exemplified by an
attempt to balance a load on the top of a walking-stick, or by the buckling of
a long, thin rod; stability can be obtained only by the use of something aside
of the straight line. In the case of distension we have to observe that no
member of a structure acts upon a contiguous member except by compression;
we do not pull an object toward us, we always push it; each link of a chain
pushes the other link; the pulling is internal to the links themselves. Every
case of stretching necessarily implies at each end compression changed first
into transverse strain and then into distension. This phenomenon, which, from
habit, we regard as simple, is indeed a most complex one, whose intimate
nature as yet surpasses our understanding. Hence it is that, beyond the
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abstract arrangement of the parts as represented by straight lines, there is the
problem, far more difficult, requiring much more constructive skill, of contriving
the manner of the junctions.

In general, the relative positions of three points, as A, B, C, are determined
by the lengths of the three lines AB, BC, CA, joining them two and two. A
pressure applied at the point A can be resisted by the linear members AB, AC
only when its direction is in the same plane with them, and they must be

enabled to offer resistance by pressures applied at
B and at C, which again, if they be not in the
direction BA, CA, must cause a stress on BC.
Hence we have here a system of six pressures in
equilibrium all having their directions in one plane.

Let a A and &B be the directions of the pressures
applied at A and at B, and let these be continued
to meet in 0 ; join also CO. According to the

Fig. i. known law of equilibrium, the strains on AB and
on AC are proportional to the sines of the angles OAC and BAO, which again

are represented by the doubles of the expressions^ Q and ; where-

fore, if we denote the strain on the member AB by the symbol AB, we have

nc^ o n e x a m m u l g fcne equilibrium at B,the equality A B - A B
 =^-"~CAT"

we find also AB• -jj$~ = c ^ • -Qg-, so that the direction of the pressure applied

at C must also pass through the same point 0.
Again, on comparing the pressure applied at A with the strain on AB, we

find
ABC AOC

whence

«A : AB ::

- r AOC
AO

™ ABC
AB

and it follows that the six expressions

BOA. AOC
aA- AO

==, COB.BOA - ^ AOC.COB
&B • ^ , cC . —

BO

P P ABC.BOA ^ ABC.COB
AB BC

CA-

CO

ABC. AOC
CA

are all of equal value.
On multiplying each of the first three by

AO.BO.CO
BOA.AOGCOB
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we get the equalities
— BO.CO

A
CO.AO -7= AO.BO

AOC BOA

that is to say, the three external pressures applied at the points A, B, C
balance each other just as if they had been applied directly to the point 0.

When computing the internal strains caused by given external pressures,
the area ABC occurs in every case as a division; if, then, the three points
were in one straight line, that is, if the area ABC were zero, the internal strains
would become infinitely great, unless the applied pressures were all in the
same line with them. Here we have the first and very well known example
of instability in construction.

If the point 0 be removed to a very great distance, the directions
aA, MB, cC of the external pressures become parallel as in fig. 2. The
intermediate pressure, in this figure MB, must be op-
posed to the direction of the others, its intensity being
the sum of those at A and C.

The relation of the strain on AC to the external
pressure at B is then given by the formula

_ — AX.CX
AC=6B. AP B Y ;

AO. HA.

so that if B were shifted along the line BX nearer to X, Kg- 2.
the strain on AC would be augmented in the inverse ratio of the new to the
former BX ; but the pressures aA, bB, cG, would still remain proportional to the
lines XC, CA, AX. Were B brought actually to X the strains would become
infinite.

It is much to be regretted that, in lesson books on mechanics, the beginner
is taught the properties of this impossible straight lever, without a hint of
caution in regard to it. The strains on the arms, even that upon the fulcrum,
are left out of view. In this way hazy notions are engendered; the load at A
is said to balance that at C, although both be pressing in one direction.

The relative positions of four points, as A, B, C, D, fig. 3, are in general
fixed by the lengths of the six lines AB, CD, AC, BD, AD,
BC joining them two and two ; these form the boundaries
of a solid, called in Greek tetrahedron, which may get the
English name fournib, shorter and quite as descriptive;
the potters call it crowfoot: it is the simplest of flat-faced
solids.

As in the triangle pressures applied at the corners can
balance each other only when their directions meet in one
point; so, reasoning by what is called analogy, we might infer that, of four

Fig. 3.
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pressures at the corners of a tetrahedron balancing each other, the directions
must all tend to a single point. But this inference does not hold good; it may
be that no two of these directions meet at all.

At each of the four points we have the equilibrium of four pressures,
namely, the external pressure and the strains on the members meeting there.
These strains can be computed when the direction and intensity of the applied
pressure are known.

Thus let us continue the direction d~D of a pressure applied at D until it
meet the plane of ABC in some point 0, and let AO, BO, CO be drawn. We
have then the equalities

DA DB DO
D0.ABC~DA.B0C DB. CO A "DC. AOB"

The points A, B, C and 0 remaining as they are, if D were brought nearer
to 0, the first of the above expressions would be augmented in inverse propor-
tion to DO, and if D were brought actually to 0, this term would become
infinite, the strains DA, DB, DC also infinite and the structure impossible.

When, in such an arrangement as fig. 3, the resistances at A, B, C are in a
direction parallel to dD, their intensities are proportional to the opposite
triangles, so that

dD _ aA _ hB _ cC
ABO ~ BOO ~ COA ~ AOB '

and thus the distribution of the pressure among the ultimate resistances is
independent of the distance DO.

In fig. 3 the point O is placed inside of the triangle ABC, and a pressure
applied in the direction <TD0 causes compression
in all the three members, DA, DB, DC. In fig. 4
0 is placed outside of the line AC, and, with

B
D

Fie. 4. Fig. 5. Fig. 6.

pressure in the direction dDO, the members DA, DC are compressed, while
DB is distended.

If here the point D were brought down to 0, the structure would take
the form of a plane tetragon ABCD, with its two diagonals AC and BD, as
shown in fig. 5. Such a structure can offer no resistance to pressures inclined
to its plane.

If the point D were on the straight line AC, as in fig. 6, it might seem that
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the five distances DA, AB, BC, CD, DB would suffice to secure the straight-
ness of ABC; but on consideration we perceive that the two triangles ABD,
CBD are merely hinged upon the common line DB.

In the cases of two, three, and four points, we have seen that the length
of every line joining them in pairs is needed for fixing the relative positions;
this rule does not hold for higher numbers. Thus, if a fifth point E be con-
nected with three of the four corners of the tetrahedron ABCD, its relative
position is determined, provided always that E be not in the plane of the three
points with which it is joined; so that nine lines suffice for five points. The
line joining Ewith the fourth point of the tetrahedron would be redundant.

In all such structures, three of the points, as A, B, C in fig. 7, must each
have four concurring lines, and the remaining two, D and E, only three; and
if no four of the five points be in one straight line, the system is self-rigid.

This rigidity will subsist although the two triple points D, E be in the
same plane with any one pair of the quadruple ones, as in fig. 8, which is
intended to show D, B, E, C as in one plane. The scheme then takes the

Fia 7. Fig- 8. Fig. 9.

appearance of a pyramid, having A for its apex, and the quadrangle DBEC for
its base. Thus the flatness of a tetragon may be secured by connecting each
of its corners with a fifth point not in the same plane.

Moreover, the system still remains rigid although the points D and E be
both in one plane with AB also. In this case DBE, the meeting of two planes,
must be a straight line, as shown in fig. 9. Thus we see that, for the establish-
ment of three points in a straight line, two auxiliary points must be introduced,
with seven additional linear members.

We have now got a possible straight lever DBE. In order to examine the
law of the balancing of pressures applied at B, D, E, we must trace out the
strains on the various members, and their equilibriums at the five junctions,
subject to the condition that there be no external pressure at A or at C. The
result of this examination is, that the strains on the members are eliminated;
that the directions of the applied pressures must all pass through one point';
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and that their intensities must be proportional to the sines of the opposite
angles,—this result being independent of the positions of the auxiliary points
A and C.

Does it thence follow that we may omit those points altogether ? Assuredly
not; for our whole investigation proceeded on the ground that each member
transmits from its one end to its other end the strain with which it is
accredited.

Each additional point needs for its establishment three new linear members,
so that in any self-rigid open structure, if n be the number of the points, there
must be Sn — 6 linear connections; this formula failing only in the extreme
case, n — 2.

Hitherto we have been considering the self-rigidity of structures, and may
now proceed to treat of the laws of stability in relation to the ground, taking
first the case of a self-rigid structure to be kept firmly in position.

In every case the support must be derived from points in the ground, which
points necessarily form by themselves a rigid structure, so that our problem
assumes the general form of " how to connect one rigid structure with
another." If / be the number of the points in the foundation, and n that of
those in the supported structure, we have in all / + n points in the compound,
which must clearly be self-rigid. Hence the total number of linear members
must essentially be 3/+ 3^—6. But of these 3/—6 are virtually included in
the foundation, wherefore the number of the members above ground must in
all possible cases be 2n. Of these, however, V>n — 6 are already included in the
supported structure, and thus we arrive at the important general law, " that
the number of linear supports must be neither more nor less than six when the
supported structure is self-rigid." This most elementary of the laws of sup-
port seems almost to be unknown, the enunciation of it takes even professional
engineers by surprise.

All our portable direction-markers, our theodolites, alt-azimuths, levelling
telescopes, have to be supported above the ground at a height convenient for
the eye. It is essential that the stationary part of each be firmly held; yet in
every case, with not one exception in the thousand, otir geodetical instruments
are set upon three slender legs, diverging almost from a point. In such an
arrangement the steadiness in direction is derived exclusively from the stiffness
of the legs, which, however, are very flexible. The well-known result is, that
any strain in handling the instrument, even the pressure of a slight breeze,
deranges the reading.

More than fifty years ago an instrument maker in London, Robinson by
name, placed his beautifully made little alt-azimuths on a new kind of stand.
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H e connected three points in the stationary part of the instrument with three

points in the ground by means of six straight rods inclined to each other. In

this arrangement, the stability in every direction is derived from the resistance

to longitudinal compression, the flexure of the rods having an infinitesimally

small influence. I t takes essentially the form of

the octahedron or sixnib, as in fig. 10 ; a self-rigid

structure having six connected points.

This beautiful Robinson stand keeps the alt-

azimuth so firmly in position that, even during a

heavy gale, the image of the moon may be seen to

move without tremour across the cobwebs of the

field-bar. Yet it has not been adopted by engineers

and surveyors ; the exigencies of the photographer,

however, have determined his recourse to it.

I t is not essential that the supports meet two

and two as in this arrangement; they may be quite

detached, connecting six points in the supported Kg-10.

structure with six points in the ground; but in all cases they must be so dis-

posed that any dislocation whatever would imply a change in the length of

some of them.

I t might have sufficed merely to remark that this condition excludes the

parallelism of the supports; but it is expedient to insist, seeing that, in the

deplorable case of the Tay Bridge, the fabric was set upon two rows of upright

columns. The opinion is still held that the effective base is equal to the whole

breadth of such a structure, whereas the most casual examination may show

that, no matter how broad the structure may be, its effective base is only that

of a single column.

When the superstructure is not rigid in itself, or indeed whether it be so or
not, the entire number of the members above the ground must be thrice that
of the supported points. If we attempt to do with fewer the fabric must fall;
if we place more we cause unnecessary internal strains. I hope in a subse-
quent paper to treat of redundancy, meantime our attention may be confined
to structures having the proper number of parts.

If the supported points belong to one system they must be mutually con-
nected, and, at the least, there must be as many of these connections as there
are points, less one, wherefore the number of supports can never exceed twice
the number of the points by more than one.

Out of the endless variety of cases we may select one class for examination,
that in which the supported points are connected so as to form a polygon, not
necessarily all in one plane. The number of the connections being already n,
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that of the supporting members must be 2n, which may rest on 2n separate
points in the ground, but which may be brought together in pairs or otherwise.
If they be placed in pairs there are as many supporting as supported points.

Robinson's octahedral stand shows this arrangement when there are three
supported points; we shall now take the case when four points are supported
from four points in the ground, as in fig. 11, where the connected points A, B,
C, D are shown as supported by the eight members AE, EB, BF, FC, CG, GD,
DH, HA.

In general, that is when there is no regularity, such a structure contains all
the elements of stability. The positions of the foundation points being known,
if the lengths of the twelve members be prescribed, we shall have twelve equa-
tions of condition whereby to compute the twelve co-ordinates of the four points
A, B, C, D. Or, viewing the matter from the mechanical side, external pres-
sures applied at A, B, C, D may be resolved into their elements in three
assumed directions, x, y, z, and so may the stresses on the various parts ; there

must be equilibrium at each of the points,
in each of the three directions, and so
again we have twelve equations whereby
to compute twelve unknown quantities.

The algebraist at once perceives that
the resulting divisor (or determinant as
it is called) may happen to be zero, in
which case the stress becomes infinite;
that the dividend may be zero, showing
that the particular member has no
strain upon it; or even that both the
dividend and the divisor may be zero at
once, showing the structure to be inde-
terminate. But such investigations dis-
tract the attention from the objects under
consideration to their mere representative
symbols, and do not carry intellectual
conviction along with them. Their true
and highly important office is to deters
mine accurately the various stresses,
thereby enabling the constructor to ap-
portion the strengths of the various parts.

The determinateness, that is the
stability, of a structure typified by fig. 11

ceases when we introduce symmetry or even semi-regularity. Let, for example,
the figures EFGH, ABCD be rhomboids, having their middle points 0 and P

Plan.

Fig. 11.
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in the same vertical line, in which case the opposite members are of equal
lengths, AE to CG; EB to GD, and so on. Such a structure is clearly
instable.

Since the lengths HA, AE are fixed, the point A must be on the circum-
ference of a circle, having HE for its axis of rotation; and similarly for the
points B, C, D. If now we suppose the point A to be pushed inwards, the
members AB, AD will push the points D and B outwards, and, consequently,
C will move inwards by exactly as much as A ; the structure will adapt itself
perfectly to its new position. In truth, we have here not twelve, we have only
eleven data; for, if one of the connections, say CD, were removed, and the
structure thus made obviously mobile, the distance CD would yet remain
always equal to AB; that distance cannot be reckoned among the data.

So much for the geometrical mobility; let us examine the strains. Any
horizontal pressure at A is decomposable into two,—one in the direction AB,
the other in the direction AD. The stress AB transferred to the point B may
again be decomposed into two; the one of these in the plane EBF parallel to
EF is completely resisted at E and F by the stresses EB, EF, but the other,
perpendicular to EF, meets with no resisting obstacle; it and the corresponding
pressure at D may be counteracted by extraneous pressure there, or by a single
pressure applied at C, equal to the pressure at A, and in the same direction
with it. Thus the distortion of the fabric by an eastward pressure at A is
prevented by a like pressure applied at C, not westward, but eastward also;
in respect, however, to the strains on EB, BF, HD, DG, the effects of these
counteracting pressures are cumulative.

These considerations would seem to warrant the conclusion that all struc-
tures of this class are necessarily unstable; however, before venturing to accept
of this conclusion, it may be prudent for us to inquire whether the arguments
on which it is founded be strong enough to bear such a weighty superstructure.
Now the chief argument was that the longi-
tudinal stress on AB, acting at B, tends to
turn the triangle EBF on EF as an axis; but
this tendency exists only so long as AB is out
of the plane EBF, and ceases whenever AB
comes to be in that plane ; in other words, when-
ever AB is parallel to EF. Hence it follows
that structures, represented in plan by fig. 12,
having the two rhomboids ABCD and EFGH placed conformably, are rigid.
The conclusion was not absolutely general.

Though every rhomboid be not a rectangle, every rectangle is a rhomboid,
and we might hastily thence conclude that these remarks concerning rhom-
boidal structures may be at once extended to rectangular ones. But we have
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just come from seeing an example in which peculiarity precludes generalisation,
and thus it is expedient for us to examine specifically the case of rectangular
structures.

The examination at once shows that the remarks made in regard to figs.
11 and 12 apply when the rhomboids pass into the form of rectangles; but the
rectangle is symmetric, while the rhomboid is not so ; the arrangement of the
diagonals, as shown in these figures, is unsymmetric, and it thus remains for us
to inquire into the laws of symmetry.

If, as shown in fig. 13, the rectangle ABCD
be placed vertically over and conformably with
EFGH, the arrangement is symmetric; it has
already four out of the requisite twelve mem-
bers, and the eight supports remain to be
placed.

Fig. i3. These may be inserted symmetrically as the
eight diagonals, HA, AF, FC, C H ; DE, EB, BG, GD, but then the struc-

ture becomes perfectly mobile; the points A
and C move towards or from the central axis,
while B and D move from or towards it.

In any other symmetric arrangement the
four corner parts, EA, FB, GC, HD, must
appear, leaving four members yet to be distri-
buted. If one of these be placed as the
diagonal AF, symmetry requires also DG, BE,
and CH, as shown in fig. 14.

The insecurity of this arrangement is ob-
vious at a glance; no more need to have been
said about it, but for its adoption in the
scheme for the central towers of the proposed
Forth Bridge. I t presents two instances of
that most vicious arrangement, the flattened
tetrahedron; vicious because, while incapable
of resisting any pressure not directed in its
own plane, such a structure as EABF con-
verts any twisting pressure into indefinitely
exaggerated stress. I t also presents two
attempts to determine the shape of a quad-
rangle by the lengths of the four sides. Were

Fig. 14. the three open figures, EFBA, ABCD, DCGH,
replaced by flat rigid plates, we should have, turning on the four parallel hinges,
EF, AB, DC, HG, a most familiar example of instability.
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Plan.

Among open structures built on a rectangular base, instability is not con-
fined to those with rhomboidal tops; for if, as in fig. 15, the triangle HAE be
set up equal to GCF and EBF to HDC, so that
AC may be parallel to EF and BD parallel to
FG, the structure is movable. The diagonals AC
and BD may be on one level and so cross each
other, or the one may pass above the other at a
distance on the plumb line OP. Since the
three lines, AO, OP, PB, are mutually perpen-
dicular—

and

But the sum of BC2 and AD2 is equal exactly to the same quantity, and con-
sequently

Fig. 15

CD2 = CO2+OP2+PD2; wherefore
2+BP2+PD2+2.OP2.

so that one of these four is deducible from the remaining three; there are then
only eleven data in this structure, instead of the twelve needed for rigidity.
But it is to be observed that a dislocation must change the horizontality of
AC and BD, so that the mutability may be only instantaneous, as in the case
of maximum or minimum.

B

Passing now to the case of five supported points, we may remark that, by
the introduction of a fifth point, a symmetric rigid
structure may be built on a rectangular base.

Thus, if we place, as in fig. 16, the rhombus
ABCD vertically over the rectangle EFG-H, and
complete the construction as in fig. 11, there
results a symmetric structure, which, like all those
of the same class, is changeable. On assuming,
however, a point Z in the vertical axis of the
system, and connecting it with each of the points
A, B, C, D, we get a fabric both symmetric and
rigid. The rigidity is confirmed thus :—If, suppos-
ing Z and its connections to be away, the points A
and C be brought nearer, B and D would move
apart; now, in virtue of the connections AZ, ZC,
the shortening of AB would cause Z to rise, while, in virtue of the connections,
BZ, ZD, the widening of BD would bring Z down; the opposition of these two
tendencies keeps Z in its place.

Fig. 16.
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Here, in order to support five points, sixteen members are conjoined, and
yet there does not seem to be any redundancy; moreover, the arrangement is
quite symmetric. The equilibrium at each point gives rise to three equations
of condition, and these fifteen equations cannot possibly serve to determine
sixteen strains. But if we apply a pressure at any one of the five points, the
fabric resists it, the various members are strained somehow, the law of equa-
tions notwithstanding. The explanation of this paradox may afford an instruc-
tive exercise to the student.

H

Fig. 17.

When the five points are arranged in the corners of a pentagon, each being
carried by two supports, as shown in plan by fig. 17, the structure is rigid, pro-

vided the polygons be convex. Of this we easily
convince ourselves by supposing one of the con-
nections, say EA, to be removed, and by ex-
amining the motion of the link system thus left.
The point A can move only in a circle, having
KF for its axis; let A be moved inwards, the
member AB will then cause the triangle FBGr
to turn outwards on FG as a hinge; BC will
draw C inwards, CD will push D outwards, and
lastly, DE will draw E inwards ; wherefore the

distance AE will be shortened, and the member AE can be replaced only when
the structure is brought back to its former position.

Following this line of argument one step further, we see that in the case of
a hexagon the first and last points would move, the one outwards, the other
inwards, and that so the distance might remain unchanged. When the hexa-
gons are semi-regular or halvable, the distance remains absolutely unchanged,

and the structure is indifferent as to position. This
same remark applies to all polygons of an even number
of sides.

If, however, the upper and lower polygons be placed
conformably, as in fig. 18, the structure is rigid, whether
the number of supported points be even or odd.

These truths may be illustrated experimentally by
preparing a few isosceles triangles as AFB, having

Flgl8- perforations at A and B, through which an elastic
string may be passed. On connecting a number of these, say seven, by a con-
tinuous thread, and spreading them out on a table, we form a flexible equal-
sided heptagon, and when this is arranged regularly the points F are in the
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corners of a larger regular heptagon. If we now trace on a flat board a regular
seven-sided figure, intermediate in size between these two, and secure the
points F of the triangles in holes made at the corners, we shall have erected a
structure analogous to that shown in fig. 17, and shall find it to be rigid.

If one of the triangles be removed, and the same process of construction
followed with the remaining six, the resulting regular hexagonal structure is
found to be instable.

Another reduction of the number brings us to the pentagonal structure,
which again is stable; and still another removal gives the tetragonal instable
fabric; and, lastly, when only three triangles are left, we have Robinson's
octahedral stand.

The important distinction between the two cases of conformable or of un-
conformable polygons may be illustrated by preparing two pairs of triangles,
one pair as EAB, GCD, of fig. 12, the other pair as FBC, HDA, and by con-
necting the sides, AB, BC, CD, DA, so as to form a flexible tetragon.

When the feet, E, F, G, H, are secured in the corners of a rhomboid or of a
rectangle, the structure is rigid, if AB, BC be parallel to EF, FG; in all other
cases it is instable.

These cases of instability in open structures have been elicited by means of
the simplest considerations in Geometry and Statics; they lie indeed on the
very surface of mechanical inquiry. They do not occur as isolated examples—
they are arranged in extensive groups; and, being found in those classes of
structures which may be called shapely, they stand out as warning beacons to
those engaged in engineering pursuits.
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