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investigation. I do not therefore either affirm or deny his 
conclusions. I do affirm that they are supported by a rope 
of argument to the strength of which the one strand which I 
have tested contributes nothing. It is difficult to believe in 
discontinuities which their discoverer himself abandons in the 
heat of argument by showing that his original solution may 
be replaced by another in which three may be entire curves 
and parts of two others replaced by two only. 

XX. On the T]~eory of Surface Forces.--II. Compressible 
Fluids. By Lord RAY~IG~, Sec. R.S. ~ 

I N the first part of the paper published under the above title 
(Phil. Mag., Oct. and Dec. 1890) the theory of Young 

and Laplace was considered, and further developed in certain 
directions. The two leading assumptions of this theory are 
(1) that the range of the cohesive ibrces, thoua'h very small 
in comparison with the dimensions of ordinary bodies, is 
nevertheless lurge in comparison with molecular distances~ so 
that matter may be treated as continuous; and (2) that  the 
fluids considered are incompressible. So far as I am aware, 
there is at present no reason to suppose that the applicability 
of the results to actual matter is greatly prejudiced by imper- 
fect fulfilment of (1); but, on the other hand, the assmnption 
of incompressibility is a somewhat violent one, even in the 
cases of' liquids, and altogether precludes the application of 
the theory to gases and vapours. In the present communica- 
tion an attempt is made to extend the theory to compressible 
fluids, and especially to the case of a liquid in contact with 
its own vapour, retaining the first assumption of continuity, 
or rather of ultimate homogeneity. There will not be two 
opinions as to the advantage of the extension to compressible 
fluids ; but some may perhaps be inclined to ask whether it is 
worth while to spend labour upon a theory which ignores the 
accumulated evidence before us in favour of molecular struc- 
ture. To this the answer is that molecular theories are 
extremely difficult, and that the phenomenon of a change of 
state from vapour to liquid is of such extreme importance as 
to be worthy of all the light that can be thrown upon it. We 
shall see, I think, that a sufficient account can be given 
without introducing the consideration of molecules, which on 
this view belongs to another stage of the theory. 

If p denote the ordinary hydrostatical pressure at any point 
in the interior of a self-attracting fluid, p the density, and  V 
the potential, the equation of equilibrium is 

* Communicated by the Author. 
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d _ p = p d V  . . . . . . . .  (1) 

If, as we shall here suppose, the matter be arranged in plane 
st~'ata, the expression for the potential at any point is 

v = 2~ P' V, (~) d~, . . . . .  (2) 

where p' is the density at a distance z from the point in 
question. Expanding in series, we may write 

dp z 2 ~ p  
Pl = P + Z -~z + 1 . ~  d z  ~ + " " " ' 

so that 

where 

V = 2 K . p + 2 L d ~  + . . . ,  . . . .  (3) 

fo r fo r K =  2 ~  g,(,-) dz, L = ~ zN,(-~) d z . .  (~)  

The integrals involving odd powers of z disappear in virtue of 
the relation ~ (-- z) = 4f (z). 

We may use (3) to form an expression for the pressure 
applicable to regions of u n i f o r m  density (and potential). 
Thus, integrating (1) from a place where P = P l  to  one where 
p = p 2 ,  we have 

  -p,=Ypdv=[pv3-Sv 0 
= 2 a 0 ~ " - p ? ) - S d p  {2Kp + 2L d~p/d~" + . . .  } 

= KO~--p,O--~+ i2L d~p/d~"+... }. 
In the latter integral each term vanishes. For example, 

and at the limits all the differential coefficients of p vanish 
by supposition. Thus, in the application to regions of uniform 
density--uniform, that is, through a space exceeding the range 
of the attractive forces, 

1o2--p~ =K(p~e--pl~);  . . . . .  (5) 
or, as we may also write it, 

p = ~ + K p  ~, . . . . . .  (6 )  

where ~ is a constant, denoting what the value ofp  would he 
in a region where p=0.  We may regard ~" as the e x t e r n a l  
pressure operative upon the fluid. Equation (5) may also be 
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obiained~ less analytically, by the argument employed upon a 
former oecasion*~ and still more simply perhaps by considera- 
tion of the forces operative upon the entire mass of fluid 
included between the two strata in question regarded as a 
rigid body. It  is very important to remember that it ceases 
to appl~] at places w]wre p is varyinq, and that unless the strata 
are plane it requires correction ~even in its qpplication to 
regions of uniform density. 

In the ease of a uniform medium, (6) gives the relation 
between the external pressure ~ measured in experiments~ 
and the total internal pressure p, found by adding to the 
former the intrinsic pressure Kp "2. By the constitution of the 
medium~ independently of the self-attracting property, there 
is a relation between p and p, and thence, by (6), between 
z~ and p. I f  we suppose that the medium, tYeed ti'om self- 
attraction, would obey Boyle's law, 2 = @ ,  and 

~=kp--Kp ~ . . . . . . . .  (7) 

According to (7), when p is very small~ ~ varies as p. As 
p increases~ ~ increases with it, until p=k/9~K, when 
reaches a maximum. Beyond this point ~ diminishes as p 
increases~ and this without limit. The curve which represents 
the relation;hip of w and p 
is a parabola ; and it is evi- 
dent that all beyond the 
vertex represents unstable 
conditions. For at any point 
on this portion the pressure 
diminishes as pinereases. If, 
therefore, the original uni- 
formity were slightly dis- 
turbed~ without change of 
total velum% one part of 
the fluid becoming denser 
and the other rarer than 

Fig. 1. 

before~ the latter would tend still further to expand and the 
former to contract. And according to our equations the col- 
lapse would have no limit. 

Points on the parabola between 0 and tile vertex represent 
conditions which are stable so far as the interior of the fluid 
is concerned~ hut it may be necessary to consider the action 
of the walls upon the fluid situated in their neighbourhood. 
The simplest ease is when the containing vessel, which may 
be a cylinder and piston~ exercises no attraction upon the 
fluid. The fluid may then be compressed up to the vertex of 

* "On Laplace's Theory of Capillarity~" Phil. ~Iag. Oct. 1883. 
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the parabola without losing its uniformity or becoming un- 
stable. If, however, there be sufficient attraction between 
the walls of the vessel and the fluid, instability leading to 
total collapse will set in before the vertex is reached. 

It will be seen that condensation to a denser state is easily 
explained, without any reference to molecules, as a direct 
consequence of self-attraction in a medium otherwise obeying 
Boyle's law. The objection that may be raised at this point 
is rather that the explanation is too good, inasmuch as it 
points to indefinite collapse, instead of to a high, but finite, 
contraction in the condensed part. 

A simple and well-known modification provides an escape 
from a conclusion which follows inevitably from a rigorous 
application of Boyle's law. A provision is required to prevent 
extreme collapse, and this we may find in the assumption that 
a constant must be subtracted from the volume in order to 
obtain the quantity to which the pressure is proportional. 
In this case it is usual and convenient to express the relation 
by the volume v of the unit mass, rather than by the density. 
We have 

p(v- -b)  =constant, 

or (~ + K/v~)(v-- b) = constant, (8) 

the well-known equation of Van der Waals. Here b is the 
smallest volume to which the fluid can be compressed ; and 
under this law the collapse of the fluid is arrested at a cer- 
tain stage, equilibrium being attained when the values of ~ are 
again equal for the condensed and uncondensed parts of the fluid. 

According to (8), there are three values of v corresponding 
to a given ~. Below the critical temperature the three 
values are real, and the isot~hermal curve assumes the form 
A B C D E F G H (fig. 2) suggested by Prof. James Thomson. 
The part D F is unrealizable for 
a fluid in mass, being essen- 
tially unstable; but the parts 
A D, F H represent stable con- 
ditions, so far as the interior 
of the homogeneous fluid is 
concerned. The line C G re- 
presents the (external) pressure 
at which the vaponr can exist 
in contact with the liquid in 
mass, and the isothermal found 
by experiment is usually said 
to be H G E C B A. This state- 
ment can hardly be defended. 

Fig. 2. 

A 

B F 

I f  a vapour be compressed from I t  through G, it can only 
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travel along the straight line from G towards E under very 
peculiar conditions. Apart from the action of the walls of 
the containing vessel, and of suspended nuclei, the path from 
G to F must be followed. The path from G to E implies that 
the vapour at G is in contact with the liquid in mass. This 
is by supposition not the case ; and the passage in question 
could only be the result of foreign matter whose properties 
happened to coincide with those of the liquid. I f  the walls 
attract the vapour less than the vapour attracts itself, they 
cannot promote condensation, and the path H G F must be 
pursued. In the contrary case condensation must begin 
before G is reached, although it may be to only a limited 
extent• Probably the latter is the state of things usually met 
with in practice• So soon as the walls are covered with a 
certain thickness of liquid, the path coincides with a portion 
of G E C, and the angle at G is only slightly rounded off. 

Similar considerations apply at the other end of the straight 
course• If  the liquid be expanded through C, it will not, in 
general~ pass along C E, but will continue to pursue the curve 
C D, and will even attain the limit D, if the attraction of the 
walls upon the liquid be not less than that of the liquid upon 
itself. In the contrary case separation will suddenl~r occur at 
a point upon the wall, a bubble of vapour will be formed, and 
a point on the straight line C E will be attained. It is thus 
scarcely conceivable that a fluid should follow the broken 
course A B C E G t I  without some rounding of the corners, or 
else of overshooting the points C, G, with subsequent precipi- 
tation upon the line C E G. 

A very important question is the position of the line C G. 
Maxwell* shbwed that inasmuch as the area of the curve 
represents work performed at a constant temperature, it must be 
the same for the complete course as for the broken one. The 
line C G is therefore so situated as to cut off equal areas above 
and below. 

This discussion is of course qui~o independent of the precise 
form of the relation° between p and v. All that is necessary 
is such a modification of Boyle's law at great densities as will 
secure the fluid against indefinite collapse under the influence 
of its self-attraction. 

We will now pass to the question of the transition from 
liquid to vapour, still supposing the strata to be plane. This 
is a problem considered by Maxwell in his article upon 
" Capillary Action" in the Encyclopcedia Britannica t ;  but 

* ~ Nature,' vol. xi. p. 358, 1875 ; Reprint~ vol. ii. p. 418. 
t Reprlnt~ vol. ii. p. 560. 
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This is the value for the excess of vapour-pressuce in equi- 
librium with a convex surface that is given in Maxwell's 
" H e a t "  as a deduction from Sir W. Thomson's principle. 

The application of this principle may be extended in another 
direction. When liquid rises in a capillary tube open above, 
the more attenuated vapour at the upper level is in equilibrium 
with the concave surface, and the more dense vapour below is 
in equilibrium with the plane surface ot the liquid. But~ as 
was pointed out in the former paper, the rise of liquid is not 
limited to the height of the meniscus. Above that point the 
walls of the tube are coated with a layer of fluid, of gradually 
diminishing thickness, less than the range of forces, and 
extending" to an immense height. At every point the layer qf 
fluid must be in equilibrium with the vapour to be found at the 
same level. The data scarcely exist for anything like a pre- 
cise estlmate.of the effect to be expected, but the argument 
suffices to show that a solid body brought into contact with 
vapour at a density which may be much below the so-called 
point of saturation will cover itself with a layer of fluid, and 
that this layer may be re~ained in some degree even in what 
passes for a good vacuum. The fluid composing the layer, 
though denser than the surrounding atmosphere of vapour, 
cannot properly be described as either liquid or gaseous. 

In our atnmsphere fresh surfaces, e. g. of split mica or ot 
mercury, attract to themselves at once a coating of moisture. 
In a few hours this is replaced, or supplemented, by a layer of 
greas% which gives rise to a large variety of curious pheno- 
mena. In the case of mica the fresh surface conducts elec- 
tricity, while an old surface, in which presmnably the moisture 
has been replaced by grease, insulates well. 

XXI.  Some .Experiments with a Platinum Pyrometer on the 
Melting-points of Gold and Silver: By H. L. CALLENDAR, 

M.A., Fellow of Trinity College, Cambridge *. 

[:Plato V.] 

I N a paper which appeared in the Philosophical Magazine 
for July 1891 I alluded to some experiments I had made 

with a platinum pyrometer on the melting-point of silver, and 
stated that the readings of these instruments were constant to 
a tenth of a degree at temperatures above 1000 ° C. 

Through the kindness of Prof. Roberts-Austen I have 
recently had an opportunity of making some further expert- 

* Communicated bv the Author. 
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Since dp/p 2 ~ dr, this equation, obtained by purely hydro- 
statical methods applied to the liquid and vapour and the 
layer of t~an~itibn between them, has precisely the same sig- 
nificance as Maxwell's theorem upon the position of the line 
C G in J. Thomson's diagram. In that theorem ~ represents 
the external pressure that would be exerted by the fluid in 
various states of uniform density, some of which are not 
realizable. In the subject of the present investigation all the 
densities intermediate between those of the vapour and liquid 
actually occur ; bu~,, except at the extremities, ~ no longer 
represents external pressure. 

The explanation of the stable existence in the transitional 
layer of certain densities which would be unstable in mass, 
depends of course upon the fact that in the transitional layer 
the complete self-attraction due to the density is not developed 
in consequepee of the rapid variation of density in the 
neighbourhood. 

The distribution of density in the transitional layer, and the 
tension of the surface, can only be calculated upon the basis of 
a knowledge of the physical constitution of the fluid as ex- 
pressed by the relation between p and p, and by the law of 
self-attraction. Poisson's contention that the surface-tension 
cannot be found upon the supposition of an abrupt transition 
from the liquid to its vapour is evidently justified ; and since 
the thickness of the layer of transition is necessarily of the 
order of the range of the attraction, it follows that the cor- 
rection for gradual transition is not likely to be small. A 
complete calculation of a particular case would be of interest, 
even on rather forced suppositions; but the mathematical 
difficulties are considerable. An approximate investigation 
might be conducted as follows : -  

From (1) and (3), 

f ~ = V - - - - p . 2 K ÷  ~ 2 L + . . .  

If  we neglect the terms in d~p/dz a, &c., this becomes 

where f(O)=Sd_P/P is a function of O given by the consti- 
tution of the medium. 

Equation (14) may now be integrated by quadratures. 
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and 
1 

z=L~ p)de--Ke ~ -:dp . . . . .  (15) 
It  is possible that a graphical process would be found suitable. 
Equation (14) determines the curvature at any point of the 
curve representing the relation between p and z in terms of 
the coordinates and the slope. 

When the relation between p and z is known, the calcula- 
tion of the surface-tension is a matter of quadratures. Probably 
the simplest way of considering the question is to r%ard~; the 
free surface as spherical (liquid within and vapour without), 
and to calculate the difference of pressures. 

We have from (1), 

F(~) 
dp 

p~--pl = 

z being measured outwards along the radius. The question is 
thus reduced to the determination of V at the various points 

Fig. 3. 

Ct 

B 

of the layer of transition, for all of which z-----R approximately. 
Let P (fig. 3) be a point at which V is to be estimated, 
so that O P = z ,  and lot A QB be a spherical shell of radius 
z--C, of thickness dC, and of density p'. We have first to 
estimate the potential dV of this shell at P. 

The element of mass at Q is 
p'. 2~r sin (TdSlz--CJ~dC. 

If~ as before, !6(f) express the ultimate law of attraction, and 

we havo to multiply the above element of mass by H(Z).  
Now 

/~__pQ~=:2 + (z-- ~2--2z(z--~) cos O, 
so that 

.fdf - g  cos e =  ; ( z -  
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The element of the potential is therefore 

~ , '  (~- ~)d~. 1I (f)/  d/. 
$ 

In the integration the limits of f a r e  AP and BP. The former 
is denoted by ~, and the latter may be identified with ~ ,  
since z or R is supposed to be a very large multiple of the 
range of the forces. Accordingly for the potential at P 
of the whole shell, we have 

d V =  2~ 'p ' ( z - -~)d~ , (~) ,  . . . .  (17) 
Z 

wher% as usual~ 

~ a o  

,(¢)= u (/)/d/. .... (is) 

To find the whole potential at P, (17) must be integrated with 
respect to ~ from -- ~ to + ~ ,  p~ being treated as a function 
of ~'. As we need only consider P near the layer of transition, 
z in (1.7) may be identified with R. 

If  the transition is continuous, we may expand p' in the 
s e r i e s  

, dp ~ d~p 
P = P - - ~ d z z  + 1 . 2  dz" "'" ; 

and then at the point 1 ) , 

V=27r 
_ ~, + ~ . 2 d z  "~ ." 

+ R.)-o~ \ ~ + 1 . 2 . 3  dz ~ +  "" " )~*(~)  d~ 

= 2 K . p +  2L d~p a ' 2 M # p  dz. z _  dz ~ + 2N + . . .  

+ ~  2L + dz~+6Nd-~zS+. . .  , . . . .  (19) 

where (as in Maxweli's " Capillary Action ") 

~ + ~  
K =  ~(~)d~, 

- - ¢ o  

71" f + ¢ ¢  

Phil. Mag. S. 5. Vol. 33. No. 201. Feb. 1892. 

L= ½ ~, (~)  d~, 
0 o  

~ = ~  _ ~ , ( ~ ) d ~ . .  

Q 

(20) 
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When (19) is multiplied by d p / d z  and integrated across the 
whole layer of transition, we get for the part independent 
of R, 

simply, all the other terms in L, M , . . .  vauishing. Hence 
by (16), with integration by parts, 

1)2 --_P, = K (0~? - Pl ~) 
2 r ('(2)/dpVZ . __  F(2) d -4M/ F Pfd. 

+ s ~  f (~) ( e 3 P ?  e z -  . . . ) . (2O .~(,) \ d z V  ., 

The first term upon the right in (21) is the same as when 
the strata are plane. The second gives the capillary tension 
(T), and we conclude that when the transition is continuous 

d(~) , .  z d(2) \ d z ~ ]  + . . . . .  

From these results we see that "the existence of a capillary 
force is connected with suddenness of transition from one 
medium to another, and that it may disappear altogether when 
the transltmn is suificmntly gradual . 

The series (22) would probably suffice for the calculation 
of surface-tension between liquid and vapour when once the 
law connecting p and z is known. It  is possilJle, however, 
that its convergence would be inadequate, and in this respec~ 
it must certainly fail to give the result for an abrupt transition. 
In the latter case, where the whole variation of density occurs 
at one place, (16) becomes 

P~ - 2 ~  = 2 K  ( e 2 2 -  px ~) - -  (p~ - -  p:) V ,  (23)  

V relating to the place in question. And by (17) 

;5 
=2~(o~+o,)fo g,(~)dff- g (o~-e , ) J  ° gqr(¢)d~'. 

Thus 
p ~ - p , = K O ~ - - e ~  ~) + 2TIR, . . . .  (2~) 

"Oil L.~plaee's Theory of Capiltallty, Phil. Ma D October 1883. 
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if  

;0 ~=,~ ~2V4C)d~. (o~-ol)', • • (25) 

where ('25) agrees with the value of the tension found for this 
ease by Laplace. 

In the application to a sphere of liquid surrounded by an 
atmosphere of vapour, equations (9), (11), (1'2) remain un- 
changed, in spite of the curvature of the surface. I f  ~ "  denote 
the external pressure aetlng upon the vapour, 

p l = ~ "  + Kp?, . . . . . .  (26) 
p~==" + Kp~ ~ + 2T/R. ('27) 

The symbol ~" is still regarded as defined algebraically by 
(6), so that 

~ , = ~ " ,  ~ = ~ " +  ~T/R . . . . .  (~8) 
Integrating (12) by parts, we find 

~--~- ~--~+J( ~ @ = 0 ;  P~ Ol j) 
or b7 ('28), 

j (o)~_~,, 2T 
= d p + - - = 0  . . . . .  ('29) 

(,) P~ Rp ~ 
In this equation ~r is a known function of p. I f  we com- 

pare it with (1.3), where , ,  represents the external pressure 
of the vapour in contact with a plane surface of liquid, we 
shall be able to estimate the effect of the curvature. I t  is to 
be observed that the limits of integration are not the same in 
the two eases. I f  we retain pi, p: for the plane surface, and 
for the curved surfhee write p~ + ~p1. p2 + ~p2, we have from (29) 

~'2--~"' 3P~_ ~..--~"'3p i + fo~-~"dp+ 2T = 0 ;  

or by (28), 

, p~do + ~ - L = o  . . . . .  (a0) 

The limits of integration are now the same as in (13), so 
that by subtraction 

o r  

n~"= n~' + '_2Tp, . . . . . .  (31) 
o~--gi 

Q'2 
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This is the value for the excess of vapour-pressuce in equi- 
librium with a convex surface that is given in Maxwell's 
" H e a t "  as a deduction from Sir W. Thomson's principle. 

The application of this principle may be extended in another 
direction. When liquid rises in a capillary tube open above, 
the more attenuated vapour at the upper level is in equilibrium 
with the concave surface, and the more dense vapour below is 
in equilibrium with the plane surface ot the liquid. But~ as 
was pointed out in the former paper, the rise of liquid is not 
limited to the height of the meniscus. Above that point the 
walls of the tube are coated with a layer of fluid, of gradually 
diminishing thickness, less than the range of forces, and 
extending" to an immense height. At every point the layer qf 
fluid must be in equilibrium with the vapour to be found at the 
same level. The data scarcely exist for anything like a pre- 
cise estlmate.of the effect to be expected, but the argument 
suffices to show that a solid body brought into contact with 
vapour at a density which may be much below the so-called 
point of saturation will cover itself with a layer of fluid, and 
that this layer may be re~ained in some degree even in what 
passes for a good vacuum. The fluid composing the layer, 
though denser than the surrounding atmosphere of vapour, 
cannot properly be described as either liquid or gaseous. 

In our atnmsphere fresh surfaces, e. g. of split mica or ot 
mercury, attract to themselves at once a coating of moisture. 
In a few hours this is replaced, or supplemented, by a layer of 
greas% which gives rise to a large variety of curious pheno- 
mena. In the case of mica the fresh surface conducts elec- 
tricity, while an old surface, in which presmnably the moisture 
has been replaced by grease, insulates well. 
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stated that the readings of these instruments were constant to 
a tenth of a degree at temperatures above 1000 ° C. 

Through the kindness of Prof. Roberts-Austen I have 
recently had an opportunity of making some further expert- 
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