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theory Connected-Components
imports ../Graph-Theory/Graph-Theory
begin

locale connected-components-locale =
fin-digraph +
fixes num :: ′a ⇒ nat
fixes parent-edge :: ′a ⇒ ′b option
fixes r :: ′a
assumes r-assms: r ∈ verts G ∧ parent-edge r = None ∧ num r = 0
assumes parent-num-assms:∧

v . v ∈ verts G ∧ v 6= r =⇒
∃ e ∈ arcs G .

parent-edge v = Some e ∧
head G e = v ∧
num v = num (tail G e) + 1

sublocale connected-components-locale ⊆ fin-digraph G
by auto

context connected-components-locale
begin

lemma ccl-wellformed : wf-digraph G
by unfold-locales

lemma num-r-is-min:
assumes v ∈ verts G
assumes v 6= r
shows num v > 0
using parent-num-assms assms
by fastforce

lemma path-from-root :
fixes v :: ′a
assumes v ∈ verts G
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shows r →∗ v
using assms

proof (induct num v arbitrary : v)
case 0
hence v = r using num-r-is-min by fastforce
with 〈v ∈ verts G〉 show ?case by auto

next
case (Suc n ′)
hence v 6= r using r-assms by auto
then obtain e where ee:

e ∈ arcs G
head G e = v ∧ num v = num (tail G e) + 1
using Suc parent-num-assms by blast

with 〈v ∈ verts G〉 Suc(1 ,2 ) tail-in-verts
have r →∗ (tail G e) tail G e → v

by (auto intro: in-arcs-imp-in-arcs-ends)
then show ?case by (rule reachable-adj-trans)

qed

The underlying undirected, simple graph is connected

lemma connectedG : connected G
proof (unfold connected-def , intro strongly-connectedI )

show verts (with-proj (mk-symmetric G)) 6= {}
by (metis equals0D r-assms reachable-in-vertsE reachable-mk-symmetricI

reachable-refl)
next
let ?SG = mk-symmetric G
interpret S : pair-fin-digraph ?SG ..
fix u v assume uv-sG : u ∈ verts ?SG v ∈ verts ?SG
from uv-sG have u ∈ verts G v ∈ verts G by auto
then have u →∗?SG r r →∗?SG v

by (auto intro: reachable-mk-symmetricI path-from-root symmetric-reachable
symmetric-mk-symmetric simp del : pverts-mk-symmetric)

then show u →∗?SG v
by (rule S .reachable-trans)

qed

theorem connected-by-path:
fixes u v :: ′a
assumes u ∈ pverts (mk-symmetric G)
assumes v ∈ pverts (mk-symmetric G)
shows u →∗mk-symmetric G v

using connectedG wellformed-mk-symmetric assms
unfolding connected-def strongly-connected-def by fastforce
end

corollary (in connected-components-locale) connected-graph:
assumes u ∈ verts G and v ∈ verts G
shows ∃ p. vpath p (mk-symmetric G) ∧ hd p = u ∧ last p = v
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proof −
interpret S : pair-fin-digraph mk-symmetric G ..
show ?thesis unfolding S .reachable-vpath-conv [symmetric]

using assms by (auto intro: connected-by-path)
qed

end
theory Shortest-Path-Theory
imports

Complex
../Graph-Theory/Graph-Theory

begin

locale basic-sp =
fin-digraph +
fixes dist :: ′a ⇒ ereal
fixes c :: ′b ⇒ real
fixes s :: ′a
assumes general-source-val : dist s ≤ 0
assumes trian:∧

e. e ∈ arcs G =⇒
dist (head G e) ≤ dist (tail G e) + c e

locale basic-just-sp =
basic-sp +
fixes enum :: ′a ⇒ enat
assumes just :∧

v . [[v ∈ verts G ; v 6= s; enum v 6= ∞]] =⇒
∃ e ∈ arcs G . v = head G e ∧

dist v = dist (tail G e) + c e ∧
enum v = enum (tail G e) + (enat 1 )

locale shortest-path-non-neg-cost =
basic-just-sp +
assumes s-in-G : s ∈ verts G
assumes source-val : dist s = 0
assumes no-path:

∧
v . v ∈ verts G =⇒ dist v = ∞ ←→ enum v = ∞

assumes non-neg-cost :
∧

e. e ∈ arcs G =⇒ 0 ≤ c e

locale basic-just-sp-pred =
basic-sp +
fixes enum :: ′a ⇒ enat
fixes pred :: ′a ⇒ ′b option
assumes just :∧

v . [[v ∈ verts G ; v 6= s; enum v 6= ∞]] =⇒
∃ e ∈ arcs G .

e = the (pred v) ∧
v = head G e ∧
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dist v = dist (tail G e) + c e ∧
enum v = enum (tail G e) + (enat 1 )

sublocale basic-just-sp-pred ⊆ basic-just-sp
using basic-just-sp-pred-axioms
unfolding basic-just-sp-pred-def

basic-just-sp-pred-axioms-def
by unfold-locales (blast)

locale shortest-path-non-neg-cost-pred =
basic-just-sp-pred +
assumes s-in-G : s ∈ verts G
assumes source-val : dist s = 0
assumes no-path:

∧
v . v ∈ verts G =⇒ dist v = ∞ ←→ enum v = ∞

assumes non-neg-cost :
∧

e. e ∈ arcs G =⇒ 0 ≤ c e

sublocale shortest-path-non-neg-cost-pred ⊆ shortest-path-non-neg-cost
using shortest-path-non-neg-cost-pred-axioms
by unfold-locales

(auto simp: shortest-path-non-neg-cost-pred-def
shortest-path-non-neg-cost-pred-axioms-def )

lemma tail-value-helper :
assumes hd p = last p
assumes distinct p
assumes p 6= []
shows p = [hd p]

by (metis assms distinct .simps(2 ) append-butlast-last-id hd-append
append-self-conv2 distinct-butlast hd-in-set not-distinct-conv-prefix )

lemma (in basic-sp) dist-le-cost :
fixes v :: ′a
fixes p :: ′b list
assumes awalk s p v
shows dist v ≤ awalk-cost c p
using assms
proof (induct length p arbitrary : p v)
case 0

hence s = v by auto
thus ?case using 0 (1 ) general-source-val

by (metis awalk-cost-Nil length-0-conv zero-ereal-def )
next
case (Suc n)

then obtain p ′ e where p ′e: p = p ′ @ [e]
by (cases p rule: rev-cases) auto

then obtain u where ewu: awalk s p ′ u ∧ awalk u [e] v
using awalk-append-iff Suc(3 ) by simp

then have du: dist u ≤ ereal (awalk-cost c p ′)
using Suc p ′e by simp
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from ewu have ust : u = tail G e and vta: v = head G e
by auto

then have dist v ≤ dist u + c e
using ewu du ust trian[where e=e] by force

with du have dist v ≤ ereal (awalk-cost c p ′) + c e
by (metis add-right-mono order-trans)

thus dist v ≤ awalk-cost c p
using awalk-cost-append p ′e by simp

qed

lemma (in fin-digraph) witness-path:
assumes µ c s v = ereal r
shows ∃ p. apath s p v ∧ µ c s v = awalk-cost c p

proof −
have sv : s →∗ v

using shortest-path-inf [of s v c] assms by fastforce
{

fix p assume awalk s p v
then have no-neg-cyc:
¬ (∃w q . awalk w q w ∧ w ∈ set (awalk-verts s p) ∧ awalk-cost c q < 0 )

using neg-cycle-imp-inf-µ assms by force
}
thus ?thesis using no-neg-cyc-reach-imp-path[OF sv ] by presburger

qed

lemma (in basic-sp) dist-le-µ:
fixes v :: ′a
assumes v ∈ verts G
shows dist v ≤ µ c s v

proof (rule ccontr)
assume nt : ¬ ?thesis
show False
proof (cases µ c s v)

show
∧

r . µ c s v = ereal r =⇒ False
proof −

fix r assume r-asm: µ c s v = ereal r
hence sv : s →∗ v

using shortest-path-inf [where u=s and v=v and f =c] by auto
obtain p where

awalk s p v
µ c s v = awalk-cost c p
using witness-path[OF r-asm] unfolding apath-def by force

thus False using nt dist-le-cost by simp
qed

next
show µ c s v = ∞ =⇒ False using nt by simp

next
show µ c s v = − ∞ =⇒ False
proof −
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assume asm: µ c s v = − ∞
let ?C = (λx . ereal (awalk-cost c x )) ‘ {p. awalk s p v}
have ∃ x∈ ?C . x < dist v

using Inf-ereal-iff [where y =dist vand X=?C and z= −∞]
nt asm unfolding µ-def INF-def by simp

then obtain p where
awalk s p v
awalk-cost c p < dist v
by force

thus False using dist-le-cost by force
qed

qed
qed

lemma (in basic-just-sp) dist-ge-µ:
fixes v :: ′a
assumes v ∈ verts G
assumes enum v 6= ∞
assumes dist v 6= −∞
assumes µ c s s = ereal 0
assumes dist s = 0
assumes

∧
u. u∈verts G =⇒ u 6=s =⇒ enum u 6= enat 0

shows dist v ≥ µ c s v
proof −

obtain n where enat n = enum v using assms(2 ) by force
thus ?thesis using assms
proof(induct n arbitrary : v)
case 0 thus ?case by (cases v=s, auto)
next
case (Suc n)

thus ?case
proof (cases v=s)
case False

obtain e where e-assms:
e ∈ arcs G
v = head G e
dist v = dist (tail G e) + ereal (c e)
enum v = enum (tail G e) + enat 1
using just [OF Suc(3 ) False Suc(4 )] by blast

then have nsinf :enum (tail G e) 6= ∞
by (metis Suc(2 ) enat .simps(3 ) enat-1 plus-enat-simps(2 ))

then have ns:enat n = enum (tail G e)
using e-assms(4 ) Suc(2 ) by force

have ds: dist (tail G e) = µ c s (tail G e)
using Suc(1 )[OF ns tail-in-verts[OF e-assms(1 )] nsinf ]
Suc(5−8 ) e-assms(3 ) dist-le-µ[OF tail-in-verts[OF e-assms(1 )]]
by simp

have dmuc:dist v = µ c s (tail G e) + ereal (c e)
using e-assms(3 ) ds by auto
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thus ?thesis
proof (cases dist v = ∞)
case False

have arc-to-ends G e = (tail G e, v)
unfolding arc-to-ends-def
by (simp add : e-assms(2 ))

obtain r where µr : µ c s (tail G e) = ereal r
using e-assms(3 ) Suc(5 ) ds False
by (cases µ c s (tail G e), auto)

obtain p where
awalk s p (tail G e) and
µs: µ c s (tail G e) = ereal (awalk-cost c p)
using witness-path[OF µr ] unfolding apath-def
by blast

then have pe: awalk s (p @ [e]) v
using e-assms(1 ,2 ) by (auto simp: awalk-simps awlast-of-awalk)

hence muc:µ c s v ≤ µ c s (tail G e) + ereal (c e)
using µs min-cost-le-walk-cost [OF pe] by simp
thus dist v ≥ µ c s v using dmuc by simp

qed simp
qed (simp add : Suc(6 ,7 ))

qed
qed

lemma (in shortest-path-non-neg-cost) tail-value-check :
fixes u :: ′a
assumes s ∈ verts G
shows µ c s s = ereal 0

proof −
have ∗: awalk s [] s using assms unfolding awalk-def by simp
hence µ c s s ≤ ereal 0 using min-cost-le-walk-cost [OF ∗] by simp
moreover
have (

∧
p. awalk s p s =⇒ ereal(awalk-cost c p) ≥ ereal 0 )

using non-neg-cost pos-cost-pos-awalk-cost by auto
hence µ c s s ≥ ereal 0

unfolding µ-def by (blast intro: INF-greatest)
ultimately
show ?thesis by simp

qed

lemma (in shortest-path-non-neg-cost) enum-not0 :
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s

shows enum v 6= enat 0
proof (cases enum v 6= ∞)
case True

then obtain ku where enum v = ku + enat 1
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using assms just by blast
thus ?thesis by (induct ku) auto

qed fast

lemma (in shortest-path-non-neg-cost) dist-ne-ninf :
fixes v :: ′a
assumes v ∈ verts G
shows dist v 6= −∞

proof (cases enum v = ∞)
case False

obtain n where enat n = enum v
using False by force

thus ?thesis using assms False
proof(induct n arbitrary : v)
case 0 thus ?case

using enum-not0 source-val by (cases v=s, auto)
next
case (Suc n)

thus ?case
proof (cases v=s)
case True

thus ?thesis using source-val by simp
next
case False

obtain e where e-assms:
e ∈ arcs G
dist v = dist (tail G e) + ereal (c e)
enum v = enum (tail G e) + enat 1
using just [OF Suc(3 ) False Suc(4 )] by blast

then have nsinf :enum (tail G e) 6= ∞
by (metis Suc(2 ) enat .simps(3 ) enat-1 plus-enat-simps(2 ))

then have ns:enat n = enum (tail G e)
using e-assms(3 ) Suc(2 ) by force

have dist (tail G e ) 6= − ∞
by (rule Suc(1 ) [OF ns tail-in-verts[OF e-assms(1 )] nsinf ])

thus ?thesis using e-assms(2 ) by simp
qed

qed
next
case True

thus ?thesis using no-path[OF assms] by simp
qed

theorem (in shortest-path-non-neg-cost) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
using no-path[OF assms(1 )] dist-le-µ[OF assms(1 )]

dist-ge-µ[OF assms(1 ) - dist-ne-ninf [OF assms(1 )]
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tail-value-check [OF s-in-G ] source-val enum-not0 ]
by fastforce

corollary (in shortest-path-non-neg-cost-pred) correct-shortest-path-pred :
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
using correct-shortest-path assms by simp

end
theory Shortest-Path-Arbitrary-Edge-Costs

imports
../Graph-Theory/Graph-Theory
Shortest-Path-Theory

begin

locale shortest-paths-init =
fixes G :: ( ′a, ′b) pre-digraph (structure)
fixes s :: ′a
fixes c :: ′b ⇒ real
fixes num :: ′a ⇒ nat
fixes parent-edge :: ′a ⇒ ′b option
fixes dist :: ′a ⇒ ereal
assumes graphG : fin-digraph G

abbreviation (in shortest-paths-init) V f :: ′a set where
V f ≡ {v . v ∈ verts G ∧ (∃ r . dist v = ereal r)}

abbreviation (in shortest-paths-init) V p :: ′a set where
V p ≡ {v . v ∈ verts G ∧ dist v = ∞}

abbreviation (in shortest-paths-init) V n :: ′a set where
V n ≡ {v . v ∈ verts G ∧ dist v = −∞}

locale shortest-paths-reachable =
shortest-paths-init +
assumes s-assms:

s ∈ verts G

num s = 0
assumes pna:∧

v . [[v ∈ verts G ; v 6= s; v /∈ V p]] =⇒
(∃ e ∈ arcs G . parent-edge v = Some e ∧
head G e = v ∧ tail G e /∈ V p ∧
num v = num (tail G e) + 1 )
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sublocale shortest-paths-reachable ⊆ fin-digraph G
using graphG by auto

definition (in shortest-paths-reachable) enum :: ′a ⇒ enat where
enum v = (if (dist v = ∞ ∨ dist v = − ∞) then ∞ else num v)

locale shortest-paths-basic =
shortest-paths-reachable +
basic-just-sp G dist c s enum +
assumes source-val : (∃ v ∈ verts G . enum v 6= ∞) =⇒ dist s = 0

function (in shortest-paths-reachable) pwalk :: ′a ⇒ ′b list
where

pwalk v =
(if (v = s ∨ dist v = ∞ ∨ v /∈ verts G)

then []
else pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]

)
by auto
termination (in shortest-paths-reachable)

using pna
by (relation measure num, auto, fastforce)

lemma (in shortest-paths-reachable) pwalk-simps:
v = s ∨ dist v = ∞ ∨ v /∈ verts G =⇒ pwalk v = []
v 6= s =⇒ dist v 6= ∞ =⇒ v ∈ verts G =⇒

pwalk v = pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]
by auto

definition (in shortest-paths-reachable) pwalk-verts :: ′a ⇒ ′a set where
pwalk-verts v = {u. u ∈ set (awalk-verts s (pwalk v))}

locale shortest-paths-neg-cyc =
shortest-paths-basic +
fixes C :: ( ′a ×( ′b awalk)) set
assumes C-se:

C ⊆ {(u, p). dist u 6= ∞ ∧ awalk u p u ∧ awalk-cost c p < 0}
assumes int-neg-cyc:∧

v . v ∈ V n =⇒
(fst ‘ C ) ∩ pwalk-verts v 6= {}

locale shortest-paths-basic-pred =
shortest-paths-reachable +
fixes pred :: ′a ⇒ ′b option
assumes bj : basic-just-sp-pred G dist c s enum pred
assumes source-val : (∃ v ∈ verts G . enum v 6= ∞) =⇒ dist s = 0
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sublocale shortest-paths-basic-pred ⊆ shortest-paths-basic
using shortest-paths-basic-pred-axioms
unfolding shortest-paths-basic-pred-def shortest-paths-basic-pred-axioms-def
shortest-paths-basic-def shortest-paths-basic-axioms-def
basic-just-sp-pred-def basic-just-sp-pred-axioms-def
basic-just-sp-def basic-just-sp-axioms-def
by blast

lemma (in shortest-paths-reachable) num-s-is-min:
assumes v ∈ verts G
assumes v 6= s
assumes v /∈ V p

shows num v > 0
using pna[OF assms] by fastforce

theorem (in shortest-paths-reachable) path-from-root-Vr-ex :
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s
assumes v /∈ V p

shows ∃ e. s →∗ tail G e ∧
e ∈ arcs G ∧ head G e = v ∧ dist (tail G e) 6= ∞ ∧
parent-edge v = Some e ∧ num v = num (tail G e) + 1

using assms
proof(induct num v − 1 arbitrary : v)
case 0

obtain e where ee:
e ∈ arcs G
head G e = v
(tail G e) /∈ V p

parent-edge v = Some e
num v = num (tail G e) + 1
using pna[OF 0 (2−4 )] by fast

have tail G e = s
using num-s-is-min[OF tail-in-verts [OF ee(1 )] - ee(3 )]
ee(5 ) 0 (1 ) by auto

then show ?case using ee by auto
next
case (Suc n ′)

obtain e where ee:
e ∈ arcs G
head G e = v
(tail G e) /∈ V p

parent-edge v = Some e
num v = num (tail G e) + 1
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using pna[OF Suc(3−5 )] by fast
then have ss: tail G e 6= s

using num-s-is-min tail-in-verts ee
Suc(2 ) s-assms(2 ) by force

have nst : n ′ = num (tail G e) − 1
using ee(5 ) Suc(2 ) by presburger

obtain e ′ where
reach: s →∗ tail G e ′ and
e ′: e ′ ∈ arcs G ∧ head G e ′ = tail G e ∧ (tail G e ′) /∈ V p

using Suc(1 )[OF nst tail-in-verts[OF ee(1 )] ss ee(3 )] by blast
from reach also have tail G e ′→ tail G e using e ′

by (metis in-arcs-imp-in-arcs-ends)
finally show ?case using e ′ ee by auto

qed

corollary (in shortest-paths-reachable) path-from-root-Vr :
fixes v :: ′a
assumes v ∈ verts G
assumes v /∈ V p

shows s →∗ v
proof(cases v = s)
case True thus ?thesis using assms by simp
next
case False

obtain e where s →∗ tail G e and e ∈ arcs G and head G e = v
using path-from-root-Vr-ex [OF assms(1 ) False assms(2 )] by blast

then have s →∗ tail G e and tail G e → v
by (auto intro: in-arcs-imp-in-arcs-ends)

then show ?thesis by (rule reachable-adj-trans)
qed

corollary (in shortest-paths-reachable) not-Vp-µ-less-inf :
fixes v :: ′a
assumes v ∈ verts G
assumes v /∈ V p

shows µ c s v 6= ∞
using assms path-from-root-Vr µ-reach-conv by force

lemma (in shortest-paths-basic) enum-not0 :
assumes v ∈ verts G
assumes v 6= s
shows enum v 6= enat 0
using pna[OF assms(1 ,2 )] assms unfolding enum-def by auto

lemma (in shortest-paths-basic) dist-Vf-µ:
fixes v :: ′a
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assumes vG : v ∈ verts G
assumes ∃ r . dist v = ereal r
shows dist v = µ c s v

proof −
have ds: dist s = 0

using assms source-val unfolding enum-def by force
have ews:awalk s [] s

using s-assms(1 ) unfolding awalk-def by simp
have mu: µ c s s = ereal 0

using min-cost-le-walk-cost [OF ews, where c=c]
awalk-cost-Nil ds dist-le-µ[OF s-assms(1 )] zero-ereal-def
by simp

thus ?thesis
using ds assms dist-le-µ[OF vG ]
dist-ge-µ[OF vG - - mu ds enum-not0 ]
unfolding enum-def by fastforce

qed

lemma (in shortest-paths-reachable) pwalk-awalk :
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows awalk s (pwalk v) v

proof (cases v=s)
case True

thus ?thesis
using assms pwalk .simps[where v=v ]
awalk-Nil-iff by presburger

next
case False

from assms show ?thesis
proof (induct rule: pwalk .induct)

fix v
let ?e = the (parent-edge v)
let ?u = tail G ?e
assume ewu: ¬ (v = s ∨ dist v = ∞ ∨ v /∈ verts G) =⇒

?u ∈ verts G =⇒ dist ?u 6= ∞ =⇒
awalk s (pwalk ?u) ?u

assume vG : v ∈ verts G
assume dv : dist v 6= ∞
thus awalk s (pwalk v) v
proof (cases v = s ∨ dist v = ∞ ∨ v /∈ verts G)
case True

thus ?thesis
using pwalk .simps vG dv
awalk-Nil-iff by fastforce

next
case False

obtain e where ee:
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e ∈arcs G
parent-edge v = Some e
head G e = v
(tail G e) /∈ V p

using pna False by blast
hence awalk s (pwalk ?u) ?u

using ewu[OF False] tail-in-verts by simp
hence awalk s (pwalk (tail G e) @ [e]) v

using ee(1−3 ) vG
by (auto simp: awalk-simps simp del : pwalk .simps)

thus ?thesis
by (simp only : pwalk .simps[where v=v , unfolded ee(2 ), simplified False

if-False option.sel ])
qed

qed
qed

lemma (in shortest-paths-neg-cyc) Vn-µ-ninf :
fixes v :: ′a
assumes v ∈ V n

shows µ c s v = − ∞
proof −

have awalk s (pwalk v) v
using pwalk-awalk assms by force

moreover
obtain w where ww : w ∈ fst ‘ C ∩ pwalk-verts v

using int-neg-cyc[OF assms] by blast
then obtain q where

awalk w q w and
awalk-cost c q < 0
using C-se by auto

moreover
have w ∈ set (awalk-verts s (pwalk v))

using ww unfolding pwalk-verts-def by fast
ultimately

show ?thesis using neg-cycle-imp-inf-µ by force
qed

theorem (in shortest-paths-neg-cyc) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v

proof(cases dist v)
show

∧
r . dist v = ereal r =⇒ dist v = µ c s v

using dist-Vf-µ[OF assms] by simp
next
show dist v = ∞ =⇒ dist v = µ c s v

using dist-le-µ[OF assms] by simp
next
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show dist v = −∞ =⇒ dist v = µ c s v
using Vn-µ-ninf assms by simp

qed

end
theory Matching
imports

Main
Parity
../Graph-Theory/Graph-Theory

begin

type-synonym label = nat

definition disjoint-arcs :: ( ′a, ′b) pre-digraph => ′b ⇒ ′b ⇒ bool where
disjoint-arcs G e1 e2 = (

tail G e1 6= tail G e2 ∧ tail G e1 6= head G e2 ∧
head G e1 6= tail G e2 ∧ head G e1 6= head G e2 )

definition matching :: ( ′a, ′b) pre-digraph ⇒ ′b set ⇒ bool where
matching G M = (M ⊆ arcs G ∧ (∀ e1 ∈ M . ∀ e2 ∈ M . e1 6= e2 −→ disjoint-arcs

G e1 e2 ))

definition OSC :: ( ′a, ′b) pre-digraph ⇒ ( ′a ⇒ label) ⇒ bool where
OSC G L = (
∀ e ∈ arcs G .

L (tail G e) = 1 ∨ L (head G e) = 1 ∨
L (tail G e) = L (head G e) ∧ L (tail G e) ≥ 2 )

definition weight :: label set ⇒ (label ⇒ nat) ⇒ nat where
weight LV f ≡ f 1 + (

∑
i∈LV . (f i) div 2 )

definition N :: ′a set ⇒ ( ′a ⇒ label) ⇒ label ⇒ nat where
N V L i ≡ card {v ∈ V . L v = i}

locale matching-locale = digraph +
fixes maxM :: ′b set
fixes L :: ′a ⇒ label
assumes matching : matching G maxM
assumes OSC : OSC G L
assumes weight : card maxM = weight {i ∈ L ‘ verts G . i > 1} (N (verts G) L)

sublocale matching-locale ⊆ digraph ..

context matching-locale begin

definition degree :: ′a ⇒ nat where
degree v ≡ card {e ∈ arcs G . tail G e = v ∨ head G e = v}

15



definition edge-as-set :: ′b ⇒ ′a set where
edge-as-set e ≡ {tail G e, head G e}

definition matched :: ′b set ⇒ ′a ⇒ bool where
matched M v ≡ v ∈

⋃
(edge-as-set ‘ M )

definition free :: ′b set ⇒ ′a ⇒ bool where
free M v ≡ ¬ matched M v

definition matching-i :: nat ⇒ ′b set ⇒ ′b set where
matching-i i M ≡ {e ∈ M . i=1 ∧ (L (tail G e) = i ∨ L (head G e) = i)
∨ i>1 ∧ L (tail G e) = i ∧ L (head G e) = i}

definition V-i :: nat ⇒ ′b set ⇒ ′a set where
V-i i M ≡

⋃
(edge-as-set ‘ matching-i i M )

definition endpoint-inV :: ′a set ⇒ ′b ⇒ ′a where
endpoint-inV V e ≡ if tail G e ∈ V then tail G e else head G e

definition relevant-endpoint :: ′b ⇒ ′a where
relevant-endpoint e ≡ if L (tail G e) = 1 then tail G e else head G e

lemma definition-of-range:
endpoint-inV V1 ‘ matching-i 1 M =
{ v . ∃ e ∈ matching-i 1 M . endpoint-inV V1 e = v } by auto

lemma matching-i-arcs-as-sets:
edge-as-set ‘ matching-i i M =
{ e1 . ∃ e ∈ matching-i i M . edge-as-set e = e1} by auto

lemma matching-disjointness:
assumes matching G M
assumes e1 ∈ M
assumes e2 ∈ M
assumes e1 6= e2
shows edge-as-set e1 ∩ edge-as-set e2 = {}
using assms
by (auto simp add : edge-as-set-def disjoint-arcs-def matching-def )

lemma expand-set-containment :
assumes matching G M
assumes e ∈ M
shows e ∈ arcs G
using assms
by (auto simp add :matching-def )

16



theorem injectivity :
assumes is-m: matching G M
assumes e1-in-M1 : e1 ∈ matching-i 1 M

and e2-in-M1 : e2 ∈ matching-i 1 M
assumes diff : (e1 6= e2 )
shows endpoint-inV {v ∈ V . L v = 1} e1 6= endpoint-inV {v ∈ V . L v = 1}

e2
proof −

from e1-in-M1 have e1 ∈ M by (auto simp add : matching-i-def )
moreover
from e2-in-M1 have e2 ∈ M by (auto simp add : matching-i-def )
ultimately
have disjoint-edge-sets: edge-as-set e1 ∩ edge-as-set e2 = {}

using diff is-m matching-disjointness by fast
then show ?thesis by (auto simp add : edge-as-set-def endpoint-inV-def )

qed

lemma card-M1-le-NVL1 :
assumes matching G M
shows card (matching-i 1 M ) ≤ N (verts G) L 1

proof −
let ?f = endpoint-inV {v ∈ verts G . L v = 1}
let ?A = matching-i 1 M
let ?B = {v ∈ verts G . L v = 1}
have inj-on ?f ?A using assms injectivity

unfolding inj-on-def by blast
moreover have ?f ‘ ?A ⊆ ?B
proof −
{

fix e assume e ∈ matching-i 1 M
hence e ∈ arcs G

using assms by (auto simp add : matching-def matching-i-def )
with 〈e ∈ matching-i 1 M 〉

have endpoint-inV {v ∈ verts G . L v = 1} e ∈ {v ∈ verts G . L v = 1}
using assms

by (auto simp add : endpoint-inV-def matching-i-def intro: tail-in-verts
head-in-verts)

}
then show ?thesis using assms definition-of-range by blast

qed
moreover have finite ?B by simp
ultimately show ?thesis unfolding N-def by (rule card-inj-on-le)

qed

lemma edge-as-set-inj-on-Mi :
assumes matching G M
shows inj-on edge-as-set (matching-i i M )
using assms
unfolding inj-on-def edge-as-set-def matching-def
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disjoint-arcs-def matching-i-def
by blast

lemma card-edge-as-set-Mi-twice-card-partitions:
assumes matching G M ∧ i > 1
shows 2 ∗ card (edge-as-set‘matching-i i M )
= card (V-i i M ) (is 2 ∗ card ?C = card ?Vi)

proof −
from assms have 1 : finite (

⋃
?C )

by (auto simp add : matching-def
matching-i-def edge-as-set-def finite-subset)

show ?thesis unfolding V-i-def
proof (rule card-partition)

show finite ?C using 1 by (rule finite-UnionD)
next

show finite (
⋃

?C ) using 1 .
next

fix c assume c ∈ ?C then show card c = 2
proof (rule imageE )

fix x
assume 2 : c = edge-as-set x and 3 : x ∈ matching-i i M
with assms have x ∈ arcs G

unfolding matching-i-def matching-def by blast
then have tail G x 6= head G x using assms 3 by (metis no-loops)
with 2 show ?thesis by (auto simp add : edge-as-set-def )

qed
next

fix x1 x2
assume 4 : x1 ∈ ?C and 5 : x2 ∈ ?C and 6 : x1 6= x2
{

fix e1 e2
assume 7 : x1 = edge-as-set e1 e1 ∈ matching-i i M

x2 = edge-as-set e2 e2 ∈ matching-i i M
from assms have matching G M by simp
moreover
from 7 assms have e1 ∈ M and e2 ∈ M

by (simp-all add : matching-i-def )
moreover from 6 7 have e1 6= e2 by blast
ultimately have x1 ∩ x2 = {} unfolding 7

by (rule matching-disjointness)
}
with 4 5 show x1 ∩ x2 = {} by clarsimp

qed
qed

lemma card-Mi-twice-card-Vi :
assumes matching G M ∧ i > 1
shows 2 ∗ card (matching-i i M ) = card (V-i i M )

proof −
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show ?thesis
by (metis assms card-edge-as-set-Mi-twice-card-partitions

edge-as-set-inj-on-Mi card-image)
qed

lemma card-Mi-le-floor-div-2-Vi :
assumes matching G M ∧ i > 1
shows card (matching-i i M ) ≤ (card (V-i i M )) div 2
using card-Mi-twice-card-Vi [OF assms]
by arith

lemma card-Vi-le-NVLi :
assumes i>1 ∧ matching G M
shows card (V-i i M ) ≤ N (verts G) L i
unfolding N-def

proof (rule card-mono)
show finite {v ∈ verts G . L v = i} using assms

by (simp add : matching-def )
next

let ?A = edge-as-set ‘ matching-i i M
let ?C = {v ∈ verts G . L v = i}
show V-i i M ⊆ ?C using assms unfolding V-i-def
proof (intro Union-least)

fix X assume X ∈ ?A
with assms have ∃ x ∈ matching-i i M . edge-as-set x = X

by (simp add : matching-i-arcs-as-sets)
with assms show X ⊆ ?C

unfolding matching-def
matching-i-def edge-as-set-def by (blast intro: tail-in-verts head-in-verts)

qed
qed

lemma card-Mi-le-floor-div-2-NVLi :
assumes matching G M ∧ i > 1
shows card (matching-i i M ) ≤ (N (verts G) L i) div 2

proof −
from assms have card (V-i i M ) ≤ (N (verts G) L i)

by (simp add : card-Vi-le-NVLi)
then have card (V-i i M ) div 2 ≤ (N (verts G) L i) div 2

by simp
moreover from assms have

card (matching-i i M ) ≤ card (V-i i M ) div 2
by (intro card-Mi-le-floor-div-2-Vi)

ultimately show ?thesis by auto
qed

lemma card-M-le-sum-card-Mi :
assumes matching G M and OSC G L
shows card M ≤ (

∑
i ∈ L‘verts G . card (matching-i i M ))
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(is card - ≤ ?CardMi)
proof −

let ?UnMi =
⋃

x ∈ L‘verts G . matching-i x M
from assms have 1 : finite ?UnMi

by (auto simp add : matching-def matching-i-def finite-subset)
{

fix e assume e-inM : e ∈ M
let ?v = relevant-endpoint e
have 1 : e ∈ matching-i (L ?v) M using assms e-inM

proof cases
assume L (tail G e) = 1
thus ?thesis using assms e-inM

by (simp add : relevant-endpoint-def matching-i-def )
next

assume a: L (tail G e) 6= 1
have L (tail G e) = 1 ∨ L (head G e) = 1
∨ (L (tail G e) = L (head G e) ∧ L (tail G e) >1 )
using assms e-inM unfolding OSC-def
by (auto intro: expand-set-containment)

thus ?thesis using assms e-inM a
by (auto simp add : relevant-endpoint-def matching-i-def )

qed
have 2 : ?v ∈ verts G using assms e-inM

by (auto simp add : matching-def relevant-endpoint-def intro: tail-in-verts
head-in-verts)

then have ∃ v ∈ verts G . e ∈ matching-i (L v) M using assms 1 2
by (intro bexI )

}
with assms have M ⊆ ?UnMi by (auto)
with assms and 1 have card M ≤ card ?UnMi by (intro card-mono)
moreover from assms have card ?UnMi = ?CardMi
proof (intro card-UN-disjoint)

show finite (L‘verts G) by simp
next

show ∀ i∈L‘verts G . finite (matching-i i M ) using assms
using finite-arcs
unfolding matching-def matching-i-def
by (blast intro: finite-subset finite-arcs)

next
show ∀ i ∈ L‘verts G . ∀ j ∈ L‘verts G . i 6= j −→

matching-i i M ∩ matching-i j M = {} using assms
by (auto simp add : matching-i-def )

qed
ultimately show ?thesis by simp

qed

theorem card-M-le-weight-NVLi :
assumes matching G M and OSC G L
shows card M ≤ weight {i ∈ L ‘ verts G . i > 1} (N (verts G) L) (is - ≤ ?W )
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proof −
let ?M01 =

∑
i | i ∈ L ‘ verts G ∧ (i=1 ∨ i=0 ). card (matching-i i M )

let ?Mgr1 =
∑

i | i ∈ L ‘ verts G ∧ 1 < i . card (matching-i i M )
let ?Mi =

∑
i∈L ‘ verts G . card (matching-i i M )

have card M ≤ ?Mi using assms by (rule card-M-le-sum-card-Mi)
moreover
have ?Mi ≤ ?W
proof −

let ?A = {i ∈ L ‘ verts G . i = 1 ∨ i = 0}
let ?B = {i ∈ L ‘ verts G . 1 < i}
let ?g = λ i . card (matching-i i M )
let ?set01 = { i . i : L ‘ verts G & (i = 1 | i = 0 )}
have a: L ‘ verts G = ?A ∪ ?B using assms by auto
have b: setsum ?g (?A ∪ ?B) = setsum ?g ?A + setsum ?g ?B

by (auto intro: setsum.union-disjoint)
have 1 : ?Mi = ?M01+ ?Mgr1 using assms a b by simp
moreover
have 0 : card (matching-i 0 M ) = 0 using assms

by (simp add : matching-i-def )
have 2 : ?M01 ≤ N (verts G) L 1
proof cases

assume a: 1 ∈ L ‘ verts G
have ?M01 = card (matching-i 1 M )
proof cases

assume b: 0 ∈ L ‘ verts G
with a assms have ?set01 = {0 , 1} by blast
thus ?thesis using assms 0 by simp

next
assume b: 0 /∈ L ‘ verts G
with a have ?set01 = {1} by (auto simp del :One-nat-def )
thus ?thesis by simp

qed
thus ?thesis using assms a

by (simp del : One-nat-def , intro card-M1-le-NVL1 )
next

assume a: 1 /∈ L ‘ verts G
show ?thesis
proof cases

assume b: 0 ∈ L ‘ verts G
with a assms have ?set01 = {0} by (auto simp del :One-nat-def )
thus ?thesis using assms 0 by auto

next
assume b: 0 /∈ L ‘ verts G
with a have ?set01 = {} by (auto simp del :One-nat-def )

then have ?M01 = (
∑

i∈{}. card (matching-i i M )) by auto
thus ?thesis by simp

qed
qed

moreover
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have 3 : ?Mgr1 ≤ (
∑

i |i∈L ‘ verts G ∧ 1 < i . N (verts G) L i div 2 )
using assms
by (intro setsum-mono card-Mi-le-floor-div-2-NVLi , simp)

ultimately
show ?thesis using 1 2 3 assms by (simp add : weight-def )

qed
ultimately show ?thesis by simp

qed

theorem maximum-cardinality-matching :
matching G M ′ −→ card M ′ ≤ card maxM
using card-M-le-weight-NVLi OSC matching weight
by simp

end

end

theory Graph-Checker-Witness-Properties
imports

Connected-Components
Shortest-Path-Theory
Shortest-Path-Arbitrary-Edge-Costs
Matching

begin

end
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