graph-verification

By christine
April 14, 2015

Contents

theory Connected-Components
imports ../ Graph-Theory/ Graph-Theory
begin

locale connected-components-locale =
fin-digraph +
fixes num :: 'a = nat
fixes parent-edge :: 'a = 'b option
fixes r :: a
assumes r-assms: r € verts G A parent-edge r = None A num r = 0
assumes parent-num-assms:
Nv. v €wverts G AN v #£r =
Jde € arcs G.
parent-edge v = Some e A
head G e = v A
num v = num (tail G e) + 1

sublocale connected-components-locale C fin-digraph G
by auto

context connected-components-locale
begin

lemma ccl-wellformed: wf-digraph G
by unfold-locales

lemma num-r-is-min:
assumes v € verts G
assumes v # r
shows num v > 0
using parent-num-assms assms
by fastforce

lemma path-from-root:

fixes v :: ‘a

assumes v € verts G

shows r —* v
using assms
proof (induct num v arbitrary: v)
case (
hence v = r using num-r-is-min by fastforce
with (v € verts G) show Zcase by auto
next
case (Suc n’)
hence v # r using r-assms by auto
then obtain e where ee:
e € arcs G
head G e = v A num v = num (tail G e) + 1
using Suc parent-num-assms by blast
with w € verts G> Suc(1,2) tail-in-verts
have r —* (tail G €) tail G e — v
by (auto intro: in-arcs-imp-in-arcs-ends)
then show %case by (rule reachable-adj-trans)
qed

The underlying undirected, simple graph is connected

lemma connectedG: connected G
proof (unfold connected-def, intro strongly-connectedI)
show verts (with-proj (mk-symmetric G)) # {}
by (metis equalsOD r-assms reachable-in-vertsE reachable-mk-symmetricl
reachable-refl)
next
let 25G = mk-symmetric G
interpret S: pair-fin-digraph ?5G ..
fix u v assume uv-sG: u € verts ?SG v € verts ?2SG
from wv-sG have u € verts G v € verts G by auto
then have v =% g 77 =" 995 v
by (auto intro: reachable-mk-symmetricl path-from-root symmetric-reachable
symmetric-mk-symmetric simp del: pverts-mk-symmetric)
then show u —* 955 v
by (rule S.reachable-trans)
qged

theorem connected-by-path:
fixes uv ::a
assumes u € pverts (mk-symmetric Q)
assumes v € pverts (mk-symmetric G)
shows u %*mk-symmetric GV
using connectedG wellformed-mk-symmetric assms
unfolding connected-def strongly-connected-def by fastforce

end

corollary (in connected-components-locale) connected-graph:
assumes u € verts G and v € verts G
shows 3 p. vpath p (mk-symmetric G) A hd p = u A last p = v

proof —
interpret S: pair-fin-digraph mk-symmetric G ..
show ?thesis unfolding S.reachable-vpath-conv|symmetric]
using assms by (auto intro: connected-by-path)
qed

end
theory Shortest-Path-Theory
imports

Complex

../ Graph-Theory | Graph- Theory
begin

locale basic-sp =
fin-digraph +
fixes dist :: 'a = ereal
fixes ¢ :: 'b = real
fixes s :: 'a
assumes general-source-val: dist s < 0
assumes trian:
Ne. e € arcs G =
dist (head G e) < dist (tail G e) + c e

locale basic-just-sp =

basic-sp +

fixes enum :: 'a = enat

assumes just:

Nv. [v € verts G; v # s; enum v # o0] =
J e € arcs G. v = head G e A

dist v = dist (tail Ge) + ce A
enum v = enum (tail G e) + (enat 1)

locale shortest-path-non-neg-cost =
basic-just-sp +
assumes s-in-G: s € verts G
assumes source-val: dist s = 0
assumes no-path: A\v. v € verts G = dist v = 00 +— enum v = 00
assumes non-neg-cost: Ne. e € arcs G = 0 < c e

locale basic-just-sp-pred =

basic-sp +

fixes enum :: 'a = enat

fixes pred :: ‘a = 'b option

assumes just:

Av. [v € verts G; v # s; enum v # o0] =
J e € ares G.

e = the (pred v) A
v = head G e A

dist v = dist (tail Ge) + ce A
enum v = enum (tail G e) + (enat 1)

sublocale basic-just-sp-pred C basic-just-sp

using basic-just-sp-pred-axioms

unfolding basic-just-sp-pred-def
basic-just-sp-pred-axioms-def

by unfold-locales (blast)

locale shortest-path-non-neg-cost-pred =
basic-just-sp-pred +
assumes s-in-G: s € verts G
assumes source-val: dist s = 0
assumes no-path: Av. v € verts G = dist v = 00 +— enum v = 00
assumes non-neg-cost: /\e. ecarcs G = 0<ce

sublocale shortest-path-non-neg-cost-pred C shortest-path-non-neg-cost
using shortest-path-non-neg-cost-pred-azioms
by unfold-locales
(auto simp: shortest-path-non-neg-cost-pred-def
shortest-path-non-neg-cost-pred-axioms-def)

lemma tail-value-helper:
assumes hd p = last p
assumes distinct p
assumes p # ||
shows p = [hd p]
by (metis assms distinct.simps(2) append-butlast-last-id hd-append
append-self-conv?2 distinct-butlast hd-in-set not-distinct-conv-prefiz)

lemma (in basic-sp) dist-le-cost:
fixes v :: ‘a
fixes p :: 'b list
assumes awalk s p v
shows dist v < awalk-cost ¢ p
using assms
proof (induct length p arbitrary: p v)
case (
hence s = v by auto
thus ?case using 0(1) general-source-val
by (metis awalk-cost-Nil length-0-conv zero-ereal-def)
next
case (Suc n)
then obtain p’ e where pe: p = p’ @ [¢]
by (cases p rule: rev-cases) auto
then obtain u where ewu: awalk s p’ u A awalk u [e] v
using awalk-append-iff Suc(3) by simp
then have du: dist u < ereal (awalk-cost ¢ p’)
using Suc p’e by simp

from ewu have ust: v = tail G e and vta: v = head G e
by auto

then have dist v < dist u + c e
using ewu du ust trian[where e=e] by force

with du have dist v < ereal (awalk-cost ¢ p’) + c e
by (metis add-right-mono order-trans)

thus dist v < awalk-cost ¢ p
using awalk-cost-append p’e by simp

qed

lemma (in fin-digraph) witness-path:
assumes i ¢ s v = ereal r
shows 3 p. apath s p v A p ¢ s v = awalk-cost ¢ p
proof —
have sv: s =* v
using shortest-path-inf|of s v c] assms by fastforce
{
fix p assume awalk s p v
then have no-neg-cyc:
- (Fw q. awalk w g w A w € set (awalk-verts s p) A awalk-cost ¢ ¢ < 0)
using neg-cycle-imp-inf-u assms by force
}

thus ?thesis using no-neg-cyc-reach-imp-path[OF sv] by presburger
qed

lemma (in basic-sp) dist-le-p:
fixes v :: ‘a
assumes v € verts G
shows dist v < pcswv
proof (rule ccontr)
assume nt: - ?thesis
show Fulse
proof (cases p ¢ s v)
show Ar. u ¢ s v = ereal r = Fulse
proof —
fix r assume r-asm: p ¢ s v = ereal r
hence sv: s =* v
using shortest-path-inf [where u=s and v=v and f=c| by auto
obtain p where
awalk s p v
W csv = awalk-cost ¢ p
using witness-path|OF r-asm] unfolding apath-def by force
thus Fulse using nt dist-le-cost by simp
qed
next
show p ¢ s v = co = False using nt by simp
next
show i ¢ s v = — oo => False
proof —

assume asm: (i ¢ $ v = — 00
let 2C = (Az. ereal (awalk-cost ¢ x)) * {p. awalk s p v}
have Jze 7C. z < dist v
using Inf-ereal-iff [where y =dist vand X=9C and z= —0]
nt asm unfolding pu-def INF-def by simp
then obtain p where
awalk s p v
awalk-cost ¢ p < dist v
by force
thus Fulse using dist-le-cost by force
qed

qed

lemma (in basic-just-sp) dist-ge-pu:

fixes v :: a

!

assumes v € verts G
assumes enum v # 00
assumes dist v # —00
assumes [¢ s s = ereal 0
assumes dist s = 0
assumes Au. u€verts G = u#s = enum u # enat 0
shows dist v > pcswv
proof —
obtain n where enat n = enum v using assms(2) by force
thus %thesis using assms
proof (induct n arbitrary: v)
case 0 thus ?case by (cases v=s, auto)
next
case (Suc n)

thus Zcase
proof (cases v=s)
case Fulse
obtain e where e-assms:
e € arcs G
v = head G e
dist v = dist (tail G e) + ereal (c e)
enum v = enum (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast
then have nsinf:enum (tail G e) # oo
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))
then have ns:enat n = enum (tail G e)
using e-assms(4) Suc(2) by force
have ds: dist (tail G ¢) = p ¢ s (tail G e)
using Suc(1)[OF ns tail-in-verts|OF e-assms(1)] nsinf]
Suc(5—8) e-assms(3) dist-le-u|OF tail-in-verts|OF e-assms(1)]]
by simp
have dmuc:dist v = pu ¢ s (tail G e) + ereal (¢ ¢e)
using e-assms(3) ds by auto

thus ?thesis
proof (cases dist v = 00)
case Fulse
have arc-to-ends G e = (tail G e, v)
unfolding arc-to-ends-def
by (simp add: e-assms(2))
obtain r where ur: p c s (tail G e) = ereal r
using e-assms(3) Suc(9) ds False
by (cases p ¢ s (tail G e), auto)
obtain p where
awalk s p (tail G e) and
ps: ¢ s (tail G e) = ereal (awalk-cost c p)
using witness-path[OF pr] unfolding apath-def
by blast
then have pe: awalk s (p Q [e]) v
using e-assms(1,2) by (auto simp: awalk-simps awlast-of-awalk)
hence muc:p ¢ s v < p ¢ s (tail G e) + ereal (c e)
using ps min-cost-le-walk-cost[OF pe] by simp
thus dist v > p ¢ s v using dmuc by simp
qed simp
qged (simp add: Suc(6,7))
qed
qed

lemma (in shortest-path-non-neg-cost) tail-value-check:
fixes u :: 'a
assumes s € verts G
shows 1 ¢ s s = ereal 0
proof —
have *: awalk s [| s using assms unfolding awalk-def by simp
hence p ¢ s s < ereal 0 using min-cost-le-walk-cost|OF x| by simp
moreover
have (Ap. awalk s p s = ereal(awalk-cost ¢ p) > ereal 0)
using non-neg-cost pos-cost-pos-awalk-cost by auto
hence i c s s > ereal 0
unfolding p-def by (blast intro: INF-greatest)
ultimately
show ?thesis by simp
qed

lemma (in shortest-path-non-neg-cost) enum-not0:
fixes v :: ‘a
assumes v € verts G

assumes v # s

shows enum v # enat 0

proof (cases enum v # 00)

case True

then obtain ku where enum v = ku + enat 1

using assms just by blast
thus ?thesis by (induct ku) auto
ged fast

lemma (in shortest-path-non-neg-cost) dist-ne-ninf:
fixes v :: 'a
assumes v € verts G
shows dist v # —o0
proof (cases enum v = 00)
case Fulse
obtain n where enat n = enum v
using False by force
thus ?thesis using assms Fualse
proof (induct n arbitrary: v)
case 0 thus ?case
using enum-not0 source-val by (cases v=s, auto)
next
case (Suc n)
thus Zcase
proof (cases v=s)
case True
thus ?thesis using source-val by simp
next
case Fulse
obtain e where e-assms:
e € arcs G
dist v = dist (tail G e) + ereal (c €)
enum v = enum (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast
then have nsinf:enum (tail G e) # oo
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))
then have ns:enat n = enum (tail G e)
using e-assms(3) Suc(2) by force
have dist (tail G e) # — o0
by (rule Suc(1) [OF ns tail-in-verts|OF e-assms(1)] nsinf])
thus ?thesis using e-assms(2) by simp
qed
qed
next
case True
thus ?thesis using no-path[OF assms] by simp
qged

theorem (in shortest-path-non-neg-cost) correct-shortest-path:
fixes v :: ‘a
assumes v € verts G
shows dist v = pu c swv
using no-path|OF assms(1)] dist-le-u[OF assms(1)]
dist-ge-u[OF assms(1) - dist-ne-ninf[OF assms(1)]

tail-value-check|OF s-in-G] source-val enum-not0]
by fastforce

corollary (in shortest-path-non-neg-cost-pred) correct-shortest-path-pred:
fixes v :: ‘a
assumes v € verts G
shows distv =p cswv

using correct-shortest-path assms by simp

end
theory Shortest-Path-Arbitrary-Edge-Costs

imports
../ Graph-Theory / Graph- Theory
Shortest-Path-Theory

begin

locale shortest-paths-init =
fixes G :: (‘a, 'b) pre-digraph (structure)
fixes s :: 'a
fixes ¢ :: 'b = real
fixes num :: 'a = nat
fixes parent-edge :: 'a = 'b option
fixes dist :: 'a = ereal
assumes graphG: fin-digraph G

abbreviation (in shortest-paths-init) V; :: 'a set where
Vi={v.vewverts GAN(Ir. distv=ereal r)}

abbreviation (in shortest-paths-init) V,, :: ‘a set where
Vp ={v. v € verts G A dist v = oo}

abbreviation (in shortest-paths-init) V,, :: 'a set where
Vi ={v. v €verts G A dist v = —oc0}

locale shortest-paths-reachable =
shortest-paths-init +
assumes Ss-assms:
s € verts G

num s = 0

assumes pna:
Av. [v € verts G; v # s; v ¢ V] =
(Fe € arcs G. parent-edge v = Some e A
head Ge=v A tail Ge ¢ V, A
num v = num (tail G e) + 1)

sublocale shortest-paths-reachable C fin-digraph G
using graphG by auto

definition (in shortest-paths-reachable) enum :: 'a = enat where
enum v = (if (dist v =00 V dist v = — 00) then oo else num v)

locale shortest-paths-basic =
shortest-paths-reachable +
basic-just-sp G dist ¢ s enum +
assumes source-val: (v € verts G. enum v # 00) = dist s = 0

function (in shortest-paths-reachable) pwalk :: 'a = 'b list
where
pwalk v =
(if (v=1sV distv=o00V v ¢wverts G)
then []
else pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]
)
by auto
termination (in shortest-paths-reachable)
using pna
by (relation measure num, auto, fastforce)

lemma (in shortest-paths-reachable) pwalk-simps:
v=sVdistv=o00Vv¢verts G = pwalk v = |]
v# s = dist v # 00 = v € verts G =
pwalk v = pwalk (tail G (the (parent-edge v))) Q [the (parent-edge v)]
by auto

definition (in shortest-paths-reachable) pwalk-verts :: 'a = 'a set where
pwalk-verts v = {u. u € set (awalk-verts s (pwalk v))}

locale shortest-paths-neg-cyc =

shortest-paths-basic +
fixes C :: (‘a x('b awalk)) set
assumes (C-se:

C C {(u, p). dist u # oo A awalk u p u A awalk-cost ¢ p < 0}
assumes int-neg-cyc:

Nv.veV, =

(fst < C) N pwalk-verts v # {}

locale shortest-paths-basic-pred =
shortest-paths-reachable +
fixes pred :: ‘a = 'b option
assumes bj: basic-just-sp-pred G dist ¢ s enum pred
assumes source-val: (v € verts G. enum v # 00) = dist s = 0

10

sublocale shortest-paths-basic-pred C shortest-paths-basic
using shortest-paths-basic-pred-axioms
unfolding shortest-paths-basic-pred-def shortest-paths-basic-pred-axioms-def
shortest-paths-basic-def shortest-paths-basic-axioms-def
basic-just-sp-pred-def basic-just-sp-pred-azioms-def
basic-just-sp-def basic-just-sp-axioms-def
by blast

lemma (in shortest-paths-reachable) num-s-is-min:
assumes v € verts G
assumes v # s
assumes v ¢ V,
shows num v > 0
using pna[OF assms] by fastforce

theorem (in shortest-paths-reachable) path-from-root-Vr-ex:
fixes v :: 'a
assumes v € verts G
assumes v # s
assumes v ¢ V,
shows de. s —* tail G e A
e € arcs G A\ head G e = v A dist (tail G e) # oo A
parent-edge v = Some e A num v = num (tail G e) + 1
using assms
proof (induct num v — 1 arbitrary : v)
case ()
obtain e where ee:
e € arcs G
head G e = v
(tail Ge) ¢ V,
parent-edge v = Some e
num v = num (tail G e) + 1
using pna[OF 0(2—4)] by fast
have tail G e = s
using num-s-is-min|OF tail-in-verts [OF ee(1)] - ee(3)]
ee(5) 0(1) by auto
then show ?case using ee by auto
next
case (Suc n’')
obtain e where ee:
e € arcs G
head G e = v
(tail Ge) ¢ V,
parent-edge v = Some e
num v = num (tail G e) + 1

11

using pna[OF Suc(3—5)] by fast
then have ss: tail G e # s
using num-s-is-min tail-in-verts ee
Suc(2) s-assms(2) by force
have nst: n’ = num (tail G e) — 1
using ee(5) Suc(2) by presburger
obtain ¢’ where
reach: s —* tail G e’ and
e e’ € arcs G A head G e’ = tail G e A (tail Ge') ¢ V,
using Suc(1)[OF nst tail-in-verts|OF ee(1)] ss ee(3)] by blast
from reach also have tail G ¢’ — tail G e using e’
by (metis in-arcs-imp-in-arcs-ends)
finally show ?case using e’ ee by auto
qed

corollary (in shortest-paths-reachable) path-from-root-Vr:
fixes v :: ‘a
assumes v € verts G
assumes v ¢ V,
shows s —* v
proof(cases v = s)
case True thus ?thesis using assms by simp
next
case Fulse
obtain e where s —* tail G e and e € arcs G and head G e = v
using path-from-root-Vr-ex|OF assms(1) False assms(2)] by blast
then have s —* tail G e and tail G e — v
by (auto intro: in-arcs-imp-in-arcs-ends)
then show %thesis by (rule reachable-adj-trans)
qed

corollary (in shortest-paths-reachable) not-Vp-p-less-inf:
fixes v :: 'a
assumes v € verts G
assumes v ¢ V,
shows 1 ¢ s v # o

using assms path-from-root-Vr p-reach-conv by force

lemma (in shortest-paths-basic) enum-not0:
assumes v € verts G
assumes v # s
shows enum v # enat 0
using pna|OF assms(1,2)] assms unfolding enum-def by auto

lemma (in shortest-paths-basic) dist-Vf-pu:

fixes v :: 'a

12

assumes vG: v € verts G
assumes 3 r. dist v = ereal r
shows dist v =p cswv
proof —
have ds: dist s = 0
using assms source-val unfolding enum-def by force
have ews:awalk s [] s
using s-assms(1) unfolding awalk-def by simp
have mu: ¢ ¢ s s = ereal 0
using min-cost-le-walk-cost[OF ews, where c=c|
awalk-cost-Nil ds dist-le-p[OF s-assms(1)] zero-ereal-def
by simp
thus ?thesis
using ds assms dist-le-u[OF vG]
dist-ge-u[OF vG - - mu ds enum-not0)]
unfolding enum-def by fastforce
qed

lemma (in shortest-paths-reachable) pwalk-awalk:
fixes v :: 'a
assumes v € verts G
assumes dist v # 00
shows awalk s (pwalk v) v
proof (cases v=s)
case True
thus ?thesis
using assms pwalk.simps[where v=v]
awalk-Nil-iff by presburger
next
case Fulse
from assms show ?thesis
proof (induct rule: pwalk.induct)
fix v
let ?e = the (parent-edge v)
let ?u = tail G ?e
assume ewu: - (v = s V dist v =00 V v & verts G) =
fu € verts G = dist %u # o0 —
awalk s (pwalk ?u) ?u
assume vG: v € verts G
assume dv: dist v # oo
thus awalk s (pwalk v) v
proof (cases v = s V dist v = 0o V v ¢ verts G)
case True
thus ?thesis
using pwalk.simps vG dv
awalk-Nil-iff by fastforce
next
case Fulse
obtain ¢ where ee:

13

e €arcs G
parent-edge v = Some e
head G e = v
(tail G e) ¢ V,,
using pna False by blast
hence awalk s (pwalk ?u) ?u
using ewu[OF False] tail-in-verts by simp
hence awalk s (pwalk (tail G e) Q [e]) v
using ee(1—3) vG
by (auto simp: awalk-simps simp del: pwalk.simps)
thus ?thesis
by (simp only: pwalk.simps|where v=uv, unfolded ee(2), simplified False
if-False option.sel])
qed
qed
qed

lemma (in shortest-paths-neg-cyc) Vn-p-ninf:
fixes v :: 'a
assumes v € V,,
shows pcsv=—
proof —
have awalk s (pwalk v) v
using pwalk-awalk assms by force
moreover
obtain w where ww: w € fst * C N pwalk-verts v
using int-neg-cyc[OF assms] by blast
then obtain ¢ where
awalk w ¢ w and
awalk-cost ¢ ¢ < 0
using C-se by auto
moreover
have w € set (awalk-verts s (pwalk v))
using ww unfolding pwalk-verts-def by fast
ultimately
show ?thesis using neg-cycle-imp-inf-u by force
qed

theorem (in shortest-paths-neg-cyc) correct-shortest-path:
fixes v :: 'a
assumes v € verts G
shows dist v = pu c swv

proof(cases dist v)

show Ar. dist v = ereal r = dist v =p ¢ s v
using dist-Vf-u|OF assms| by simp

next

show dist v = 0o = distv =p c swv
using dist-le-u[OF assms] by simp

next

14

show dist v = —0c0o = dist v = p c s v
using Vn-u-ninf assms by simp
qed

end
theory Matching
imports
Main
Parity
../ Graph-Theory | Graph- Theory
begin

type-synonym label = nat

definition disjoint-arcs :: ('a, 'b) pre-digraph => 'b = 'b = bool where
disjoint-arcs G el e2 = (
tail G el # tail G e2 A tail G el # head G e2 A
head G el # tail G e2 A head G el # head G e2)

definition matching :: (‘a, 'b) pre-digraph = 'b set = bool where
matching G M = (M C arcs GA(Nel € M.Ve2 € M. el # e2 — disjoint-arcs
G el €2))

definition OSC : (‘a, 'b) pre-digraph = (‘a = label) = bool where
0SC G L = (
Ve € arcs G.
L (tail Ge) =1V L (head Ge) =1V
L (tail G e) = L (head G e) A L (tail G e) > 2)

definition weight:: label set = (label = nat) = nat where
weight LV f = f1 + (O_i€LV. (fi) div 2)

definition N :: 'a set = (‘a = label) = label = nat where
NVLi=card{veV.Lv=:i}

locale matching-locale = digraph +
fixes mazM :: 'b set
fixes L :: 'a = label
assumes matching: matching G mazM
assumes 0SC: 0SC G L
assumes weight: card mazM = weight {i € L ‘verts G. i > 1} (N (verts G) L)

sublocale matching-locale C digraph ..
context matching-locale begin

definition degree :: 'a = nat where
degree v = card {e € arcs G. tail G e = v V head G e = v}

15

definition edge-as-set :: 'b = 'a set where
edge-as-set e = {tail G e, head G e}

definition matched :: 'b set = 'a = bool where
matched M v = v € |J (edge-as-set * M)

definition free :: 'b set = 'a = bool where
free M v = — matched M v

definition matching-i :: nat = b set = 'b set where
matching-i i M = {e € M. i=1 A (L (tail G e¢) = ¢ V L (head G €) = i)
Vi>1 AL (taill Ge)=1i N L (head G e) = i}

definition V-i:: nat = b set = ’a set where
V-ii M = (edge-as-set * matching-i i M)

definition endpoint-inV :: '‘a set = 'b = 'a where
endpoint-inV Ve = if tail G e € V then tail G e else head G e

definition relevant-endpoint :: 'b = 'a where
relevant-endpoint e = if L (tail G e) = 1 then tail G e else head G e

lemma definition-of-range:
endpoint-inV V1 ‘ matching-i 1 M =
{ v. 3 e € matching-i 1 M. endpoint-inV V1 e = v } by auto

lemma matching-i-arcs-as-sets:
edge-as-set ‘ matching-i 1 M =
{ el. 3 e € matching-i i M. edge-as-set e = el} by auto

lemma matching-disjointness:
assumes matching G M
assumes el € M
assumes e2 € M
assumes el # e2
shows edge-as-set el N edge-as-set e2 = {}
using assms
by (auto simp add: edge-as-set-def disjoint-arcs-def matching-def)

lemma expand-set-containment:
assumes matching G M
assumes ¢ € M
shows e € arcs G
using assms
by (auto simp add:matching-def)

16

theorem injectivity:

assumes is-m: matching G M

assumes el-in-M1: el € matching-i 1 M

and e2-in-M1: e2 € matching-i 1 M

assumes diff: (el # e2)

shows endpoint-inV {v € V. L v = 1} el # endpoint-inV {ve V.Lv=1}
e2
proof —

from el-in-M1 have el € M by (auto simp add: matching-i-def)

moreover

from e2-in-M1 have e2 € M by (auto simp add: matching-i-def)

ultimately

have disjoint-edge-sets: edge-as-set el N edge-as-set e2 = {}

using diff is-m matching-disjointness by fast

then show ?thesis by (auto simp add: edge-as-set-def endpoint-inV-def)

qed

lemma card-M1-le-NVL1:
assumes matching G M
shows card (matching-i 1 M) < N (verts G) L 1
proof —
let ?f = endpoint-inV {v € verts G. L v = 1}
let ?A = matching-i 1 M
let ?B = {v € verts G. Lv =1}
have inj-on ?f ?A using assms injectivity
unfolding inj-on-def by blast
moreover have ?f ¢ A C ?B
proof —
{
fix e assume e € matching-i 1 M
hence ¢ € arcs G
using assms by (auto simp add: matching-def matching-i-def)
with <e € matching-i 1 M)
have endpoint-inV {v € verts G. Lv =1} e € {v € verts G. Lv = 1}
using assms
by (auto simp add: endpoint-inV-def matching-i-def intro: tail-in-verts
head-in-verts)
}
then show ?thesis using assms definition-of-range by blast
qed
moreover have finite B by simp
ultimately show ?thesis unfolding N-def by (rule card-inj-on-le)
qed

lemma edge-as-set-inj-on-Mi:
assumes matching G M
shows inj-on edge-as-set (matching-i ¢ M)
using assms
unfolding inj-on-def edge-as-set-def matching-def

17

disjoint-arcs-def matching-i-def
by blast

lemma card-edge-as-set- Mi-twice-card-partitions:
assumes matching G M N i > 1
shows 2 x card (edge-as-set‘matching-i i M)
= card (V-ii M) (is 2 * card ?C = card ?Vi)
proof —
from assms have I: finite (| ?C)
by (auto simp add: matching-def
matching-i-def edge-as-set-def finite-subset)
show ?thesis unfolding V-i-def
proof (rule card-partition)
show finite ?C using 1 by (rule finite-UnionD)
next
show finite (U ?C) using 1 .
next
fix ¢ assume ¢ € ?C then show card ¢ = 2
proof (rule imageF)
fix z
assume 2: ¢ = edge-as-set ¢ and 3: x € matching-i i M
with assms have z € arcs G
unfolding matching-i-def matching-def by blast
then have tail G x # head G z using assms 3 by (metis no-loops)
with 2 show %thesis by (auto simp add: edge-as-set-def)
qed
next
fix z1 22
assume /4: z1 € ?C and 5: 22 € ?C and 6: z1 # z2
{
fix el e2
assume 7: x1 = edge-as-set el el € matching-i i M
2 = edge-as-set e2 e2 € matching-i i M
from assms have matching G M by simp
moreover
from 7 assms have el € M and e2 €¢ M
by (simp-all add: matching-i-def)
moreover from 6 7 have el # e2 by blast
ultimately have 21 N 22 = {} unfolding 7
by (rule matching-disjointness)
}

with / 5 show z1 N 22 = {} by clarsimp
qed
qed

lemma card-Mi-twice-card-Vi:

assumes matching G M N i > 1

shows 2 x card (matching-i i M) = card (V-i i M)
proof —

18

show ?thesis
by (metis assms card-edge-as-set-Mi-twice-card-partitions
edge-as-set-inj-on-Mi card-image)
qed

lemma card-Mi-le-floor-div-2-Vi:
assumes matching G M N i > 1
shows card (matching-i i M) < (card (V-i i M)) div 2
using card-Mi-twice-card-Vi[|OF assms]
by arith

lemma card-Vi-le-NVLi:
assumes i>1 A matching G M
shows card (V-i i M) < N (verts G) L i
unfolding N-def
proof (rule card-mono)
show finite {v € verts G. L v = i} using assms
by (simp add: matching-def)
next
let ?A = edge-as-set ‘ matching-i i M
let 2C = {v € verts G. L v = i}
show V-i i M C ?C using assms unfolding V-i-def
proof (intro Union-least)
fix X assume X € 74
with assms have Jz € matching-i « M. edge-as-set © = X
by (simp add: matching-i-arcs-as-sets)
with assms show X C 2C
unfolding matching-def
matching-i-def edge-as-set-def by (blast intro: tail-in-verts head-in-verts)
qed
qed

lemma card-Mi-le-floor-div-2-NVLi:
assumes matching G M N i > 1
shows card (matching-i i M) < (N (verts G) L i) div 2
proof —
from assms have card (V-ii M) < (N (verts G) L i)
by (simp add: card-Vi-le-NVLi)
then have card (V-i i M) div 2 < (N (verts G) L i) div 2
by simp
moreover from assms have
card (matching-i i M) < card (V-ii M) div 2
by (intro card-Mi-le-floor-div-2-Vi)
ultimately show ?thesis by auto
qed

lemma card-M-le-sum-card-Mi:

assumes matching G M and OSC G L
shows card M < (3 i € Léverts G. card (matching-i i M))

19

(is card - < ?CardMi)
proof —
let ?2UnMi = Jx € Lverts G. matching-i x M
from assms have 1: finite UnMi
by (auto simp add: matching-def matching-i-def finite-subset)
{
fix e assume e-inM: e € M
let ?v = relevant-endpoint e
have 1: e € matching-i (L ?v) M using assms e-inM
proof cases
assume L (tail G) = 1
thus ?thesis using assms e-inM
by (simp add: relevant-endpoint-def matching-i-def)
next
assume a: L (tail G e) # 1
have L (tail Ge) =1V L (head G e) = 1
V (L (tail G e) = L (head G €) AN L (tail G e) >1)
using assms e-inM unfolding OSC-def
by (auto intro: expand-set-containment)
thus “thesis using assms e-inM a
by (auto simp add: relevant-endpoint-def matching-i-def)
qed
have 2: %v € verts G using assms e-inM
by (auto simp add: matching-def relevant-endpoint-def intro: tail-in-verts
head-in-verts)
then have 3 v € verts G. e € matching-i (L v) M using assms 1 2
by (intro bexI)
}
with assms have M C ?UnMi by (auto)
with assms and 1 have card M < card ?UnMi by (intro card-mono)
moreover from assms have card ?UnMi = ?CardMi
proof (intro card-UN-disjoint)
show finite (L‘verts G) by simp
next
show Vi€ L verts G. finite (matching-i i M) using assms
using finite-arcs
unfolding matching-def matching-i-def
by (blast intro: finite-subset finite-arcs)
next
show Vi € Lverts G.Vj € Lverts G. i # j —
matching-i © M 0 matching-i j M = {} using assms
by (auto simp add: matching-i-def)
qed
ultimately show ?thesis by simp
qed

theorem card-M-le-weight-NVLi:

assumes matching G M and OSC G L
shows card M < weight {i € L ‘wverts G. i > 1} (N (verts G) L) (is - < ?W)

20

proof —
let 2M01 = > i|i € L ‘wverts G A (i=1 V i=0). card (matching-i i M)
let ?Mgrl = > il i € L ‘verts G A 1 < i. card (matching-i i M)
let ?Mi =Y i€L ‘verts G. card (matching-i i M)
have card M < ?Mi using assms by (rule card-M-le-sum-card-Mi)
moreover
have ?Mi < ?2W
proof —
let PA={i €L ‘verts G. i =1V i=10}
let 2B ={i € L ‘verts G. 1 < i}
let 29 = X i. card (matching-i i M)
let ?set01 = {i.i:L ‘verts G& (i =1]1i=0)}
have a: L ‘wverts G = ?A U ?B using assms by auto
have b: setsum ?g (?A U ?B) = setsum ?g ?A + setsum ?g ?B
by (auto intro: setsum.union-disjoint)
have 1: ?Mi = ?M01+ ?Mgrl using assms a b by simp
moreover
have 0: card (matching-i 0 M) = 0 using assms
by (simp add: matching-i-def)
have 2: ?M01 < N (verts G) L 1
proof cases
assume a: 1 € L ‘verts G
have ?M01 = card (matching-i 1 M)
proof cases
assume b: 0 € L ‘verts G
with a assms have 2set01 = {0, 1} by blast
thus ?thesis using assms 0 by simp
next
assume b: 0 ¢ L ‘verts G
with a have %set01 = {1} by (auto simp del:One-nat-def)
thus ?thesis by simp
ged
thus ?thesis using assms a
by (simp del: One-nat-def, intro card-M1-le-NVL1)
next
assume a: 1 ¢ L ‘verts G
show ?thesis
proof cases
assume b: 0 € L ‘verts G
with a assms have ?Zset01 = {0} by (auto simp del:One-nat-def)
thus ?thesis using assms 0 by auto
next
assume b: 0 ¢ L ‘verts G
with a have %set01 = {} by (auto simp del:One-nat-def)
then have ?M01 = (> i€{}. card (matching-i i M)) by auto
thus ?thesis by simp
qed
qged
moreover

21

have 3: ?Mgr1 < (D" i|lieL ‘wverts G A 1 < i. N (verts G) L i div 2)
using assms
by (intro setsum-mono card-Mi-le-floor-div-2-NVLi, simp)
ultimately
show ?thesis using 1 2 8 assms by (simp add: weight-def)
qed
ultimately show ?thesis by simp
qed

theorem mazimum-cardinality-matching:
matching G M' — card M’ < card mazM
using card-M-le-weight-NVLi OSC matching weight
by simp

end
end
theory Graph-Checker- Witness-Properties
imports
Connected-Components
Shortest-Path-Theory
Shortest-Path- Arbitrary-Edge-Costs
Matching
begin

end

22

