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ABSTRACT 

 

Background: The diagnosis of probable behavioural variant of fronto-temporal dementia 

(bvFTD) according to current criteria requires the imaging evidence of frontal and/or anterior 

temporal atrophy or hypoperfusion/hypometabolism. Different variants of this pattern of brain 

involvement may, however, be found in individual cases, supporting the presence of 

heterogeneous phenotypes. Objective: We examined in a case-by-case approach the FDG-

PET metabolic patterns of patients fulfilling clinical criteria for probable bvFTD, assessing the 

presence and frequency of specific FDG-PET features. Materials and Methods: 52 FDG-

PET scans of probable bvFTD patients were retrospectively analysed together with clinical 

and neuropsychological data. Neuroimaging experts rated the FDG-PET hypometabolism 

maps obtained at the single-subject level with optimized voxel-based Statistical Parametric 

Mapping (SPM). The functional metabolic heterogeneity was further tested by hierarchical 

cluster analysis and principal component analysis. Results: Both the SPM maps and cluster 

analysis  identified  two  major  variants  of  cerebral  hypometabolism,  namely  the  “frontal”  and  

the  “temporo-limbic”,  which were correlated with different cognitive profiles. Executive and 

language  deficits  were  the  cognitive  hallmark  in  the  “frontal”  subgroup,  while  poor  encoding  

and recall on long-term memory tasks was typical of the  “temporo-limbic”  subgroup. 

Discussion: SPM single-subject analysis indicates distinct patterns of brain dysfunction in 

bvFTD, coupled with specific clinical features, suggesting different profiles of 

neurodegenerative vulnerability. These findings have important implications for the early 

diagnosis of bvFTD and for the application of the recent international consensus criteria. 
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1. Introduction 

 

Diagnostic precision in dementia, particularly in the very early disease phase, highly 

depends on the presence of stringent syndromic symptoms and on the availability of valid 

information from disease biomarkers. The quest for accurate early and differential diagnosis 

in the field of fronto-temporal dementia (FTD) prompted the development of new criteria for 

the diagnosis of the main FTD subtypes (Rascovsky et al., 2011; Gorno-Tempini et al., 2011). 

In particular, an international consensus of experts provided a set of validated criteria for the 

diagnosis of the behavioural variant of fronto-temporal dementia (bvFTD) (Rascovsky et al., 

2011), which have been quickly adopted both in research and clinical settings. These criteria 

define  three  levels  of  certainty:  ‘‘possible’’,  ‘‘probable’’,  and  ‘‘with  definite  fronto-temporal lobar 

degeneration  (FTLD)  pathology’’,  according  to  the  presence  of  supportive  features  to  

diagnosis. While the certainty of diagnosis is limited to cases with histopathological 

confirmation or in vivo evidence of a pathogenic gene mutation associated with FTLD, the 

“probable”  level  of  diagnostic  certainty  is  reached  in  the  presence  of from three up to six 

clinically discriminating features, with evidence of progression with functional disability, and 

supported by the identification of neuroimaging changes consistent with bvFTD. 

While the new criteria are based on a flexible combination of clinical diagnostic features 

that might accommodate different initial clinical presentations, the imaging features required 

for the diagnosis of bvFTD are rather  broad  and  unspecific.  The  presence  of  “frontal  and  

anterior  temporal  lobe  atrophy  and/or  hypometabolism”  on  brain  imaging  is  the  only  

requirement (Rascovsky et al., 2011). Damage to the frontal lobes, however, is present in 

other  dementia  conditions,  such  as  the  frontal  variant  of  Alzheimer’s  disease  (AD)  and  
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progressive supranuclear palsy, while anterior temporal lobe dysfunction characterizes the 

semantic variant of primary progressive aphasia.  

It is increasingly recognized that bvFTD is a heterogeneous clinical syndrome resulting 

from a variable combination of key symptoms (e.g., dysexecutive syndrome, social cognition 

disorders and behavioural changes) and additional cognitive (e.g., memory or language 

disorders) or clinical (e.g., parkinsonism or motor neuron dysfunction) features (Piguet et al., 

2011; Hornberger & Piguet, 2012; Cerami & Cappa, 2013). 

Consistent but scattered evidence accumulated in the last 20 years supports the presence 

of different FDG-PET imaging findings in bvFTD (see Perani, 2008; Cerami & Cappa, 2015; 

Cerami et al., 2015). In particular, FDG-PET imaging studies at the group level analysis 

reported an early metabolic damage of the limbic system, in line with the well-known selective 

disease-specific vulnerability of the frontal basal-insular-temporal networks (Seeley et al., 

2012), and with the dysfunction of the connected subcortical structures (Salmon et al., 2003; 

Grimmer et al., 2004; Ibach et al., 2004; Franceschi et al., 2005; Jeong et al., 2005; Schroeter 

et al., 2008; Seeley et al.,  2008).  

FDG-PET neuroimaging is considered to be more sensitive than conventional MRI at the 

individual level, and, crucially, at the earliest disease phase, allowing an early support to the 

diagnosis of neurodegeneration (Perani et al., 2014, 2016; Kerklaan et al., 2014; Jacova et 

al., 2013). Conventional MRI per se has low sensitivity in bvFTD (Perani et al., 2016; Kipps et 

al., 2007), and the application of voxel-based methods (e.g., Statistical Parametric Mapping–

SPM) for the analysis of FDG-PET imaging data is showing its fundamental role to improve 

the diagnostic accuracy at the individual level (Perani et al., 2014; Frisoni et al., 2013). 

Recently, a FDG-PET SPM method has been validated for the detection of specific metabolic 
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patterns associated with different neurodegenerative conditions, including the FTLD spectrum 

(Perani et al., 2014, 2016).  

While the clinical heterogeneity has been reported in patients belonging to research and 

clinical settings, the associated case-to-case variability in functional metabolic patterns has 

not been explored yet. Although some authors previously proposed possible classifications for 

bvFTD based onto distinct anatomical subtypes, as revealed by brain MRI or FDG-PET 

imaging studies (Whitwell et al., 2009; Salmon et al., 2006), these reports are based only on 

group level classifications not allowing the detection of cognitive-functional bvFTD endo-

phenotypes at the individual level.  

In the present study, we aimed to evaluate in a large retrospective study of probable 

bvFTD patients (n=52) the consistency of the individual clinical profiles and the case-to-case 

variability in FDG-PET imaging patterns, as assessed by an optimized voxel-based method 

already validated and standardized at the single-subject level (Della Rosa et al., 2014; Perani 

et al., 2014, 2016).  

 

2. Materials and Methods 

 

2.1 Participants  

The sample included subjects belonging to the database of the Neurology Centres for 

Cognitive Disorders of San Raffaele Hospital (Milan, Italy), referred as suspected bvFTD to 

the Nuclear Medicine Department of San Raffaele Hospital for an FDG-PET scan in the years 

between 2011 and 2014 and fulfilling Rascovsky criteria (Rascovsky et al., 2011) for 

“probable  bvFTD”. It means that we included only patients with at least three 
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behavioural/cognitive symptoms from Rascovsky et al. (2011), significant functional decline 

and imaging results consistent with bvFTD. Patients carrying known autosomal dominant 

gene mutations as well as subjects presenting signs or symptoms of motor neuron 

dysfunction were excluded from the present study.  

The entire clinical (medical history, neurological examination and neuropsychological 

assessment) data and the available information on CSF and imaging biomarkers (MRI and 

FDG-PET), acquired at baseline, were considered by three neurologists (SI, GM, AM) expert 

in dementia diagnosis in making the clinical diagnosis. A follow-up of two-years was also 

considered in each case.  

From an initial set of 64 individuals, twelve subjects were excluded since 5 patients were 

classified by the experts as early-onset AD, 2 as bvFTD with Amyotrophic Lateral Sclerosis, 2 

as phenocopy bvFTD syndrome, and 3 as “possible bvFTD”  (but not “probable”). On this 

basis, 52 cases finally were included in the study (age = 69.57±8.01 years; education = 

10.9±4.5 years; CDR sum of boxes = 5.15±2.86; disease duration = 30.9±21.7 months; 

MMSE raw score = 22.4±5.7). A family history of neuropsychiatric conditions was reported by 

the majority of patients. See Table 1 for demographic and clinical details.   

The neuropsychological battery administered at the time of the initial diagnosis included 

measures of global cognitive efficiency (i.e., Mini Mental State Examination), memory (i.e., 

Digit Span Forward, immediate and delayed recall of Rey Auditory Verbal Learning, recall of 

copy of the Rey-Osterrieth figure), attention and executive functions (i.e., Attentional Matrices, 

Raven Colored Progressive Matrices; Digit Span backward; letter (P-F-L) and category 

(animals-fruits-car brands) fluency tests; Cognitive Estimation Test; Stroop Interference Test 

or Wisconsin Card Sorting Test), language abilities (i.e., Token test, picture naming and 

single word comprehension tests) and visuo-spatial abilities (i.e., copy of the Rey-Osterrieth 
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figure). Standardized neuropsychological measures assessing social cognition abilities 

(Serafin & Surian, 2004; Dodich et al., 2014, 2015) were also obtained in 33% of the patients. 

Behavioural changes were assessed with caregiver questionnaires (e.g., Neuropsychiatric 

Inventory (Cummings et al., 1994) and Frontal Behavioural Inventory (Alberici et al., 2007)).  

Conventional MRI was available in all cases to exclude the presence of white matter hyper 

intensities and lacunes of presumed vascular origin. On the basis of the neuroradiology 

report, only moderate or mild fronto-temporal atrophy was present in about the half of the 

sample (n=22/52), with relative asymmetric atrophy pattern in some cases. No evidence of 

relevant changes was reported at the conventional MRI assessment in 30 cases. FDG-PET 

scan was obtained in each included case as part of the diagnostic algorithm performed in our 

academic centre.  CSF  β-Amyloid, Tau and p-Tau values were also sampled whenever 

possible  (i.e.,  34/52  patients).  As  expected,  β-Amyloid and Tau changes typical of AD (i.e., 

low  β-Amyloid and high phospho- or total-Tau levels) were not found in any of these cases. 

All subjects, or their informants/caregivers, gave written informed consent to the 

experimental procedures previously approved by the Ethical Committee of San Raffaele 

Hospital.  

 

2.2 FDG-PET imaging acquisition and pre-processing 

FDG-PET acquisitions were performed in the early disease phase at the time of the 

initial clinical evaluation at the Nuclear Medicine Unit, San Raffaele Hospital (Milan, Italy) 

according to the guidelines of the European Association of Nuclear Medicine (EANM) 

following standardized procedures (Morbelli et al., 2012; Varrone t al., 2009). Before 

radiopharmaceutical injection of FDG (185–250 Mbq: usually, 5-8 mCi via a venous cannula), 
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subjects were fasted for at least 6 hours and their blood glucose level was <120 mg/dL. All 

images were acquired with a Discovery STE (GE Medical Systems, Milwaukee, WI) multi-ring 

PET tomography (PET-CT) system (time interval between injection and scan start = 45 

minutes; scan duration = 15 minutes). For each PET scan, 47 transaxial tomographic slices of 

4.25 mm were acquired. Images were reconstructed using an ordered subset expectation 

maximization (OSEM) algorithm. Attenuation correction was based on CT scan. Specific 

software integrated in the scanner was used for scatter correction. All subjects gave written 

informed consent, following detailed explanation of the FDG-PET procedure.  

Image processing and statistical analysis were performed according to standardized and 

validated procedures (Della Rosa et al., 2014; Perani et al., 2014, 2016). In particular, 

normalization procedure was performed at the single-subject level to a dementia-specific 

SPM FDG-PET template (Della Rosa et al., 2014). Each patient scan was then tested for 

relative  “hypometabolism”  based  on  a  validated  procedure  that  includes  comparison  with  a  

large normal image database (n=112) of FDG-PET images on a voxel-by-voxel basis (Perani 

et al., 2014). Age was included as a covariate. Proportional scaling was used to remove inter-

subject global variation in PET intensities. The threshold was set at p=0.05, FWE-corrected 

for multiple comparisons at the voxel level. Only clusters containing more than 100 voxels 

were deemed to be significant.  

Whole-brain group analysis (i.e., two-sample t-test) was done to evaluate the FDG-PET 

hypometabolic patterns in bvFTD subgroups (see results) compared with the normal image 

database (n=112) of FDG-PET images, including age as covariate. The threshold was settled 

at p<0.05 FWE-corrected with a minimum cluster size of 100 voxels.  

Finally, to explore the commonalities in the FDG-PET hypometabolic patterns of the 

resulting bvFTD subgroups, we computed a conjunction analysis between the statistical maps 
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representing the significant hypometabolism of the metabolic variants resulting from cluster 

analysis (Nichols et al., 2005). The threshold is settled at p<0.05 FWE corrected, minimal 

cluster extent = 100. 

 

2.3 FDG-PET images rating 

Three raters (CC, LG, DP), with an extensive experience in the neuroimaging of dementia, 

blinded to clinical-neuropsychological data, biomarkers information and clustering analysis 

classification assessed the voxel-based SPM hypometabolic maps of each bvFTD patient 

(see examples of FDG-PET SPM single-subject maps in Figure 1). They were only informed 

that the study included patients who had a clinically confirmed diagnosis of “probable bvFTD”.  

Before the study, each rater followed a training session to familiarize with the materials 

provided and the requested evaluation procedure. For this training, we used the FDG-PET 

SPM maps of 3 patients with a diagnosis of possible bvFTD, which were excluded from the 

experimental data set. The procedure adopted for the training was the same used in previous 

published studies (Perani et al., 2014, 2016). 

The raters were then independently presented with the FDG-PET SPM maps for each 

subject. Each image was displayed in a 5x5 matrix of transaxial images (i.e. 25 axial slices) 

from rostral to ventral brain sections in neurological convention. Each axial slice covered 4 

mms on the z-axis ranging from -40 to +56. SPM maps showed statistically significant 

reductions of metabolism with the significant t-values in yellow/red scale. Raters were first 

instructed to report details on brain hypometabolism, including the involved brain lobes and 

the cortical and subcortical structures, and to decide whether the hypometabolic pattern was 

bilateral or asymmetrical (i.e., > left or > right hemisphere). Finally, they were asked to group 

the FDG-PET SPM maps according to the regional distribution of brain hypometabolism. This 



10 
 

resulted in two FDG-PET SPM patterns, categorized as, respectively, prevalent dorsolateral 

frontal and temporo-limbic involvement (see examples of FDG-PET SPM maps on Figure 1).  

 

2.4 Cluster and principal component analyses 

Preliminarily, we selected the region of interests (ROIs) for the cluster analysis from AAL 

(Tzourio-Mazoyer et al., 2002) and IBASPM116 Atlas (Alemán-Gómez et al., 2006). The 

regions of relative hypometabolism in the single-subject SPM maps were: dorsolateral, medial 

frontal, ventromedial and orbitofrontal cortices, anterior/middle cingulate cortex (ACC/MCC), 

insula, temporal pole, hippocampal structures, amygdala, superior, middle and inferior 

temporal gyrus, posterior cingulate cortex, nucleus accumbens, caudate, and thalamus 

bilaterally. A hierarchical agglomerative cluster analysis was performed by a researcher (AD), 

blind to both clinical-neuropsychological information and FDG-PET SPM rating, following the 

procedure applied by Whitwell et al. (2009) using the  Ward’s  clustering  linkage  method  of  

combining clusters. Such hierarchical method gives a sequence of nested clusters and allows 

the researcher to choose the number of clusters to work with. Additionally, we used principal 

component analysis (i.e., PCA) to validate the results of clustering analysis.  

 

2.5 Statistical comparisons 

Demographic, clinical and neuropsychological variables were compared among bvFTD 

subgroups (see results). Demographic-corrected scaled neuropsychological scores were 

used for statistical comparisons. Since executive functions were evaluated in single cases 

either with the Wisconsin Card Sorting Test or with the Stroop Colour-Word Test, we 

compared  patients’  performances  by  classifying  them  as  normal  or  impaired  according  to  the  
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Italian normative standards (Caffarra et al., 2004; Venturini et al., 1983). Pearson Chi-squared 

statistic was used in order to compare the distribution of cognitive disorders between 

subgroups. Additionally, we correlated neuropsychological data and PCA scores. Correlation 

analyses between social cognition performances and PCA scores were not performed 

because of the poor number of patients tested (approximately 33% of the entire sample). Due 

to the non-normal distribution of neuropsychological data we used non parametric statistics 

(i.e., Wilcoxon rank-sum, Mann–Whitney U-tests and Spearman rho index). The results were 

corrected for multiple comparisons using false discovery rate (FDR). Statistical analyses were 

performed Cohen’s  κ  coefficient  was  used  to  evaluate  the  inter rater agreement between 

FDG-PET experts with the SPSS software.  

 

3. Results 

 

3.1 FDG-PET SPM maps rating 

The neuroimaging expert raters split the bvFTD sample into two subgroups according to 

the functional metabolic patterns. Notably, the raters identified either  a  predominant  “frontal”  

or a  predominant  “temporo-limbic”  FDG-PET  pattern.  The  “frontal”  pattern  was  characterized  

in each individual by a widespread hypometabolism in the prefrontal cortex (i.e., dorsolateral, 

medial and ventromedial frontal). In  contrast,  the  “temporo-limbic”  pattern by a predominant 

hypometabolism in the temporal lobes, including temporal poles, hippocampal structures and 

amygdala, and lateral temporal cortex with a selective sparing of the dorsolateral prefrontal 

cortex. Both pattern subgroups shared a common hypometabolic pattern within the limbic 

system (i.e., anterior/middle cingulate cortex (ACC/MCC), ventromedial frontal cortex, and 
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insula), the basal ganglia (i.e., nucleus accumbens and caudate) and thalamus. In addition, a 

minority of patients showed hypometabolism in the posterior cingulate cortex, probably due to 

neural disconnection. Inter-rater agreement  within  the  experts’  classifications  for  the  FDG-

PET  imaging  resulted  in  an  “almost  perfect  agreement”  (κ>0.85).   

Notably, there was also a case-to-case variability in the FDG-PET SPM maps at individual 

level. Expert raters reported indeed variable extent and degree of hypometabolism both in the 

“frontal”  and  the  “temporo-limbic”  metabolic patterns. This heterogeneity, however, particularly 

characterized  the  “temporo-limbic”  subgroup.  While  the  most of  “temporo-limbic”  patients  

showed a selective or predominant reduction of brain metabolism in the limbic system 

structures, a minority of such patients showed a major damage in the lateral portions of the 

temporal cortex.  

A prevalent right hemispheric asymmetry (i.e., right > left hypometabolism) was present 

in a high proportion of cases (~40%) belonging to both subgroups. 

See examples of “frontal”  and  “temporo-limbic”  FDG-PET SPM single-subject patterns on 

Figure 1.  

 

3.2 Cluster and principal component analyses 

Two clusters of comparable size (cluster #1, n=27 and cluster #2, n=25) emerged at the 

final step of the cluster analysis (Figure 2 and 3). This two-cluster level defined divergent 

FDG-PET patterns corresponding to those recognized by the expert raters at the evaluation of 

the FDG-PET SPM single-subject maps. The conjunction analysis between the patterns of 

brain hypometabolism of patients belonging to the two clusters revealed areas of regional 

commonalities involving the ACC/MCC, the superior medial frontal gyrus, the ventromedial 
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frontal cortex extending to orbitofrontal cortex, the insula, the nucleus accumbens and the 

thalamus bilaterally (Figure 2).  

Notwithstanding the above-mentioned two final clear-cut divergent FDG-PET SPM 

patterns, four additional sub-clusters were evident at the preceding step of the cluster 

analysis (Figure 3). By revising the SPM maps of the single included cases, we found that the 

four-cluster level was further informative on the asymmetry and topographical distribution of 

the brain  glucose  metabolism.  In  particular,  patients  within  the  “temporo-limbic”  subgroup was 

subdivided by clustering into two sub-clusters according to the predominant involvement of 

limbic structures (n=20) or lateral temporal cortex (n=7) (see Figure 1 and 3). Patients within 

the  “frontal”  subgroup were split according to the symmetric or left-predominant (n=16) or 

right-predominant (n=9) hypometabolism in the dorsolateral prefrontal cortex (Figure 3).  

The first four principal components of the PCA analysis were represented by: 1) the 

bilateral frontal lobes, 2) the right and 3) the left temporal lobes, and 4) the subcortical brain 

structures. They captured the 80% of the variance and can thus be considered as the best 

dimensional representations of the full data set. The first three components well distinguished 

the two bvFTD clusters, further validating the identification of the different metabolic profiles 

(Figure 4).  

 

3.3 Behavioural and neuropsychological profiles  

“Frontal”  and  “temporo-limbic”  metabolic subgroups did not differ in gender and education, 

global cognitive efficiency and clinical severity (Table 1). The  “temporo-limbic”  subgroup was 

significantly older and with a longer disease duration (Table 1). 
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Although at the time of the initial clinical evaluation (baseline), all bvFTD patients showed 

behavioral disturbances, in some cases the first/presenting symptom was not of behavioral-

type (see Table 1). In such cases, behavioral alterations appeared some months after the 

onset of cognitive impairments (i.e., anomia, memory disorders or prosopagnosia). Such 

cognitive presenting symptoms differed between the two subgroups. Language symptoms 

(i.e.,  word  finding  difficulties)  were  present  only  in  the  “frontal”  subgroup, while memory 

difficulties only  in  the  “temporo-limbic”  subgroup (Table 1).  

Disinhibition and apathy were simultaneously present in the majority of patients belonging 

to both subgroups (i.e., 56% “frontal”  and  67% “temporo-limbic” patients), while isolated 

apathy  was  prevalent  in  the  “frontal”  (i.e.,  40%)  compared  to  the  “temporo-limbic”  subgroup 

(i.e.,  26%).  Isolated  disinhibition  was  present  only  in  the  “temporo-limbic”  subgroup (i.e., 7%).  

Scores at the executive and fluency tasks, as well as the performance in the immediate 

recall of the Rey auditory verbal learning test (RAVLT), were  significantly  lower  in  the  “frontal”  

subjects  compared  to  the  “temporo-limbic”  (Table  2).  No  significant  difference  on  delayed  

recall was found between the two subgroups. After controlling for levels of immediate recall, 

however, the number of patients with selectively impaired delayed recall was significantly 

higher  in  the  “temporo-limbic”  subgroup  (i.e.,  4%  “frontal”  vs.  19%  “temporo-limbic”  subjects; 

χ2(1) = 4.72, p<0.05) (Table 2).  

Loss in empathy/sympathy skills were reported by caregivers in the majority of patients 

(i.e., 72% and 70%). Standardized socio-emotional tasks were available only for a part of the 

patients (i.e., 32% and 33%). Severe deficits in emotion recognition and empathy/theory of 

mind abilities were present in patients belonging to both subgroups. Notably, all the “temporo-

limbic”  patients  that were tested were impaired.  
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3.4 Correlation analysis  

Correlation analyses between neuropsychological data and PCA scores revealed 

significant negative correlations between the first PCA component (i.e., bilateral frontal lobes) 

and attentional matrices (r = -0.486, p=0.008), semantic (r = -0.363, p<0.05), phonemic verbal 

fluency (r = -0.451, p<0.01), digit span forward (r = -0.424  p<0.01),  Raven’s  progressive  

matrices (r = -0.306, p<0.05) and RAVLT immediate recall (r = -0.413, p<0.05).  

 

4. Discussion 

 

In this study, we assessed FDG-PET metabolic patterns at the individual level in a large 

sample of probable bvFTD patients, testing for the presence of specific metabolic signatures 

supporting the existence of subgroups. FDG-PET scans were analysed in single subjects with 

a standardized and validated SPM voxel-based method (Della Rosa et al., 2014; Perani et al., 

2014, 2016). The raters, blinded to clinical information, identified two major and different 

metabolic patterns, namely, a widespread hypometabolism in the prefrontal cortex and a 

predominant hypometabolism of limbic structures and temporal lobe with selective sparing of 

the dorsolateral prefrontal cortex. The analysis of cognitive and behavioural profiles indicated 

commonalities as well as differences between the two subgroups. We observed longer 

disease  duration  and  an  older  age  at  the  time  of  diagnosis  in  the  “temporo-limbic”  group,  

suggesting a more benign neurodegenerative course in these subjects. 

Previous neuroimaging studies indicate an overall consistency in neuroanatomical 

subtyping of bvFTD in subgroups with prevalent frontal or temporal involvement (e.g., Salmon 

et al., 2003, 2006; Whitwell et al., 2009, 2011, 2013), and with a relative asymmetry or 
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symmetry in the pattern of brain damage (Salmon et al., 2003, 2006; Whitwell et al., 2009, 

2013; Josephs et al., 2009). This has suggested different pathological substrates, leading to 

specific neuroanatomical endo-phenotypes (Whitwell et al., 2012; Snowden et al., 2015). The 

present FDG-PET metabolic study adds further evidence, with a measure of early neural 

dysfunction at single-subject level, to the previous findings largely based on measures of late 

structural changes, such as MRI atrophy, at a group level. It further indicates that a possible 

bvFTD classification based on the recent diagnostic criteria (Rascovsky et al. 2011) is 

compatible with different clinical-neuropsychological phenotypes that are related to specific 

FDG-PET patterns at the individual level.   

The analyses of metabolic changes and cognitive profiles in these two metabolic 

subgroups suggest different network vulnerability associated with specific neuropsychological 

features. Notably, the significantly lower executive  and  fluency  scores  in  the  “frontal”  

subgroup are correlated to the predominant hypometabolism in the prefrontal cortex, whereas 

the  medial  temporal  lobe  hypometabolism  in  the  “temporo-limbic”  patients  accounted  for  the  

presence of delayed recall deficits in memory testing. These anatomo-clinical findings might 

explain previous evidence indicating that bvFTD patients may present with memory deficits 

comparable to those of AD (Hornberger & Piguet, 2012; Bertoux et al., 2014, 2015; Irish et al., 

2013, 2014). In particular, Bertoux and colleagues (2014) showed that not even the 

performance on cued recall tasks (i.e., Free Cued Selective Reminding Task) can differentiate 

bvFTD from AD patients. Half of their bvFTD sample had indeed impaired free and total (free 

+ cued) recall, and delayed recall performances as severely impaired as AD patients. Notably, 

the authors questioned the utility of episodic memory assessment in the differential diagnosis 

between bvFTD and AD (Bertoux et al., 2015). Further studies, however, focused on 
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comparison of episodic memory performances between bvFTD subgroups with different FDG-

PET metabolic profiles and typical AD patients, will contribute in clarifying this issue.  

A  subset  of  “temporo-limbic”  patients  (n=7)  showed  a  major  involvement  of  the  lateral  

temporal cortex, mainly on the right side (Figure 1 and 3). This dysfunctional pattern is 

compatible with the definition of the right temporal variant of FTD (Josephs et al., 2009). The 

clinical profiles of the patients with lateral temporal cortex hypometabolism in our series 

include prosopagnosia, word-finding and comprehension difficulties, and topographical 

disorientation, all typical features of this syndrome (Josephs et al., 2009).  

The presence of a right-hemispheric predominant hypometabolism in our bvFTD sample is 

supported by previous findings of selective involvement of the right frontal basal-insular-

temporal structures in the early stages of this condition (see Seeley et al., 2012 for a review). 

The predominant role of the right temporal and limbic structures in mediating socio-emotional 

cues recognition and processing in bvFTD has been extensively investigated (e.g., Eslinger et 

al., 2011; Lee et al., 2014; Cerami et al., 2014, 2015). A major involvement of limbic 

structures was overall present at the individual level. A common core of metabolic dysfunction 

of the ACC/MCC, the ventromedial frontal cortex, the insula, the nucleus accumbens and the 

thalamus represented the shared dysfunctional feature of the whole bvFTD group (Figure 1 

and 2). This FDG-PET evidence supports the key involvement of brain regions other than the 

reported “frontal  and  anterior  temporal  lobes”  in  probable  bvFTD.  Of note, the insula, a crucial 

component of the large-scale functional salience network involved in socio-emotional 

processing (Ibañez & Manes, 2012), was found to be consistently hypometabolic among the 

patients of our sample.  

Behavioural disorders (i.e., disinhibition and apathy, perseverations, and dietary changes) 

as well as loss of empathy/sympathy did not distinguish between the two subgroups. The 
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shared metabolic involvement in the above-mentioned fronto-limbic structures, core hubs of 

the socio-emotional processing and behaviour controls networks, may explain the lack of 

differences  between  the  “frontal”  and  the  “temporo-limbic”  patients in these main behavioural 

core dimensions. While the present results do not support the classic dichotomy between 

apathetic and disinhibited syndromes in bvFTD, isolated apathy was more frequent in the 

“frontal”  subgroup  and  disinhibition  in  the  “temporo-limbic”  subgroup. This is in accordance to 

the well-established neuroanatomical correlates of these behavioural symptoms. Disinhibition 

is mainly associated with hypometabolism in the interconnected fronto-limbic structures, while 

apathy is mostly related to dorsolateral and medial frontal hypometabolism (Franceschi et al., 

2005; Rosen et al., 2005; Peters et al., 2006; Zamboni et al., 2008; Massimo et al., 2009; 

Hornberger et al., 2011; Schroeter et al., 2011).  

In conclusion, our data indicate the presence of at least two distinct metabolic patterns in 

bvFTD patients at single-subject level, resulting in different cognitive profiles and possibly 

reflecting different pathways of neurodegeneration. In the absence of pathological information 

we cannot speculate on any link to the multiple underlying pathologies that cause bvFTD 

(e.g., Tau or TDP-43 pathology). Specific imaging signatures have been reported in FTLD 

patients according to the pathological substrates (Whitwell et al., 2012; Hornberger et al., 

2012; Warmus et al., 2014; Snowden et al., 2015). In particular, Hornberger et al. (2012) 

showed greater hippocampal loss in FTLD-TDP post-mortem cases compared to those with 

tau pathology, suggesting that episodic memory deficits in conjunction with marked 

hippocampal atrophy may be potential biomarkers for TDP-43 pathology in FTLD. Further 

neuropathological studies are needed to confirm this hypothesis.  

Finally, our findings may contribute to the discussion on the international consensus criteria 

for bvFTD, suggesting that FDG-PET may be useful to define specific imaging profiles related 
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to different clinical presentations (Joseph et al., 2011). This functional metabolic study at the 

single-subject level goes beyond the previous results, which were based on group analysis, 

showing that specific metabolic patterns reflected in different clinical syndromes can be 

observed at the single-subject level. The effective identification in clinical settings of different 

bvFTD endo-phenotypes is critical for management considerations and prognostic 

evaluations.  
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Figure Legend: 

Figure 1. Examples of single-subject FDG-PET  SPM  maps  for  the  two  bvFTD  variants  (i.e.,  “frontal”  and  “temporo-limbic”  
hypometabolic  patterns).  While  the  patients  with  the  “frontal”  pattern  (#1-3) show a widespread damage of the prefrontal 
cortex, either symmetrically (#1) or asymmetrically (#2-3),  the  patients  with  the  “temporo-limbic”  pattern  show  variable  
degrees of hypometabolism in the fronto-limbic structures (i.e., ventromedial and orbitofrontal cortices) and/or the anterior 
lateral temporal cortex, with a relative sparing of the dorsolateral prefrontal cortex (#4-6). Additional involvement of 
subcortical structures is also evident. The threshold is settled at p<0.05 FWE-corrected, minimal cluster extent = 100.  

 

 



31 
 
Figure 2. The upper left panel shows the one-sample t-test FDG-PET  hypometabolic  SPM  map  of  the  “temporo-limbic”  
bvFTD subgroup, the lower left panel the  SPM  map  of  the  “frontal”  subgroup. The right panel shows the hypometabolic SPM 
map resulting from conjunction analysis of the two patterns. All results are overlaid on the SPM structural MNI single-subject 
template and displayed on axial view. For graphical purposes, the threshold is settled at p<0.001 uncorrected, minimal 
cluster extent = 100.   
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Figure 3. This figure reports the dendrogram of the cluster analysis. The closer the distance along the x-axis the greater the 
similarity between the subjects. At the final step, the clustering split the cases into two clusters of comparable size (i.e., 
cluster  #1  (n=27),  i.e.,  “temporo-limbic  pattern”  patients,  and  cluster  #2  (n=25),  i.e.,  “frontal  pattern”  patients).  At  the  step  
before,  these  two  major  clusters  were  split  into  four  clusters:  cluster  #1  into  “limbic  pattern”  (n=20)  and  “temporal  pattern”  
(n=7),  and  cluster  #2  into  “bilateral/left predominant frontal pattern”  (n=16)  and  “right  predominant  frontal  pattern”  (n=9).  
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Figure 4. Scatterplots showing the distribution of patients belonging to FDG-PET clusters #1 and #2 according to the scores 
on the first three components of the PCA. Notably, subjects belonging to the cluster #2  (i.e.,  the  “frontal”  subgroup) showed 
high first principal component scores suggestive of predominant involvement of frontal lobes (left panel), while those 
belonging  to  the  cluster  #1  (i.e.,  the  “temporo-limbic”  subgroup)  a  low first principal component scores and high second (i.e., 
right temporal lobe) and third (i.e., left temporal lobe) principal component scores.  
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Table 1. Demographic and clinical features of the two bvFTD subgroups 
 
 Frontal Temporo-limbic Statistics 
    
Number of subjects 25 27 - 
Gender (female/male) 11/14 12/15 n.s. 
Age in years (mean/st.dev.) 65.96±7.50 72.9±7.083 F<TL * 
Education in years (mean/st.dev.) 11.12±4.51 10.78±4.61 n.s. 
CDR sum of boxes (mean/st.dev.) 4.84±2.06 5.48±3.57 n.s. 
Months  from  symptoms’  onset  at  baseline  (mean/st.dev.) 26.8±13.54 34.81±27.15 n.s. 
MMSE raw score (mean/st.dev.) 22.04±5.76 22.67±5.74 n.s. 

Presenting symptoms (n. of cases) 
Behavior n=16 
Behavior + Language n=8 
Language n=1 

 

Behavior n=11 
Behavior + Memory n=9 
Memory n=6 
Prosopagnosia n=1 

 

- 

Family history of neuropsychiatric conditions (n. of cases) 21 22 n.s. 

History of bipolar syndrome or depression (n. of cases) 4 4 n.s. 

    
Behavioral disinhibition (n. of cases) 1 2  

F≠TL  ∫  * 
 

Apathy or inertia (n. of cases) 10 6 
Both disinhibition and apathy (n. of cases) 14 19 
Loss of empathy or sympathy (n. of cases) 18 19 n.s. 
Perseverative, stereotyped, or compulsive/ritualistic behaviors (n. of cases) 14 20 n.s. 
Hyperorality and dietary changes (n. of cases) 8 9 n.s. 
Executive deficits (n. of cases) 24 16 F≠TL  ₽  * 
Immediate recall memory impairments (n. of cases) 0 0  
Delayed recall memory impairments (n. of cases) 1 5 

F≠TL  §  * 
Both immediate and delayed recall memory impairments (n. of cases) 14 7 
No immediate and delayed recall memory impairments (n. of cases) 8 6  
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CDR = Clinical Dementia Rating Scale; MMSE = Mini Mental State Examination; F = Frontal; TL = Temporo-Limbic; * = p<0.05; n.s. = not significant;  ∫ 
= the comparison between the frequency of subjects with an isolated behavioral symptom (either apathy or disinhibition) and the frequency of subjects 
with  mixed  behavioral  profile  showed  a  significantly  higher  number  of  subjects  with  isolated  apathy  within  the  “frontal”  sub-group; ₽ = the comparison 

between the frequency of subjects with impaired Modified Card Sorting Test or Stroop-Colored Task in the two sub-groups significantly differed, 
namely  the  frequency  of  subjects  with  such  deficit  was  higher  in  the  “frontal”  sub-group; § = the comparison between the frequency of subjects with 

isolated delayed recall deficit and subjects with combined delayed and immediate deficits showed a significantly higher number of subjects with 
isolated delayed recall deficit in the  “temporo-limbic”  sub-group 
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Table 2. Neuropsychological features of the two bvFTD sub-groups 

 Frontal Temporo-limbic Statistics 
    
Number of subjects 25 27 - 
    
FBI (mean/st.dev.) 26±8.29 30.22±8.12 n.s. 
NPI (mean/st.dev.) 26.45±17.61 35.77±21.48 n.s. 
Token task (mean/st.dev.) 22.12±8.16 27.82±5.73 F<TL * 
Semantic verbal fluency (mean/st.dev.) 19.85±10.65 28.84±13.88 F<TL * 
Phonemic verbal fluency (mean/st.dev.) 8±7.16 18.19±9.74 F<TL ** 
Modified Card Sorting Test perseverative errors (mean/st.dev) 13.82±8.34 9.18±6.41 - 
Stroop Colour Task interference score (mean/st.dev.) 39.79±11.86 37.5±44.22 - 
Attentional matrices (mean/st.dev.) 29.60±8.70 37.93±9.47 F<TL** 
Raven matrices (mean/st.dev.) 20.31±6.97 23.65±5.78 n.s. 
Digit forward (mean/st.dev.) 4.18±0.66 5.34±0.87 F<TL *** 
Rey list immediate recall (mean/st.dev.) 21.73±10.43 31.78±12.70 F<TL * 
Rey list delayed recall (mean/st.dev.) 2.79±2.64 6.17±4.85 n.s. 

FBI = Frontal Behavior Inventory; NPI Neuropsychiatric Inventory; F = Frontal; TL = Temporo-Limbic;  
* = p<0.05; ** = p<0.01; *** = p<0.001 n.s. = not significant 

  


