
Handbook

April 10, 2015

Lehrstuhl für Hydromechanik und Hydrosystemmodellierung,

Universität Stuttgart, Paffenwaldring 61, D-70569 Stuttgart, Germany

http://dumux.org

http://dumux.org

Contents

1 Introduction 4

2 Getting started 6
2.1 Quick Installation of DuMux . 6
2.2 Quick Start Guide . 7

3 Tutorial 8
3.1 Fully-Implicit Model . 8
3.2 Decoupled model . 26

4 Structure, Guidelines, New Folder Setup 42
4.1 Directory Structure . 42
4.2 Setup of a New Folder and New Tests . 43
4.3 Parameter Files in DuMux . 46
4.4 Restart DuMux Simulations . 48
4.5 Coding Guidelines . 48

5 The DuMux Property System 51
5.1 Concepts and Features of the DuMux Property System 51
5.2 DuMux Property System Reference . 51
5.3 A Self-Contained Example . 54

6 The DuMux Fluid Framework 57
6.1 Overview of the Fluid Framework . 57
6.2 Fluid States . 58
6.3 Fluid Systems . 60
6.4 Constraint Solvers . 63

7 The DuMux Models 66
7.1 Physical and Mathematical Description . 66
7.2 Implicit Spatial Discretization Schemes . 68
7.3 Available Models . 71

8 The flow of things in DuMux 86
8.1 Structure – by Content . 86
8.2 Structure – by Implementation . 87

9 Newton in a Nutshell 93

2

Contents

10 Tips & Tricks 95
10.1 DuMux- General Remarks . 95
10.2 Developing DuMux . 95
10.3 External Tools . 98

11 Detailed Installation Instructions 100
11.1 Prerequisites . 100
11.2 Obtaining Source Code for DUNE and DuMux . 101
11.3 Building Documentation . 104
11.4 External Libraries and Modules . 104

3

1 Introduction

DuMux aims to be a generic framework for the simulation of multiphase fluid flow and transport
processes in porous media using continuum mechanical approaches. At the same time, DuMux aims
to deliver top-notch computational performance, high flexibility, a sound software architecture and
the ability to run on anything from single processor systems to highly parallel supercomputers with
specialized hardware architectures.

The means to achieve these somewhat contradictory goals are the thorough use of object oriented
design in conjunction with template programming. These requirements call for C++ as the implemen-
tation language.

One of the more complex issues when dealing with parallel continuum models is managing the grids
used for the spatial discretization of the physical model. To date, no generic and efficient approach
exists for all possible cases, so DuMux is build on top of DUNE, the Distributed and Unified Numerics
Environment [12]. DUNE provides a generic interface to many existing grid management libraries
such as UG [24], ALBERTA [2], ALUGrid [3] and a few more. DUNE also extensively uses template
programming in order to achieve minimal overhead when accessing the underlying grid libraries1.

Figure 1.1: A high-level overview of DUNE’s design is available on the project’s web site [12].

DUNE’s grid interface is independent of the spatial dimension of the underlying grid. For this
purpose, it uses the concept of co-dimensional entities. Roughly speaking, an entity of co-dimension
0 constitutes a cell, co-dimension 1 entities are faces between cells, co-dimension 1 are edges, and so
on until co-dimension n which are the cell’s vertices. The DUNE grid interface generally assumes that
all entities are convex polytopes, which means that it must be possible to express each entity as the
convex hull of a set of vertices. For the sake of efficiency, all entities are further expressed in terms of
so-called reference elements which are transformed to the actual spatial incarnation within the grid by
a so-called geometry function. Here, a reference element for an entity can be thought of as a prototype
for the actual grid entity. For example, if we used a grid which applied hexahedrons as cells, the

1In fact, the performance penalty resulting from the use of DUNE’s grid interface is usually negligible [7].

4

1 Introduction

reference element for each cell would be the unit cube [0, 1]3 and the geometry function would scale
and translate the cube so that it matches the grid’s cell. For a more thorough description of DUNE’s
grid definition, see [5].

In addition to the grid interface, DUNE also provides quite a few additional modules, of which the
dune-localfunctions and dune-istl modules are the most relevant in the context of this handbook.
dune-localfunctions provides a set of generic finite element shape functions, while dune-istl is the
Iterative Solver Template Library and provides generic, highly optimized linear algebra routines for
solving the generated systems.

DuMux comes in form of an additional module dumux. It depends on the DUNE core modules
dune-common, dune-grid, dune-istl, and on dune-localfunctions. The main intention of DuMux

is to provide a framework for an easy and efficient implementation of new physical models for porous
media flow problems, ranging from problem formulation and the selection of spatial and temporal
discretization schemes as well as nonlinear solvers, to general concepts for model coupling. Moreover,
DuMux includes ready to use numerical models and a few example applications.

5

2 Getting started

First, we describe a quick installation procedure. Then a quick start guide for the first DuMux

experience is provided.

2.1 Quick Installation of DuMux

This only provides one quick way of installing DuMux. You should have a recent working Linux
environment, no DUNE core modules should be installed. If you need more information, have DUNE
already installed, please have a look at the detailed installation instructions in Section 11.

2.1.1 Obtaining the Code with the Script checkout-dumux

The shell-script checkout-dumux facilitates setting up a DUNE/DuMux directory tree. It is available
at [11]. For example the second line below will check out the required DUNE modules and dumux,
dumux-devel and the external folder, which contains some useful external software and libraries.
Again, joeuser needs to be replaced by the actual user name.

$ checkout -dumux -h # show h e l p ,
$ checkout -dumux -gme -u joeuser -p password -d DUMUX

Be aware that you cannot get dumux-devel or the external libraries from dumux-external unless
you have an SVN account to our servers.

If you want to install DUNE and DuMux without the help of checkout-dumux script a complete
installation guide can be found in chapter 11 or on the DUNE website [17].

2.1.2 Build of DUNE and DuMux

Building of DUNE and DuMux is done by the command-line script dunecontrol as described in DUNE
Installation Notes [17] and in much more comprehensive form in the DUNE Buildsystem Howto [13].
If something fails during the execution of dunecontrol feel free to report it to the DUNE or DuMux

developer mailing list, but also try to include error details.
It is possible to compile DuMux with nearly no explicit options to the build system. However,

for the successful compilation of DUNE and DuMux, it is currently necessary to pass the the option
-fno-strict-aliasing to the C++ compiler [26], which is done here via a command-line argument
to dunecontrol:

$ # make s u r e you are i n t h e d i r e c t o r y DUNE−Root
$./dune -common/bin/dunecontrol --configure -opts="CXXFLAGS=-fno -strict -

aliasing" --use -cmake all

6

2 Getting started

Too many options can make life hard. That’s why usually option files are being used together with
dunecontrol and its sub-tools. Larger sets of options are kept in them. If you are going to compile
with options suited for debugging the code, the following can be a starting point:

$ # make s u r e you are i n t h e d i r e c t o r y DUNE−Root
$ cp dumux/debug.opts my-debug.opts # c r e a t e a p e r s o n a l v e r s i o n
$ gedit my-debug.opts # o p t i o n a l e d i t i n g t h e o p t i o n s f i l e
$./dune -common/bin/dunecontrol --opts=my-debug.opts --use -cmake all

More optimized code, which is typically not usable for standard debugging tasks, can be produced
by

$ cp dumux/optim.opts my-optim.opts

$./dune -common/bin/dunecontrol --opts=my-optim.opts --use -cmake all

Sometimes it is necessary to have additional options which are specific to a package set of an
operating system or sometimes you have your own preferences. Feel free to work with your own set of
options, which may evolve over time. The option files above are to be understood more as a starting
point for setting up an own customization than as something which is fixed. The use of external
libraries can make it necessary to add quite many options in an option-file. It can be helpful to give
your customized option file its own name, as done above. One avoids confusing it with the option files
which came out of the distribution and which can be possibly updated by subversion later on.

2.2 Quick Start Guide: The First Run of a Test Application

The previous section showed how to install and compile DuMux. This chapter shall give a very brief
introduction how to run a first test application and how to visualize the first output files. A more
detailed explanations can be found in the tutorials in the following chapter.
All executables are compiled in the build subdirectories of DuMux. If not given differently in the
input files, this is build-cmake as default.

1. Go to the directory build-cmake/test. There, various test application folders can be found.
Let us consider as example implicit/test box2p:

2. Enter the folder implicit/2p. Type make test box2p in order to compile the application test -

box2p. To run the simulation, type
./test box2p -parameterFile ./test box2p.input

into the console. The parameter -parameterFile specifies that all important parameters (like
first timestep size, end of simulation and location of the grid file) can be found in a text file in
the same directory with the name test box2p.input.

3. The simulation starts and produces some .vtu output files and also a .pvd file. The .pvd file can
be used to examine time series and summarizes the .vtu files. It is possible to stop a running
application by pressing <Ctrl><c>.

4. You can display the results using the visualization tool ParaView (or alternatively VisIt). Just
type paraview in the console and open the .pvd file. On the left hand side, you can choose the
desired parameter to be displayed.

7

3 Tutorial

In DuMux two sorts of models are implemented: Fully-coupled models and decoupled models. In the
fully-coupled models a flow system is described by a system of strongly coupled equations, which can
be for example mass balance equations for phases, mass balance equations for components or energy
balance equations. In contrast, a decoupled model consists of a pressure equation, which is iteratively
coupled to a saturation equation, concentration equations, energy balance equations, etc.

Examples for different kinds of both, coupled and decoupled models, are isothermal two-phase mod-
els, isothermal two-phase two-component models, non-isothermal two-phase models and non-isothermal
two-phase two-component models.

In section 7.2.1 a short introduction to the box method is given, in section 7.2.2 the cell centered
finite volume method is introduced. The box method is used in the fully-coupled models for the spatial
discretization of the system of equations. The decoupled models employ usually a cell centered finite
volume scheme. The following two sections of the tutorial demonstrate how to solve problems using,
first, a fully-coupled model (section 3.1) and, second, using a decoupled model (section 3.2). Being the
easiest case, an isothermal two-phase system (two fluid phases, one solid phase) will be considered.

3.1 Solving a Problem Using a Fully-Coupled Model

The process of setting up a problem using DuMux can be roughly divided into four parts:

1. A suitable model has to be chosen.

2. The geometry of the problem and correspondingly a grid have to be defined.

3. Material properties and constitutive relationships have to be selected.

4. Boundary conditions and initial conditions have to be specified.

The problem being solved in this tutorial is illustrated in Figure 3.1. A rectangular domain with
no-flow boundaries on the top and on the bottom, which is initially saturated with oil, is considered.
Water infiltrates from the left side into the domain and replaces the oil. Gravity effects are neglected
here.

The solved equations are the mass balances of water and oil:

∂(φSw %w)

∂t
−∇ ·

(
%w

krw
µw

K ∇pw
)
− qw = 0 (3.1)

∂(φSo %o)

∂t
−∇ ·

(
%o
kro
µo

K ∇po
)
− qo = 0 (3.2)

8

3 Tutorial

y

x

no flow

no flow

water oil

pwinitial
= 2 · 105 Pa

Sninitial
= 1

pw = 2 · 105 Pa

Sn = 0

qw = 0 kg/m2s

qn = 3 · 10−2 kg/m2s

Figure 3.1: Geometry of the tutorial problem with initial and boundary conditions.

3.1.1 The Main File

Listing 1 shows the main application file tutorial/tutorial coupled.cc for the coupled two-phase
model. This file has to be compiled and executed in order to solve the problem described above.

Listing 1 (File tutorial/tutorial coupled.cc)

24 #include "config.h"

25 #include "tutorialproblem_coupled.hh"

26 #include <dumux/common/start.hh>

27

28 //! Prints a usage/help message if something goes wrong or the user asks for help

29 void usage(const char *progName , const std:: string &errorMsg)

30 {

31 std::cout

32 << "\nUsage: " << progName << " [options]\n";

33 if (errorMsg.size() > 0)

34 std::cout << errorMsg << "\n";

35 std::cout

36 << "\n"

37 << "The list of mandatory arguments for this program is:\n"

38 << "\t-TEnd The end of the simulation [s]\n"

39 << "\t-DtInitial The initial timestep size [s]\n"

40 << "\t-Grid.UpperRightX The x-coordinate of the grid’s upper -right corner [m]\n"

41 << "\t-Grid.UpperRightY The y-coordinate of the grid’s upper -right corner [m]\n"

42 << "\t-Grid.NumberOfCellsX The grid’s x-resolution\n"

43 << "\t-Grid.NumberOfCellsY The grid’s y-resolution\n"

44 << "\n";

45 }

46

47 int main(int argc , char** argv)

48 {

49 typedef TTAG(TutorialProblemCoupled) TypeTag;

50 return Dumux ::start <TypeTag >(argc , argv , usage);

51 }

From line 24 to line 26 the required headers are included.
At line 49 the type tag of the problem, which is going to be simulated, is specified. All other data

types can be retrieved via the DuMux property system and only depend on this single type tag. For
a more thorough introduction to the DuMux property system, see chapter 5.

After this, the default startup routine Dumux::start() is called on line 50. This function deals
with parsing the command line arguments, reading the parameter file, setting up the infrastructure
necessary for DUNE, loading the grid, and starting the simulation. Required parameters for the
start of the simulation, such as the initial time-step size, the simulation time or details of the grid,

9

3 Tutorial

can be either specified by command line arguments of the form (-ParameterName ParameterValue),
in the file specified by the -ParameterFile argument, or if the latter is not specified, in the file
tutorial coupled.input. If a parameter is specified on the command line as well as in the parameter
file, the values provided in the command line have precedence. Listing 2 shows the default parameter
file for the tutorial problem.

Listing 2 (File tutorial/tutorial coupled.input)

1 ###

2 # Parameter file for tutorial_coupled.

3 # Everything behind a ’#’ is a comment.

4 # Type "./ tutorial_coupled --help" for more information.

5 ###

6

7 ###

8 # Mandatory arguments

9 ###

10

11 [TimeManager]

12 TEnd = 500000 # duration of the simulation [s]

13 DtInitial = 10 # initial time step size [s]

14

15 [Grid]

16 UpperRightX = 300 # x-coordinate of the upper -right corner of the grid [m]

17 UpperRightY = 60 # y-coordinate of the upper -right corner of the grid [m]

18 NumberOfCellsX = 100 # x-resolution of the grid

19 NumberOfCellsY = 1 # y-resolution of the grid

20

21 ###

22 # Simulation restart

23 #

24 # DuMux simulations can be restarted from *.drs files

25 # Set Restart to the value of a specific file ,

26 # e.g.: ’Restart = 27184.1 ’ for the restart file

27 # name_time =27184.1 _rank =0. drs

28 # Please comment in the two lines below , if restart is desired.

29 ###

30 # [TimeManager]

31 # Restart = ...

To provide an error message, the usage message which is displayed to the user if the simulation is
called incorrectly, is printed via the custom function which is defined on line 29 in the main file. In
this function the usage message is customized to the problem at hand. This means that at least the
necessary parameters are listed here. For more information about the input file please refer to section
4.3.

3.1.2 The Problem Class

When solving a problem using DuMux, the most important file is the so-called problem file as shown
in listing 3.

Listing 3 (File tutorial/tutorialproblem coupled.hh)

24 #ifndef DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro

25 #define DUMUX_TUTORIAL_PROBLEM_COUPLED_HH // guardian macro

26

27 // The numerical model

10

3 Tutorial

28 #include <dumux/implicit /2p/2 pmodel.hh>

29

30 // The base porous media box problem

31 #include <dumux/implicit/common/implicitporousmediaproblem.hh>

32

33 // The DUNE grid used

34 #if HAVE_ALUGRID

35 #include <dune/grid/alugrid.hh >

36 #elif HAVE_DUNE_ALUGRID

37 #include <dune/alugrid/grid.hh >

38 #elif HAVE_UG

39 #include <dune/grid/uggrid.hh>

40 #else

41 #include <dune/grid/yaspgrid.hh>

42 #endif // HAVE_ALUGRID , HAVE_UG

43

44 // Spatially dependent parameters

45 #include "tutorialspatialparams_coupled.hh"

46

47 // The components that are used

48 #include <dumux/material/components/h2o.hh>

49 #include <dumux/material/components/lnapl.hh >

50 #include <dumux/io/cubegridcreator.hh>

51

52 namespace Dumux{

53 // Forward declaration of the problem class

54 template <class TypeTag >

55 class TutorialProblemCoupled;

56

57 namespace Properties {

58 // Create a new type tag for the problem

59 NEW_TYPE_TAG(TutorialProblemCoupled , INHERITS_FROM(BoxTwoP , TutorialSpatialParamsCoupled));

60

61 // Set the "Problem" property

62 SET_PROP(TutorialProblemCoupled , Problem)

63 { typedef Dumux:: TutorialProblemCoupled <TypeTag > type ;};

64

65 // Set grid and the grid creator to be used

66 #if HAVE_ALUGRID || HAVE_DUNE_ALUGRID

67 SET_TYPE_PROP(TutorialProblemCoupled , Grid , Dune::ALUGrid </*dim=*/2, 2, Dune::cube , Dune::

nonconforming >);

68 #elif HAVE_UG

69 SET_TYPE_PROP(TutorialProblemCoupled , Grid , Dune::UGGrid <2>);

70 #else

71 SET_TYPE_PROP(TutorialProblemCoupled , Grid , Dune::YaspGrid <2>);

72 #endif // HAVE_ALUGRID

73 SET_TYPE_PROP(TutorialProblemCoupled , GridCreator , Dumux :: CubeGridCreator <TypeTag >);

74

75 // Set the wetting phase

76 SET_PROP(TutorialProblemCoupled , WettingPhase)

77 {

78 private: typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

79 public: typedef Dumux:: LiquidPhase <Scalar , Dumux::H2O <Scalar > > type;

80 };

81

82 // Set the non -wetting phase

83 SET_PROP(TutorialProblemCoupled , NonwettingPhase)

84 {

85 private: typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

86 public: typedef Dumux:: LiquidPhase <Scalar , Dumux::LNAPL <Scalar > > type;

87 };

88

89 SET_TYPE_PROP(TutorialProblemCoupled , FluidSystem , Dumux :: TwoPImmiscibleFluidSystem <TypeTag >);

11

3 Tutorial

90 // Disable gravity

91 SET_BOOL_PROP(TutorialProblemCoupled , ProblemEnableGravity , false);

92 }

93

94 /*!

95 * \ingroup TwoPBoxModel

96 *

97 * \brief Tutorial problem for a fully coupled twophase box model.

98 */

99 template <class TypeTag >

100 class TutorialProblemCoupled : public ImplicitPorousMediaProblem <TypeTag >

101 {

102 typedef ImplicitPorousMediaProblem <TypeTag > ParentType;

103 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

104 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

105

106 // Grid dimension

107 enum { dim = GridView ::dimension ,

108 dimWorld = GridView :: dimensionworld

109 };

110

111 // Types from DUNE -Grid

112 typedef typename GridView :: template Codim <0>:: Entity Element;

113 typedef typename GridView :: template Codim <dim >:: Entity Vertex;

114 typedef typename GridView :: Intersection Intersection;

115 typedef Dune:: FieldVector <Scalar , dimWorld > GlobalPosition;

116

117 // Dumux specific types

118 typedef typename GET_PROP_TYPE(TypeTag , TimeManager) TimeManager;

119 typedef typename GET_PROP_TYPE(TypeTag , Indices) Indices;

120 typedef typename GET_PROP_TYPE(TypeTag , PrimaryVariables) PrimaryVariables;

121 typedef typename GET_PROP_TYPE(TypeTag , BoundaryTypes) BoundaryTypes;

122 typedef typename GET_PROP_TYPE(TypeTag , FVElementGeometry) FVElementGeometry;

123

124 public:

125 TutorialProblemCoupled(TimeManager &timeManager ,

126 const GridView &gridView)

127 : ParentType(timeManager , gridView)

128 , eps_(3e-6)

129 {

130 #if !(HAVE_ALUGRID || HAVE_DUNE_ALUGRID || HAVE_UG)

131 std::cout << "If you want to use simplices instead of cubes , install and use ALUGrid or

UGGrid." << std::endl;

132 #endif // !(HAVE_ALUGRID || HAVE_DUNE_ALUGRID || HAVE_UG)

133 }

134

135 //! Specifies the problem name. This is used as a prefix for files

136 //! generated by the simulation.

137 const char *name() const

138 { return "tutorial_coupled"; }

139

140 //! Returns true if a restart file should be written.

141 bool shouldWriteRestartFile () const

142 { return false; }

143

144 //! Returns true if the current solution should be written to disk

145 //! as a VTK file

146 bool shouldWriteOutput () const

147 {

148 return

149 this ->timeManager ().timeStepIndex () > 0 &&

150 (this ->timeManager ().timeStepIndex () % 1 == 0);

151 }

12

3 Tutorial

152

153 //! Returns the temperature within a finite volume. We use constant

154 //! 10 degrees Celsius.

155 Scalar temperature () const

156 { return 283.15; };

157

158 //! Specifies which kind of boundary condition should be used for

159 //! which equation for a finite volume on the boundary.

160 void boundaryTypes(BoundaryTypes &bcTypes , const Vertex &vertex) const

161 {

162 const GlobalPosition &globalPos = vertex.geometry ().center ();

163 if (globalPos [0] < eps_) // Dirichlet conditions on left boundary

164 bcTypes.setAllDirichlet ();

165 else // neuman for the remaining boundaries

166 bcTypes.setAllNeumann ();

167

168 }

169

170 //! Evaluates the Dirichlet boundary conditions for a finite volume

171 //! on the grid boundary. Here , the ’values ’ parameter stores

172 //! primary variables.

173 void dirichlet(PrimaryVariables &values , const Vertex &vertex) const

174 {

175 values[Indices ::pwIdx] = 200.0 e3; // 200 kPa = 2 bar

176 values[Indices ::snIdx] = 0.0; // 0 % oil saturation on left boundary

177 }

178

179 //! Evaluates the boundary conditions for a Neumann boundary

180 //! segment. Here , the ’values ’ parameter stores the mass flux in

181 //! [kg/(m^2 * s)] in normal direction of each phase. Negative

182 //! values mean influx.

183 void neumann(PrimaryVariables &values ,

184 const Element &element ,

185 const FVElementGeometry &fvGeometry ,

186 const Intersection &intersection ,

187 int scvIdx ,

188 int boundaryFaceIdx) const

189 {

190 const GlobalPosition &globalPos =

191 fvGeometry.boundaryFace[boundaryFaceIdx]. ipGlobal;

192 Scalar right = this ->bBoxMax ()[0];

193 // extraction of oil on the right boundary for approx. 1.e6 seconds

194 if (globalPos [0] > right - eps_) {

195 // oil outflux of 30 g/(m * s) on the right boundary.

196 values[Indices :: contiWEqIdx] = 0;

197 values[Indices :: contiNEqIdx] = 3e-2;

198 } else {

199 // no -flow on the remaining Neumann -boundaries.

200 values[Indices :: contiWEqIdx] = 0;

201 values[Indices :: contiNEqIdx] = 0;

202 }

203 }

204

205 //! Evaluates the initial value for a control volume. For this

206 //! method , the ’values ’ parameter stores primary variables.

207 void initial(PrimaryVariables &values ,

208 const Element &element ,

209 const FVElementGeometry &fvGeometry ,

210 int scvIdx) const

211 {

212 values[Indices ::pwIdx] = 200.0 e3; // 200 kPa = 2 bar

213 values[Indices ::snIdx] = 1.0;

214 }

13

3 Tutorial

215

216 //! Evaluates the source term for all phases within a given

217 //! sub -control -volume. In this case , the ’values ’ parameter

218 //! stores the rate mass generated or annihilated per volume unit

219 //! in [kg / (m^3 * s)]. Positive values mean that mass is created.

220 void source(PrimaryVariables &values ,

221 const Element &element ,

222 const FVElementGeometry &fvGeometry ,

223 int scvIdx) const

224 {

225 values[Indices :: contiWEqIdx] = 0.0;

226 values[Indices :: contiNEqIdx]= 0.0;

227 }

228

229 private:

230 // small epsilon value

231 Scalar eps_;

232 };

233 }

234

235 #endif

First, a new type tag is created for the problem in line 59. In this case, the new type tag inherits all
properties from the BoxTwoP type tag, which means that for this problem the two-phase box model is
chosen as discretization scheme. Further, it inherits from the spatial parameters type tag, which is de-
fined in line 44 of the problem-dependent spatial parameters file. On line 62, a problem class is attached
to the new type tag, while the grid which is going to be used is defined in line 66 – in this case that is
Dune::YaspGrid. Since there’s no uniform mechanism to allocate grids in DUNE, DuMux features the
concept of grid creators. In this case the generic CubeGridCreator which creates a structured hexa-
hedron grid of a specified size and resolution. For this grid creator the physical domain of the grid is
specified via the run-time parameters Grid.upperRightX, Grid.upperRightY, Grid.numberOfCellsX
and Grid.numberOfCellsY. These parameters can be specified via the command-line or in a parameter
file.

Next, the appropriate fluid system, which specifies the thermodynamic relations of the fluid phases,
has to be chosen. By default, the two-phase model uses the TwoPImmiscibleFluidSystem, which
assumes immiscibility of the phases, but requires the components used for the wetting and non-wetting
phases to be explicitly set. In this case, liquid water which uses the relations from IAPWS’97 [19] is
chosen as the wetting phase on line 79 and liquid oil is chosen as the non-wetting phase on line 86.
The last property, which is set in line 91, tells the model not to use gravity.

Parameters which are specific to a physical set-up to be simulated, such as boundary and initial
conditions, source terms or temperature within the domain, and which are required to solve the
differential equations of the models are specified via a problem class. This class should be derived from
ImplicitPorousMediaProblem as done in line 100.

The problem class always has at least five methods:

• A method boundaryTypes() specifying the type of boundary conditions at each vertex.

• A method dirichlet() specifying the actual values for the Dirichlet conditions at each
Dirichlet vertex.

• A method neumann() specifying the actual values for the Neumann conditions, which are usually
evaluated at the integration points of the Neumann boundary faces.

14

3 Tutorial

• A method for source or sink terms called source(), usually evaluated at the center of a control
volume.

• A method called initial() for specifying the initial conditions at each vertex.

For the definition of the boundary condition types and of the values of the Dirichlet boundaries,
two parameters are available:

bcTypes/values: A vector which stores the result of the method. What the values in this vector
mean is dependent on the method: For dirichlet(), values contains the actual values of the
primary variables, for boundaryTypes(), bcTypes contains the boundary condition types. It has
as many entries as the model has primary variables / equations. For the typical case, in which all
equations have the same boundary condition type at a certain position, there are two methods
that set the appropriate conditions for all primary variables / equations: setAllDirichlet()

and setAllNeumann().

vertex: The boundary condition and the Dirichlet values are specified for a vertex, which represents
a sub-control volume in the box discretization. This inhibits the specification of two different
boundary condition types for one equation at one sub-control volume. Be aware that the second
parameter is a Dune grid entity with the codimension dim.

To ensure that no boundaries are undefined, a small safeguard value eps is usually added when
comparing spatial coordinates. The left boundary is hence not detected by checking, if the first
coordinate of the global position is equal to zero, but by testing whether it is smaller than a very small
value eps .

Methods for box models which make statements about boundary segments of the grid (such as
neumann()) are called with six arguments:

values: A vector neumann(), in which the mass fluxes per area unit over the boundary segment are
specified.

element: The element of the grid where the boundary segment is located.

fvGeometry: The finite-volume geometry induced on the finite element by the box scheme.

intersection: The Intersection of the boundary segment as given by the grid.

scvIdx: The index of the sub-control volume in fvGeometry which is assigned to the boundary segment.

boundaryFaceIdx: The index of the boundary face in fvGeometry which represents the boundary
segment.

Similarly, the initial() and source() methods specify properties of control volumes and thus only
get values, element, fvGeometry and scvIdx as arguments.

In addition to these five methods, there might be some model-specific methods. If the isother-
mal two-phase model is used, this includes for example a temperature() method which returns the
temperature in Kelvin of the fluids and the rock matrix in the domain. This temperature is then
used by the model to calculate fluid properties which possibly depend on it, e.g. density. The bBox-

Max() (“max imum coordinated of the grid’s bounding box”) method is used here to determine the

15

3 Tutorial

extend of the physical domain. It returns a vector with the maximum values of each global coordi-
nate of the grid. This method and the analogous bBoxMin() method are provided by the base class
Dumux::BoxProblem<TypeTag>.

3.1.3 Defining Fluid Properties

The DuMux distribution includes some common substances which can be used out of the box. The
properties of the pure substances (such as the components nitrogen, water, or the pseudo-component
air) are provided by header files located in the folder dumux/material/components.

Most often, when two or more components are considered, fluid interactions such as solubility effects
come into play and properties of mixtures such as density or enthalpy are of interest. These interactions
are defined by fluid systems, which are located in dumux/material/fluidsystems. A more thorough
overview of the DuMux fluid framework can be found in chapter 6.

3.1.4 Defining Spatially Dependent Parameters

In DuMux, many properties of the porous medium can depend on the spatial location. Such properties
are the intrinsic permeability, the parameters of the capillary pressure and the relative permeability,
the porosity, the heat capacity as well as the heat conductivity. Such parameters are defined using a
so-called spatial parameters class.

If the box discretization is used, the spatial parameters class should be derived from the base class
Dumux::BoxSpatialParams<TypeTag>. Listing 4 shows the file
tutorialspatialparams_coupled.hh:

Listing 4 (File tutorial/tutorialspatialparams coupled.hh)

25 #ifndef DUMUX_TUTORIAL_SPATIAL_PARAMS_COUPLED_HH

26 #define DUMUX_TUTORIAL_SPATIAL_PARAMS_COUPLED_HH

27

28 // include parent spatialparameters

29 #include <dumux/material/spatialparams/implicitspatialparams.hh >

30

31 // include material laws

32 #include <dumux/material/fluidmatrixinteractions /2p/regularizedbrookscorey.hh >

33 #include <dumux/material/fluidmatrixinteractions /2p/efftoabslaw.hh>

34 #include <dumux/material/fluidmatrixinteractions /2p/linearmaterial.hh>

35

36 namespace Dumux {

37 // forward declaration

38 template <class TypeTag >

39 class TutorialSpatialParamsCoupled;

40

41 namespace Properties

42 {

43 // The spatial parameters TypeTag

44 NEW_TYPE_TAG(TutorialSpatialParamsCoupled);

45

46 // Set the spatial parameters

47 SET_TYPE_PROP(TutorialSpatialParamsCoupled , SpatialParams ,

48 Dumux:: TutorialSpatialParamsCoupled <TypeTag >);

49

50 // Set the material law

51 SET_PROP(TutorialSpatialParamsCoupled , MaterialLaw)

52 {

53 private:

16

3 Tutorial

54 // material law typedefs

55 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

56 // select material law to be used

57 typedef RegularizedBrooksCorey <Scalar > RawMaterialLaw;

58 public:

59 // adapter for absolute law

60 typedef EffToAbsLaw <RawMaterialLaw > type;

61 };

62 }

63

64 /*!

65 * \ingroup TwoPBoxModel

66 *

67 * \brief The spatial parameters for the fully coupled tutorial problem

68 * which uses the twophase box model.

69 */

70 template <class TypeTag >

71 class TutorialSpatialParamsCoupled: public ImplicitSpatialParams <TypeTag >

72 {

73 // Get informations for current implementation via property system

74 typedef typename GET_PROP_TYPE(TypeTag , Grid) Grid;

75 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

76 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

77 enum

78 {

79 dim = Grid:: dimension

80 };

81

82 // Get object types for function arguments

83 typedef typename GET_PROP_TYPE(TypeTag , FVElementGeometry) FVElementGeometry;

84 typedef typename Grid:: Traits :: template Codim <0>:: Entity Element;

85

86 public:

87 // get material law from property system

88 typedef typename GET_PROP_TYPE(TypeTag , MaterialLaw) MaterialLaw;

89 // determine appropriate parameters depending on selected materialLaw

90 typedef typename MaterialLaw :: Params MaterialLawParams;

91

92 /*! Intrinsic permeability tensor K \f$[m^2]\f$ depending

93 * on the position in the domain

94 *

95 * \param element The finite volume element

96 * \param fvGeometry The finite -volume geometry in the box scheme

97 * \param scvIdx The local vertex index

98 *

99 * Alternatively , the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos)

100 * could be defined , where globalPos is the vector including the global coordinates

101 * of the finite volume.

102 */

103 const Dune:: FieldMatrix <Scalar , dim , dim > &intrinsicPermeability(const Element &element ,

104 const FVElementGeometry &fvGeometry ,

105 const int scvIdx) const

106 { return K_; }

107

108 /*! Defines the porosity \f$[-]\f$ of the porous medium depending

109 * on the position in the domain

110 *

111 * \param element The finite volume element

112 * \param fvGeometry The finite -volume geometry in the box scheme

113 * \param scvIdx The local vertex index

114 *

115 * Alternatively , the function porosityAtPos(const GlobalPosition& globalPos)

116 * could be defined , where globalPos is the vector including the global coordinates

17

3 Tutorial

117 * of the finite volume.

118 */

119 Scalar porosity(const Element &element ,

120 const FVElementGeometry &fvGeometry ,

121 const int scvIdx) const

122 { return 0.2; }

123

124 /*! Returns the parameter object for the material law (i.e. Brooks -Corey)

125 * depending on the position in the domain

126 *

127 * \param element The finite volume element

128 * \param fvGeometry The finite -volume geometry in the box scheme

129 * \param scvIdx The local vertex index

130 *

131 * Alternatively , the function materialLawParamsAtPos(const GlobalPosition& globalPos)

132 * could be defined , where globalPos is the vector including the global coordinates

133 * of the finite volume.

134 */

135 const MaterialLawParams& materialLawParams(const Element &element ,

136 const FVElementGeometry &fvGeometry ,

137 const int scvIdx) const

138 {

139 return materialParams_;

140 }

141

142 // constructor

143 TutorialSpatialParamsCoupled(const GridView& gridView) :

144 ImplicitSpatialParams <TypeTag >(gridView),

145 K_(0)

146 {

147 //set main diagonal entries of the permeability tensor to a value

148 // setting to one value means: isotropic , homogeneous

149 for (int i = 0; i < dim; i++)

150 K_[i][i] = 1e-7;

151

152 //set residual saturations

153 materialParams_.setSwr (0.0);

154 materialParams_.setSnr (0.0);

155

156 // parameters of Brooks & Corey Law

157 materialParams_.setPe (500.0);

158 materialParams_.setLambda (2);

159 }

160

161 private:

162 Dune:: FieldMatrix <Scalar , dim , dim > K_;

163 // Object that holds the values/parameters of the selected material law.

164 MaterialLawParams materialParams_;

165 };

166 } // end namespace

167 #endif

First, the spatial parameters type tag is created on line 44. The type tag for the problem is then
derived from it. The DuMux properties defined on the type tag for the spatial parameters are, for
example, the spatial parameters class itself (line 48) or the capillary pressure/relative permeability
relations1 which ought to be used by the simulation (line 57). DuMux provides several material laws
in the folder dumux/material/fluidmatrixinteractions. The selected one – here it is a relation
according to a regularized version of Brooks & Corey – is included in line 32. After the selection,

1Taken together, the capillary pressure and the relative permeability relations are called material law.

18

3 Tutorial

an adapter class is specified in line 60 to translate between effective and absolute saturations. Like this,
residual saturations can be specified in a generic way. As only the employed material law knows the
names of the parameters which it requires, it provides a parameter class RegularizedBrooksCorey-

Params which has the type Params and which is defined in line 90. In this case, the spatial parameters
only require a single set of parameters which means that it only requires a single material parameter
object as can be seen in line 164.

In line 103, a method returning the intrinsic permeability is specified. As can be seen, the method
has to be called with three arguments:

element: Just like for the problem itself, this parameter describes the considered element by means
of a DUNE entity. Elements provide information about their geometry and position and can be
mapped to a global index.

fvGeometry: It holds information about the finite-volume geometry of the element induced by the box
method.

scvIdx: This is the index of the sub-control volume of the element which is considered. It is equivalent
to the local index of the vertex which corresponds to the considered control volume in the element.

The intrinsic permeability is usually a tensor. Thus the method returns a dim× dim-matrix, where
dim is the dimension of the grid.

The method porosity() defined in line 119 is called with the same arguments as intrinsicPer-

meability() and returns a scalar value for porosity dependent on the position in the domain.
Next, the method materialLawParams(), defined in line 135, returns the materialParams_ object

that is applied at the specified position. Although in this case only one object is returned, in general,
the problem may be heterogeneous, which necessitates returning different objects at different positions
in space. While the selection of the type of this object was already explained (line 32), some specific
parameter values of the used material law, such as the Brooks & Corey parameters, are still needed.
This is done in the constructor at line 153. Depending on the type of the materialLaw object,
the set-methods might be different than those given in this example. The name of the access /
set functions as well as the rest of the implementation of the material description can be found in
dumux/material/fluidmatrixinteractions/2p.

3.1.5 Exercises

The following exercises will give you the opportunity to learn how you can change soil parameters,
boundary conditions, run-time parameters and fluid properties in DuMux. Possible solutions to these
exercises are given in the tutorial folder in the sub-folder solutions coupled as .diff files. In these
files only the lines that are different from the original file are listed. They can be opened using the
program kompare, simply type kompare SOLUTIONFILE into the terminal.

Exercise 1

For Exercise 1 you have to make only some small changes in the tutorial files.

a) Running the Program
To get an impression what the results should look like you can compile and run the original version

19

3 Tutorial

of the coupled tutorial model by typing make tutorial coupled followed by ./tutorial -

coupled. Note, that the time-step size is automatically adapted during the simulation. For the
visualization of the results using ParaView, please refer to section 2.2.

b) Changing the Model Domain and the Boundary Conditions
Change the size of the model domain so that you get a rectangle with edge lengths of x = 400 m
and y = 500 m and with discretization lengths of ∆x = 20 m and ∆y = 20 m. For this you have
to edit the parameter file (tutorialproblem coupled.input) and run the program again.
Note, that you do not have to recompile the program if you make changes to the parameter file.

Change the boundary conditions in the file tutorialproblem coupled.hh so that water enters
from the bottom and oil is extracted from the top boundary. The right and the left boundary
should be closed for water and oil fluxes.
The Neumannn Boundary conditions are multiplied by the normal (pointing outwards), so an
influx is negative, an outflux always positive. Such information can easily be found in the
documentation of the functions (also look into base classes). Compile the main file by typing
make tutorial coupled and run the model as explained above.

c) Changing the Shape of the Discrete Elements
In order to complete this exercise you need an external grid manager capable of handling simplex
grids, like ALUGrid or UGGrid. If this is not the case, please skip this exercise. Change the types of
elements used for discretizing the domain. In line 73 of the problem file the type of gridcreator is
chosen. By choosing a different grid creator you can discretize the domain with different elements.
Hint: You can find gridcreators in dumux/io/, change for example from cubegridcreator.hh

to simplexgridcreator.hh. For ALUGrid you have to change the ALUGrid type in line 67
from Dune::cube to Dune::simplex. The shape of the employed elements can be visualized in
ParaView by choosing Surface with Edges.

d) Changing Fluids
Now you can change the fluids. Use DNAPL instead of Oil and Brine instead of Water. To do
that, you have to select different components via the property system in the problem file:

a) Brine: Brine is thermodynamically very similar to pure water but also considers a fixed
amount of salt in the liquid phase. Hence, the class Dumux::Brine uses a pure water
class, such as Dumux::H2O<Scalar>, as a second template argument after the data type
<Scalar>, i.e. Dumux::Brine<Scalar, Dumux::H2O<Scalar>>. The file is located in the
folder dumux/material/components/. Try to include the file and select the component as
the wetting phase via the property system.

b) DNAPL: Now let’s include a DNAPL (dense non-aqueous phase liquid) which is located in
the folder dumux/material/components/. Try to include the file and select the component
as the non-wetting phase via the property system.

If you want to take a closer look on how the fluid classes are defined and which substances are
already available please browse through the files in the directory /dumux/material/components

and read chapter 6.

e) Use a Full-Fledged Fluid System
DuMux usually describes fluid mixtures via fluid systems, see also chapter 6. In order to include

20

3 Tutorial

a fluid system, you first have to comment out lines 76 to 87 in the problem file. If you use eclipse,
this can easily be done by pressing Ctrl + Shift + 7 – the same as to cancel the comment later
on.
Now include the file fluidsystems/h2oairfluidsystem.hh in the material folder, and set a
type property FluidSystem (see line 89) with the appropriate type, which is either:
Dumux::FluidSystems::H2OAir<typename GET PROP TYPE(TypeTag, Scalar)>

or in the DuMux tongue
Dumux::H2OAirFluidSystem<TypeTag>

However, this is a rather complicated fluid system which considers mixtures of components and
also uses tabulated components that need to be initialized – i.e. the tables need to be filled with
values. The initialization of the fluid system is normally done in the constructor of the problem
by calling GET PROP TYPE(TypeTag, FluidSystem)::init();. Remember that the constructor
function always has the same name as the respective class, i.e. TutorialProblemCoupled(..).
As water flow replacing a gas is much faster, test your simulation only until 2000 seconds and
start with a time-step of 1 second.
Please reverse the changes made in this part of the exercise, as we will continue to use immiscible
phases from here on and hence do not need a complex fluid system.

f) Changing Constitutive Relations
Use an unregularized linear law with an entry pressure of pe = 0.0 Pa and maximal cap-
illary pressure of e.g. pcmax = 2000.0 Pa instead of using a regularized Brooks-Corey law
for the relative permeability and for the capillary pressure saturation relationship. To do
that you have to change the material law property (line 60) in tutorialspatialparams cou-

pled.hh. Leave the type definition of Scalar and remove the type definition of BrooksAnd-

Corey in the private section of the property definition. Exchange the EffToAbsLaw with the
LinearMaterial law type in the public section. You can find the material laws in the folder
dumux/material/fluidmatrixinteractions. The necessary parameters of the linear law and
the respective set-functions can be found in the file
dumux/material/fluidmatrixinteractions/2p/linearmaterialparams.hh.
Call the set-functions from the constructor of the tutorialspatialparams coupled.hh.

g) Heterogeneities
Set up a model domain with the soil properties given in Figure 3.2. Adjust the boundary
conditions so that water is again flowing from the left to the right of the domain. You can use
the fluids of exercise 1b.
Hint: The current position of the control volume can be obtained using element.geometry()

.corner(scvIdx), which returns a vector of the global coordinates of the current position.
When does the front cross the material border? In ParaView, the animation view (View →
Animation View) is a convenient way to get a rough feeling of the time-step sizes.

Exercise 2

For this exercise you should create a new problem file analogous to the file tutorialproblem cou-

pled.hh (e.g. with the name ex2 tutorialproblem coupled.hh and new spatial parameters ex2 -

tutorialspatialparams coupled.hh, just like tutorialspatialparams coupled.hh.

21

3 Tutorial

600 m

300 m K = 10−8 m2

φ = 0.15
K = 10−9 m2

φ = 0.3

Figure 3.2: Exercise 1g: Set-up of a model domain with a heterogeneity. Grid spacing: ∆x = 20 m
∆y = 20 m.

The new files should contain the definition of new classes with names that relate to the file name,
such as Ex2TutorialProblemCoupled. Make sure that you also adjust the guardian macros in lines
24 and 25 in the header files (e.g. change DUMUX TUTORIALPROBLEM COUPLED HH to
DUMUX EX2 TUTORIALPROBLEM COUPLED HH). Include the new problem file in tutorial coupled.cc.
Besides adjusting the guardian macros, the new problem file should define and use a new type tag
for the problem as well as a new problem class e.g. Ex2TutorialProblemCoupled. The type tag
definition has to be adjusted in tutorial coupled.cc too (see line 49). Similarly adjust your new
spatial parameters file. If you are using Eclipse there is a very helpful function called Refactor which
you can use to change all similar variables or types in your current file in one go. Just place the cursor
at the variable or type you want to change and use the Refactor → Rename functionality. Make sure
to assign your newly defined spatial parameter class to the SpatialParams property for the new type
tag.

After this, change the run-time parameters so that they match the domain described by figure 3.3.
Adapt the problem class so that the boundary conditions are consistent with figure 3.4. Initially, the
domain is fully saturated with water and the pressure is pw = 5× 105 Pa. Oil infiltrates from the left
side. Create a grid with 20 cells in x-direction and 10 cells in y-direction. The simulation time should
be set to 106 s with an initial time-step size of 100 s. Then, you can compile the program.

50 m

100 m

20 m

15 m

50 m 25 m

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 1.8, pe = 1000 Pa

K = 10−9 m2

φ = 0.15

Brooks-Corey Law

λ = 2, pe = 1500 Pa

Figure 3.3: Set-up of the model domain and the soil parameters

• Increase the simulation time to e.g. 4 × 107 s. Investigate the saturation: Is the value range

22

3 Tutorial

no flow

no flow

qn = 0

qw = 2 · 10−4 kg/m2s

Sn = 1

pw = 5 · 105 Pa

Figure 3.4: Boundary Conditions

reasonable?

• What happens if you increase the resolution of the grid?

Exercise 3: Parameter File Input

As you have experienced, compilation takes quite some time. Therefore, DuMux provides a simple
method to read in parameters at run-time via parameter input files.

In the code, parameters can be read via the macro GET RUNTIME PARAM(TypeTag, Scalar, My-

WonderfulGroup.MyWonderfulParameter);. In this exercise we will explore the possibilities of the
parameter file. For this we take a look at the file ex3 tutorial coupled.input in the solutions -

coupled folder. Besides the parameters which you already used in the parameter file above, there
are parameters which can be used to control the Newton and the Linear solver (groups: Newton and
LinearSolver). Run-time parameters used in the problem or spatial parameters classes can also be set
with the respective group names (Problem and SpatialParams) in the parameter file. For the latter
parameters to be included in the program they have to be assigned in the problem or spatial param-
eters constructor. This can be done as shown in the files ex3 tutorialproblem coupled.diff and
ex3 tutorialspatialparams coupled.diff in the solutions coupled folder. Add some (for exam-
ple Newton.MaxSteps and Problem.EnableGravity) to the parameter file tutorial coupled.input

and observe what happens if they are modified. For more information about the input file please refer
to section 4.3.

Exercise 4: Create a New Component

Create a new file for the benzene component called benzene.hh and implement a new component. (You
may get a hint by looking at existing components in the directory /dumux/material/components).
Use benzene as a new fluid and run the model of Exercise 2 with water and benzene. Benzene has a
density of 889.51 kg/m3 and a viscosity of 0.00112 Pa s.

Exercise 5: Time Dependent Boundary Conditions

In this exercise we want to investigate the influence of time dependent boundary conditions. For this,
redo the steps of exercise 2 and create a new problem and spatial parameters file.

23

3 Tutorial

After this, change the run-time parameters so that they match the domain described by figure 3.5.
Adapt the problem class so that the boundary conditions are consistent with figure 3.6. Here you
can see the time dependence of the nonwetting saturation, where water infiltrates only during 105 s
and 4 · 105 s. To implement these time dependencies you need the actual time tn+1 = tn + ∆t and
the endtime of the simulation. For this you can use the methods this->timeManager().time(),
this->timeManager().timeStepSize() and this->timeManager().endTime().

Initially, the domain is fully saturated with oil and the pressure is pw = 2×105 Pa. Water infiltrates
from the left side. Create a grid with 100 cells in x-direction and 10 cells in y-direction. The simulation
time should be set to 5 ·105 s with an initial time-step size of 10 s. To avoid too big time-step sizes you
should set the parameter MaxTimeStepSize for the group TimeManager (in your input file) to 1000 s.
Then, you can compile the program.

50 m

100 m no flow

no flow

qn = 1 · 10−3 kg/m2s

qw = 0

Sn(t)

pw = 2 · 105 Pa

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 2, pe = 500 Pa

Figure 3.5: Set-up of the model domain and the soil parameters

Sn

time [s]

1

0
1 · 105 4 · 105 5 · 105

1− sin
(
π time−105

3·105

)

Figure 3.6: Time Dependent Boundary Conditions

• Open ParaView and plot the values of Sn at time 5 · 105 s over the x-axis.
(Filter->Data Analysis->Plot Over Line)

24

3 Tutorial

• What happens without any time-step restriction?

25

3 Tutorial

3.2 Solving a problem using a Decoupled Model

The process of solving a problem using DuMux can be roughly divided into four parts:

a) The geometry of the problem and correspondingly a grid have to be defined.

b) Material properties and constitutive relationships have to be defined.

c) Boundary conditions as well as initial conditions have to be defined.

d) A suitable model has to be chosen.

In contrast to the last section, we now apply a decoupled solution procedure, a so-called IMPET
(IM plicit Pressure Explicit T ransport) algorithm. This means that the pressure equation is first
solved using an implicit method. The resulting velocities are then used to solve a transport equation
explicitly.
In this tutorial, pure fluid phases are solved with a finite volume discretization of both pressure- and
transport step. Primary variables, according to default settings of the model, are the pressure and the
saturation of the wetting phase.

The problem which is solved in this tutorial is illustrated in figure 3.7. A rectangular domain with
no flow boundaries on the top and at the bottom, which is initially saturated with oil, is considered.
Water infiltrates from the left side into the domain. Gravity effects are neglected.

y

x

no flow

no flow

water oil

pwinitial
= 2 · 105 Pa

Swinitial
= 0

pw = 2 · 105 Pa

Sw = 1

qw = 0 kg/m2s

qn = 3 · 10−2 kg/m2s

Figure 3.7: Geometry of the tutorial problem with initial and boundary conditions.

Listing 5 shows how the main file, which has to be executed, has to be set up, if the problem
described above is to be solved using a decoupled model. This main file can be found in the directory
/tutorial of the stable part of DuMux.

Listing 5 (File tutorial/tutorial decoupled.cc)

24 #include "config.h"

25

26 #include "tutorialproblem_decoupled.hh"

27 #include <dumux/common/start.hh>

28

29 //! Prints a usage/help message if something goes wrong or the user asks for help

30 void usage(const char *progName , const std:: string &errorMsg)

31 {

32 std::cout

33 << "\nUsage: " << progName << " [options]\n";

34 if (errorMsg.size() > 0)

35 std::cout << errorMsg << "\n";

36 std::cout

26

3 Tutorial

37 << "\n"

38 << "The list of mandatory arguments for this program is:\n"

39 << "\t-TEnd The end of the simulation [s]\n"

40 << "\t-DtInitial The initial timestep size [s]\n"

41 << "\t-Grid.UpperRightX The x-coordinate of the grid’s upper -right corner [m]\n"

42 << "\t-Grid.UpperRightY The y-coordinate of the grid’s upper -right corner [m]\n"

43 << "\t-Grid.NumberOfCellsX The grid’s x-resolution\n"

44 << "\t-Grid.NumberOfCellsY The grid’s y-resolution\n"

45 << "\n";

46 }

47

48

49 // //////////////////////

50 // the main function

51 // //////////////////////

52 int main(int argc , char** argv)

53 {

54 typedef TTAG(TutorialProblemDecoupled) TypeTag;

55 return Dumux ::start <TypeTag >(argc , argv , usage);

56 }

First, from line 24 to line 27 the DUNE and DuMux files containing essential functions and classes
are included.

At line 54 the type tag of the problem which is going to be simulated is set. All other data types
can be retrieved by the DuMux property system and only depend on this single type tag. For an
introduction to the property system, see section 5.

After this DuMux’ default startup routine Dumux::start() is called in line 55. This function deals
with parsing the command line arguments, reading the parameter file, setting up the infrastructure
necessary for DUNE, loading the grid, and starting the simulation. All parameters can be either
specified by command line arguments of the form (-ParameterName ParameterValue), in the file
specified by the -parameterFile argument, or if the latter is not specified, in the file tutorial -

decoupled.input. If a parameter is specified on the command line as well as in the parameter file,
the values provided in the command line have precedence. Listing 6 shows the default parameter file
for the tutorial problem.

Listing 6 (File tutorial/tutorial decoupled.input)

1 ###

2 # Parameter file for tutorial_decoupled.

3 # Everything behind a ’#’ is a comment.

4 # Type "./ tutorial_decoupled --help" for more information.

5 ###

6

7 ###

8 # Mandatory arguments

9 ###

10

11 [TimeManager]

12 TEnd = 100000 # duration of the simulation [s]

13 DtInitial = 10 # initial time step size [s]

14

15 [Grid]

16 UpperRightX = 300 # x-coordinate of the upper -right corner of the grid [m]

17 UpperRightY = 60 # y-coordinate of the upper -right corner of the grid [m]

18 NumberOfCellsX = 100 # x-resolution of the grid

19 NumberOfCellsY = 1 # y-resolution of the grid

20

27

3 Tutorial

21 ###

22 # Simulation restart

23 #

24 # DuMux simulations can be restarted from *.drs files

25 # Set Restart to the value of a specific file ,

26 # e.g.: ’Restart = 27184.1 ’ for the restart file

27 # name_time =27184.1 _rank =0. drs

28 # Please comment in the two lines below , if restart is desired.

29 ###

30 # [TimeManager]

31 # Restart = ...

To provide an error message, the usage message which is displayed to the user if the simulation
is called incorrectly, is printed via the custom function which is defined on line 30. In this function
the usage message is customized to the problem at hand. This means that at least the necessary
parameters are listed here. For more information about the input file please refer to section 4.3.

3.2.1 The Problem Class

When solving a problem using DuMux, the most important file is the so-called problem file as shown
in listing 7 of tutorialproblem decoupled.hh.

Listing 7 (File tutorial/tutorialproblem decoupled.hh)

24 #ifndef DUMUX_TUTORIALPROBLEM_DECOUPLED_HH // guardian macro

25 #define DUMUX_TUTORIALPROBLEM_DECOUPLED_HH // guardian macro

26

27 // the grid includes

28 #include <dune/grid/yaspgrid.hh>

29 #include <dumux/io/cubegridcreator.hh>

30

31 // dumux 2p-decoupled environment

32 #include <dumux/decoupled /2p/diffusion/fv/fvpressureproperties2p.hh >

33 #include <dumux/decoupled /2p/transport/fv/fvtransportproperties2p.hh >

34 #include <dumux/decoupled /2p/impes/impesproblem2p.hh>

35

36 // assign parameters dependent on space (e.g. spatial parameters)

37 #include "tutorialspatialparams_decoupled.hh"

38

39 // include cfl -criterion after coats: more suitable if the problem is not advection dominated

40 #include <dumux/decoupled /2p/transport/fv/evalcflfluxcoats.hh >

41

42 // the components that are used

43 #include <dumux/material/components/h2o.hh>

44 #include <dumux/material/components/lnapl.hh >

45

46 namespace Dumux

47 {

48

49 template <class TypeTag >

50 class TutorialProblemDecoupled;

51

52 // ////////

53 // Specify the properties for the lens problem

54 // ////////

55 namespace Properties

56 {

57 // create a new type tag for the problem

58 NEW_TYPE_TAG(TutorialProblemDecoupled , INHERITS_FROM(FVPressureTwoP , FVTransportTwoP , IMPESTwoP

,

28

3 Tutorial

59 TutorialSpatialParamsDecoupled));

60

61 // Set the problem property

62 SET_PROP(TutorialProblemDecoupled , Problem)

63 {

64 typedef Dumux:: TutorialProblemDecoupled <TypeTag > type;

65 };

66

67 // Set the grid type

68 SET_TYPE_PROP(TutorialProblemDecoupled , Grid , Dune::YaspGrid <2>);

69

70 //Set the grid creator

71 SET_TYPE_PROP(TutorialProblemDecoupled , GridCreator , Dumux:: CubeGridCreator <TypeTag >);

72

73 // Set the wetting phase

74 SET_PROP(TutorialProblemDecoupled , WettingPhase)

75 {

76 private:

77 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

78 public:

79 typedef Dumux:: LiquidPhase <Scalar , Dumux::H2O <Scalar > > type;

80 };

81

82 // Set the non -wetting phase

83 SET_PROP(TutorialProblemDecoupled , NonwettingPhase)

84 {

85 private:

86 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

87 public:

88 typedef Dumux:: LiquidPhase <Scalar , Dumux::LNAPL <Scalar > > type;

89 };

90

91 SET_TYPE_PROP(TutorialProblemDecoupled , EvalCflFluxFunction , Dumux:: EvalCflFluxCoats <TypeTag >);

92 SET_SCALAR_PROP(TutorialProblemDecoupled , ImpetCFLFactor , 0.95);

93

94 // Disable gravity

95 SET_BOOL_PROP(TutorialProblemDecoupled , ProblemEnableGravity , false);

96 }

97

98 /*! \ingroup DecoupledProblems

99 * @brief Problem class for the decoupled tutorial

100 */

101 template <class TypeTag >

102 class TutorialProblemDecoupled: public IMPESProblem2P <TypeTag >

103 {

104 typedef IMPESProblem2P <TypeTag > ParentType;

105 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

106 typedef typename GET_PROP_TYPE(TypeTag , TimeManager) TimeManager;

107 typedef typename GET_PROP_TYPE(TypeTag , Indices) Indices;

108

109 typedef typename GET_PROP_TYPE(TypeTag , BoundaryTypes) BoundaryTypes;

110 typedef typename GET_PROP(TypeTag , SolutionTypes) SolutionTypes;

111 typedef typename SolutionTypes :: PrimaryVariables PrimaryVariables;

112

113 enum

114 {

115 dimWorld = GridView :: dimensionworld

116 };

117

118 enum

119 {

120 wPhaseIdx = Indices ::wPhaseIdx ,

29

3 Tutorial

121 nPhaseIdx = Indices ::nPhaseIdx ,

122 pwIdx = Indices ::pwIdx ,

123 swIdx = Indices ::swIdx ,

124 pressEqIdx = Indices :: pressureEqIdx ,

125 satEqIdx = Indices :: satEqIdx

126 };

127

128 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

129

130 typedef typename GridView :: Traits :: template Codim <0>:: Entity Element;

131 typedef typename GridView :: Intersection Intersection;

132 typedef Dune:: FieldVector <Scalar , dimWorld > GlobalPosition;

133

134 public:

135 TutorialProblemDecoupled(TimeManager &timeManager , const GridView &gridView)

136 : ParentType(timeManager , gridView), eps_(1e-6)

137 {

138 //write only every 10th time step to output file

139 this ->setOutputInterval (10);

140 }

141

142 //! The problem name.

143 /*! This is used as a prefix for files generated by the simulation.

144 */

145 const char *name() const

146 {

147 return "tutorial_decoupled";

148 }

149

150 //! Returns true if a restart file should be written.

151 /* The default behaviour is to write no restart file.

152 */

153 bool shouldWriteRestartFile () const

154 {

155 return false;

156 }

157

158 //! Returns the temperature within the domain at position globalPos.

159 /*! This problem assumes a temperature of 10 degrees Celsius.

160 *

161 * \param element The finite volume element

162 *

163 * Alternatively , the function temperatureAtPos(const GlobalPosition& globalPos) could be

164 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

165 */

166 Scalar temperature(const Element& element) const

167 {

168 return 273.15 + 10; // -> 10 Â◦C
169 }

170

171 //! Returns a constant pressure to enter material laws at position globalPos.

172 /* For incrompressible simulations , a constant pressure is necessary

173 * to enter the material laws to gain a constant density etc. In the compressible

174 * case , the pressure is used for the initialization of material laws.

175 *

176 * \param element The finite volume element

177 *

178 * Alternatively , the function referencePressureAtPos(const GlobalPosition& globalPos)

could be

179 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

180 */

30

3 Tutorial

181 Scalar referencePressure(const Element& element) const

182 {

183 return 2e5;

184 }

185

186 //! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$ of a finite volume.

187 /*! Evaluate the source term for all phases within a given

188 * volume.

189 *

190 * \param values Includes sources for the two phases

191 * \param element The finite volume element

192 *

193 * The method returns the mass generated (positive) or

194 * annihilated (negative) per volume unit.

195 *

196 * Alternatively , the function sourceAtPos(PrimaryVariables &values , const GlobalPosition&

globalPos)

197 * could be defined , where globalPos is the vector including the global coordinates of the

finite volume.

198 */

199 void source(PrimaryVariables &values , const Element& element) const

200 {

201 values = 0;

202 }

203

204 //! Type of boundary conditions at position globalPos.

205 /*! Defines the type the boundary condition for the pressure equation ,

206 * either pressure (dirichlet) or flux (neumann),

207 * and for the transport equation ,

208 * either saturation (dirichlet) or flux (neumann).

209 *

210 * \param bcTypes Includes the types of boundary conditions

211 * \param globalPos The position of the center of the finite volume

212 *

213 * Alternatively , the function boundaryTypes(PrimaryVariables &values , const Intersection&

214 * intersection) could be defined , where intersection is the boundary intersection.

215 */

216 void boundaryTypesAtPos(BoundaryTypes &bcTypes , const GlobalPosition& globalPos) const

217 {

218 if (globalPos [0] < this ->bBoxMin ()[0] + eps_)

219 {

220 bcTypes.setDirichlet(pressEqIdx);

221 bcTypes.setDirichlet(satEqIdx);

222 // bcTypes.setAllDirichlet (); // alternative if the same BC is used for both

types of equations

223 }

224 // all other boundaries

225 else

226 {

227 bcTypes.setNeumann(pressEqIdx);

228 bcTypes.setNeumann(satEqIdx);

229 // bcTypes.setAllNeumann (); // alternative if the same BC is used for both types

of equations

230 }

231 }

232 //! Value for dirichlet boundary condition at position globalPos.

233 /*! In case of a dirichlet BC for the pressure equation the pressure \f$ [Pa] \f$, and for

234 * the transport equation the saturation [-] have to be defined on boundaries.

235 *

236 * \param values Values of primary variables at the boundary

237 * \param intersection The boundary intersection

238 *

239 * Alternatively , the function dirichletAtPos(PrimaryVariables &values , const

31

3 Tutorial

GlobalPosition& globalPos)

240 * could be defined , where globalPos is the vector including the global coordinates of the

finite volume.

241 */

242 void dirichlet(PrimaryVariables &values , const Intersection& intersection) const

243 {

244 values[pwIdx] = 2e5;

245 values[swIdx] = 1.0;

246 }

247 //! Value for neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$ at position

globalPos.

248 /*! In case of a neumann boundary condition , the flux of matter

249 * is returned as a vector.

250 *

251 * \param values Boundary flux values for the different phases

252 * \param globalPos The position of the center of the finite volume

253 *

254 * Alternatively , the function neumann(PrimaryVariables &values , const Intersection&

intersection) could be defined ,

255 * where intersection is the boundary intersection.

256 */

257 void neumannAtPos(PrimaryVariables &values , const GlobalPosition& globalPos) const

258 {

259 values = 0;

260 if (globalPos [0] > this ->bBoxMax ()[0] - eps_)

261 {

262 values[nPhaseIdx] = 3e-2;

263 }

264 }

265 //! Initial condition at position globalPos.

266 /*! Only initial values for saturation have to be given!

267 *

268 * \param values Values of primary variables

269 * \param element The finite volume element

270 *

271 * Alternatively , the function initialAtPos(PrimaryVariables &values , const GlobalPosition

& globalPos)

272 * could be defined , where globalPos is the vector including the global coordinates of the

finite volume.

273 */

274 void initial(PrimaryVariables &values ,

275 const Element &element) const

276 {

277 values = 0;

278 }

279

280 private:

281 const Scalar eps_;

282 };

283 } //end namespace

284

285 #endif

First, both DUNE grid handlers and the decoupled model of DuMux have to be included. Then,
a new type tag is created for the problem in line 59. In this case, the new type tag inherits all
properties defined for the DecoupledTwoP type tag, which means that for this problem the two-
phase decoupled approach is chosen as discretization scheme (defined via the include in line 34).
On line 62, a problem class is attached to the new type tag, while the grid which is going to be
used is defined in line 68 – in this case an YaspGrid is created. Since there’s no uniform mech-
anism to allocate grids in DUNE, DuMux features the concept of grid creators. In this case the

32

3 Tutorial

generic CubeGridCreator (line 71) which creates a structured hexahedron grid of a specified size
and resolution. For this grid creator the physical domain of the grid is specified via the run-time pa-
rameters Grid.upperRightX, Grid.upperRightY, Grid.numberOfCellsX and Grid.numberOfCellsY.
These parameters can be specified via the command-line or in a parameter file. For more information
about the DUNE grid interface, the different grid types that are supported and the generation of
different grids consult the Dune Grid Interface HOWTO [12].

Next, we select the material of the simulation: In the case of a pure two-phase model, each phase
is a bulk fluid, and the complex (compositional) fluidsystems do not need to be used. However, they
can be used (see exercise 1 4). Instead, we use a simplified fluidsystem container that provides classes
for liquid and gas phases, line 74 to 89. These are linked to the appropriate chemical species in line 79
and 88. For all parameters that depend on space, such as the properties of the soil, the specific spatial
parameters for the problem of interest are specified in line 47.

Now we arrive at some model parameters of the applied two-phase decoupled model. First, in line
91 a flux function for the evaluation of the cfl-criterion is defined. This is optional as there exists also
a default flux function. The choice depends on the problem which has to be solved. For cases which
are not advection dominated the one chosen here is more reasonable. Line 92 assigns the CFL-factor
to be used in the simulation run, which scales the time-step size (kind of security factor). The last
property in line 95 is optional and tells the model not to use gravity.

After all necessary information is written into the property system and its namespace is closed in
line 96, the problem class is defined in line 102. As its property, the problem class itself is also derived
from a parent, IMPESProblem2P. The class constructor (line 136) is able to hold two vectors, which is
not needed in this tutorial.

Beside the definition of the boundary and initial conditions (discussed in subsection 3.1.2 from
4th paragraph on page 14), the problem class also contains general information about the current
simulation. First, the name used by the VTK-writer to generate output is defined in the method of
line 145, and line 153 indicates whether restart files are written. As decoupled schemes usually feature
small time-steps, it can be usefull to set an output interval larger than 1. The respective function is
called in line 139, which gets the output interval as argument.

The following methods all have in common that they may be dependent on space. Hence, they
all have either an element or an intersection as their function argument: Both are DUNE en-
tities, depending on whether the parameter of the method is defined in an element, such as initial
values, or on an intersection, such as a boundary condition. As it may be sufficient to return val-
ues only based on a position, DuMux models can also access functions in the problem with the form
...AtPos(GlobalPosition& globalPos), without an DUNE entity, as one can see in line 216.

There are the methods for general parameters, source- or sinkterms, boundary conditions (lines
216 to 257) and initial values for the transported quantity in line 275. For more information on the
functions, consult the documentation in the code.

3.2.2 The Definition of the Parameters that are Dependent on Space

Listing 8 shows the file tutorialspatialparams_decoupled.hh:

Listing 8 (File tutorial/tutorialspatialparams decoupled.hh)

24 #ifndef DUMUX_TUTORIAL_SPATIAL_PARAMS_DECOUPLED_HH

25 #define DUMUX_TUTORIAL_SPATIAL_PARAMS_DECOUPLED_HH

26

33

3 Tutorial

27

28 #include <dumux/material/spatialparams/fvspatialparams.hh>

29 #include <dumux/material/fluidmatrixinteractions /2p/linearmaterial.hh>

30 #include <dumux/material/fluidmatrixinteractions /2p/regularizedbrookscorey.hh >

31 #include <dumux/material/fluidmatrixinteractions /2p/efftoabslaw.hh>

32

33 namespace Dumux

34 {

35

36 // forward declaration

37 template <class TypeTag >

38 class TutorialSpatialParamsDecoupled;

39

40 namespace Properties

41 {

42 // The spatial parameters TypeTag

43 NEW_TYPE_TAG(TutorialSpatialParamsDecoupled);

44

45 // Set the spatial parameters

46 SET_TYPE_PROP(TutorialSpatialParamsDecoupled , SpatialParams ,

47 Dumux:: TutorialSpatialParamsDecoupled <TypeTag >);

48

49 // Set the material law

50 SET_PROP(TutorialSpatialParamsDecoupled , MaterialLaw)

51 {

52 private:

53 // material law typedefs

54 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

55 typedef RegularizedBrooksCorey <Scalar > RawMaterialLaw;

56 public:

57 typedef EffToAbsLaw <RawMaterialLaw > type;

58 };

59 }

60

61 //! Definition of the spatial parameters for the decoupled tutorial

62

63 template <class TypeTag >

64 class TutorialSpatialParamsDecoupled: public FVSpatialParams <TypeTag >

65 {

66 typedef FVSpatialParams <TypeTag > ParentType;

67 typedef typename GET_PROP_TYPE(TypeTag , Grid) Grid;

68 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

69 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

70 typedef typename Grid::ctype CoordScalar;

71

72 enum

73 {dim=Grid::dimension , dimWorld=Grid:: dimensionworld };

74 typedef typename Grid:: Traits :: template Codim <0>:: Entity Element;

75

76 typedef Dune:: FieldVector <CoordScalar , dimWorld > GlobalPosition;

77 typedef Dune:: FieldMatrix <Scalar ,dim ,dim > FieldMatrix;

78

79 public:

80 typedef typename GET_PROP_TYPE(TypeTag , MaterialLaw) MaterialLaw;

81 typedef typename MaterialLaw :: Params MaterialLawParams;

82

83 //! Intrinsic permeability tensor K \f$[m^2]\f$ depending

84 /*! on the position in the domain

85 *

86 * \param element The finite volume element

87 *

88 * Alternatively , the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos)

could be

34

3 Tutorial

89 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

90 */

91 const FieldMatrix& intrinsicPermeability (const Element& element) const

92 {

93 return K_;

94 }

95

96 //! Define the porosity \f$[-]\f$ of the porous medium depending

97 /*! on the position in the domain

98 *

99 * \param element The finite volume element

100 *

101 * Alternatively , the function porosityAtPos(const GlobalPosition& globalPos) could be

102 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

103 */

104 double porosity(const Element& element) const

105 {

106 return 0.2;

107 }

108

109 /*! Return the parameter object for the material law (i.e. Brooks -Corey)

110 * depending on the position in the domain

111 *

112 * \param element The finite volume element

113 *

114 * Alternatively , the function materialLawParamsAtPos(const GlobalPosition& globalPos)

115 * could be defined , where globalPos is the vector including the global coordinates of

116 * the finite volume.

117 */

118 const MaterialLawParams& materialLawParams(const Element &element) const

119 {

120 return materialLawParams_;

121 }

122

123 //! Constructor

124 TutorialSpatialParamsDecoupled(const GridView& gridView)

125 : ParentType(gridView), K_(0)

126 {

127 for (int i = 0; i < dim; i++)

128 K_[i][i] = 1e-7;

129

130 // residual saturations

131 materialLawParams_.setSwr (0);

132 materialLawParams_.setSnr (0);

133

134 // parameters for the Brooks -Corey Law

135 // entry pressures

136 materialLawParams_.setPe (500);

137

138 // Brooks -Corey shape parameters

139 materialLawParams_.setLambda (2);

140 }

141

142 private:

143 MaterialLawParams materialLawParams_;

144 FieldMatrix K_;

145 };

146

147 } // end namespace

148 #endif

35

3 Tutorial

As this file only slightly differs from the coupled version, consult chapter 3.1.4 for explanations. How-
ever, as a standard Finite Volume scheme is used, in contrast to the box-method in the coupled case,
the argument list here is the same as for the problem functions: Either an element, or only the global
position if the function is called ...AtPos(...).

3.2.3 Exercises

The following exercises will give you the opportunity to learn how you can change soil parameters,
boundary conditions and fluid properties in DuMux and to play along with the decoupled modelling
framework.

Exercise 1

For Exercise 1 you only have to make some small changes in the tutorial files.

a) Altering output

To get an impression what the results should look like you can first run the original version of the
decoupled tutorial model by typing ./tutorial decoupled. The runtime parameters which are
set can be found in the input file (listing 6). If the input file has the same name than the main file
(e.g. tutorial decoupled.cc and tutorial decoupled.input), it is automatically chosen. If
the name differs the program has to be started typing ./tutorial decoupled -parameterFile

<filename>.input. For more options you can also type ./tutorial decoupled -h. For the
visualisation with paraview please refer to 2.2.
As you can see, the simulation creates many output files. To reduce these in order to perform
longer simulations, change the method responsible for output (line 139 in the file tutorialprob-
lem decoupled) as to write an output only every 20 time-steps. Compile the main file by typing
make tutorial decoupled and run the model. Now, run the simulation for 5e5 seconds.

b) Changing the Model Domain and the Boundary Conditions
Change the size of the model domain so that you get a rectangle with edge lengths of x = 300 m
and y = 300 m and with discretisation lengths of ∆x = 20 m and ∆y = 10 m.
Change the boundary conditions in the file tutorialproblem decoupled.hh so that water enters
from the bottom and oil flows out at the top boundary. The right and the left boundary should
be closed for water and oil fluxes. The Neumannn Boundary conditions are multiplied by the
normal (pointing outwards), so an influx is negative, an outflux always positive. Such information
can easily be found in the documentation of the functions (also look into base classes).

c) Changing Fluids
Now you can change the fluids. Use DNAPL instead of Oil and Brine instead of Water. To do
that you have to select different components via the property system in the problem file:

a) Brine: The class Dumux::Brine acts as an adapter to the fluid system that alters a pure
water class by adding some salt. Hence, the class Dumux::Brine uses a pure water class, such
as Dumux::H2O, as a second template argument after the data type <Scalar> as a template
argument (be sure to use the complete water class with its own template parameter).

b) DNAPL: A standard set of chemical substances, such as Water and Brine, is already in-
cluded (via a list of #include .. commandos) and hence easily accessible by default. This

36

3 Tutorial

600 m

300 m K = 10−8 m2

φ = 0.15
K = 10−9 m2

φ = 0.3

Figure 3.8: Exercise 1d: Set-up of a model domain a heterogeneity. ∆x = ∆y = 20 m.

is not the case for the class Dumux::DNAPL, however, which is located in the folder dumux/-
material/components/. Try to include the file as well as select the component via the
property system.

If you want to take a closer look at how the fluid classes are defined and which substances are
already available please browse through the files in the directory /dumux/material/components.

d) Use the DuMux fluid system
DuMux usually organizes fluid mixtures via a fluidsystem, see also chapter 6. In order to in-
clude a fluidsystem you first have to comment the lines 74 to 89 in the problem file. If you use
eclipse, this can easily be done by pressing str + shift + 7 – the same as to cancel the comment
later on.
Now include the file fluidsystems/h2oairfluidsystem.hh in the material folder, and set a
property FluidSystem with the appropriate type, Dumux::H2OAirFluidSystem<TypeTag>. How-
ever, this rather complicated fluidsystem uses tabularized fluid data, which need to be initialized
(i.e. the tables need to be filled with values) in the constructor body of the current problem
by adding GET PROP TYPE(TypeTag, FluidSystem)::init();. Remember that the constructor
function always has the same name as the respective class, i.e. TutorialProblemDecoupled(..).
To avoid the initialization, use the simpler version of water Dumux::SimpleH2O or a non-tabulated
version Dumux::H2O. This can be done by setting the property Components type H2O, as is done
in all the test problems of the decoupled 2p2c model.
The density of the gas is magnitudes smaller than that of oil, so please decrease the outflow rate

to qn = 3× 10−4
[

kg
m2s

]
. Also reduce the simulation duration to 2e4 seconds.

Please reverse the changes of this example, as we still use bulk phases and hence do not need
such an extensive fluid system.

e) Heterogeneities
Set up a model domain with the soil properties given in figure 3.8. Adjust the boundary conditions
so that water is again flowing from left to right. When does the front cross the material border?
In paraview, the option View → Animation View is nice to get a rough feeling of the time-step
sizes.

37

3 Tutorial

Exercise 2

For this exercise you should create a new problem file analogous to the file tutorialproblem decou-

pled.hh (e.g. with the name ex2 tutorialproblem decoupled.hh and new spatial parameters just
like tutorialspatialparams decoupled.hh. These files need to be included in the file tutorial -

decoupled.cc.
Each new files should contain the definition of a new class with a name that relates to the file name,

such as Ex2TutorialProblemDecoupled. Make sure that you also adjust the guardian macros in lines
24 and 25 in the header files (e.g. change
DUMUX TUTORIALPROBLEM DECOUPLED HH to DUMUX EX2 TUTORIALPROBLEM DECOUPLED HH). Beside also
adjusting the guardian macros, the new problem file should define and use a new type tag for the
problem as well as a new problem class e.g. Ex2TutorialProblemDecoupled. Make sure to assign
your newly defined spatial parameter class to the SpatialParams property for the new type tag.

After this, change the domain size (parameter input file) to match the domain described by figure
3.9. Adapt the problem class so that the boundary conditions are consistent with figure 3.10. Initially,
the domain is fully saturated with water and the pressure is pw = 2× 105 Pa . Oil infiltrates from the
left side. Create a grid with 20 cells in x-direction and 10 cells in y-direction. The simulation time
should be set to 1e6 s.

Now include your new problem file in the main file and replace the TutorialProblemDecoupled

type tag by the one you’ve created and compile the program.

50 m

100 m

20 m

15 m

50 m 25 m

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 1.8, pe = 1000 Pa

K = 10−9 m2

φ = 0.15

Brooks-Corey Law

λ = 2, pe = 1500 Pa

Figure 3.9: Set-up of the model domain and the soil parameters

• What happens if you increase the resolution of the grid? Hint: Paraview can visualize the
time-steps via the “Animation View” (to be enabled unter the button View).

• Set the CFL-factor to 1 and investigate the saturation: Is the value range reasonable?

• Further increase the CFL-factor to 2 and investigate the saturation.

Exercise 3: Parameter file input.

As you have experienced, compilation takes quite some time. Therefore, DuMux provides a simple
method to read in parameters (such as simulation end time or modelling parameters) via Paramter

38

3 Tutorial

no flow

no flow

qn = 0

qw = 2 · 10−4 kg/m2s

Sw = 0

pw = 2 · 105 Pa

Figure 3.10: Boundary Conditions

Input Files. The tests in the Test-folder /test/ already use this system.
If you look at the Application in /test/implicit/2p/, you see that the main file looks rather empty:
The parameter file test box2p.input is read by a standard start procedure, which is called in the
main function. This should be adapted for your problem at hand. The program run has to be called
with the parameter file as argument. As this is a basic DuMux feature, the procedure is the equiv-
alent in the decoupled as in the box models. In the code, parameters can be read via the macro
GET RUNTIME PARAM(TypeTag, Scalar, MyWonderfulGroup.MyWonderfulParameter);. In test 2p,
MyWonderfulGroup is the group SpatialParams - any type of groups is applicable, if the group defini-
tion in the parameter file is enclosed in square brackets. The parameters are then listed thereafter. Try
and use as much parameters as possible via the input file, such as lens dimension, grid resolution, soil
properties etc. In addition, certain parameters that are specific to the model, such as the CFL-factor,
can be assigned in the parameter file without any further action.

Exercise 4

Create a new file for benzene called benzene.hh and implement a new fluid system. (You may get a
hint by looking at existing fluid systems in the directory /dumux/material/fluidsystems.)

Use benzene as a new fluid and run the model of Exercise 2 with water and benzene. Benzene has
a density of 889.51 kg/m3 and a viscosity of 0.00112 Pa s.

Exercise 5: Time Dependent Boundary Conditions

In this exercise we want to investigate the influence of time dependent boundary conditions. For this,
redo the steps of exercise 2 and create a new problem and spatial parameters file.

After this, change the run-time parameters so that they match the domain described by figure
3.11. Adapt the problem class so that the boundary conditions are consistent with figure 3.12. Here
you can see the time dependence of the wetting saturation, where water infiltrates only during 105 s
and 4 · 105 s. To implement these time dependencies you need the actual time tn+1 = tn + ∆t and
the endtime of the simulation. For this you can use the methods this->timeManager().time(),
this->timeManager().timeStepSize() and this->timeManager().endTime().

Initially, the domain is fully saturated with oil and the pressure is pw = 2×105 Pa. Water infiltrates
from the left side. Create a grid with 100 cells in x-direction and 10 cells in y-direction. The simulation

39

3 Tutorial

time should be set to 5 ·105 s with an initial time-step size of 10 s. To avoid too big time-step sizes you
should set the parameter MaxTimeStepSize for the group TimeManager (in your input file) to 100 s.
You should only create output files every 100th time-step (see exercise 1a). Then, you can compile the
program.

50 m

100 m no flow

no flow

qn = 1 · 10−3 kg/m2s

qw = 0

Sw(t)

pw = 2 · 105 Pa

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 2, pe = 500 Pa

Figure 3.11: Set-up of the model domain and the soil parameters

Sw

time [s]

1

0
1 · 105 4 · 105 5 · 105

sin(π time−105

3·105
)

Figure 3.12: Time Dependent Boundary Conditions

• Open paraview and plot the values of Sw at time 5 · 105 s over the x−axis.
(Filter->Data Analysis->Plot Over Line)

• What happens without any time-step restriction?

Exercise 6

If both the coupled and the decoupled tutorial are completed, one should have noticed that the
function arguments in the problem function differ slighty, as the numerical models differ. However,
both are functions that depend on space, so both models can also work with functions based ond

40

3 Tutorial

...AtPos(GlobalPosition & globalPos), no matter if we model coupled or decoupled. Try to for-
mulate a spatial parameters file that works with both problems, the coupled and the decoupled.
Therein, only use functions at the position.

41

4 Structure, Guidelines, New Folder Setup

4.1 Directory Structure

We briefly describe the directory structure of DuMux in terms of subdirectories, source files, and
tests. For more details, the Doxygen documentation should be considered. DuMux comes in form
of a DUNE module dumux. It has a similar structure as other DUNE modules like dune-grid. The
following subdirectories are within the module’s root directory, from now on assumed to be /:

• bin: contains binaries, e.g. used for the automatic testing

• CMake: the configuration options for building DuMux using CMake. See the file INSTALL.cmake

in the root directory of dumux for details. Of course, it is also possible to use the DUNE
buildsystem just like for the other DUNE modules.

• doc: contains the Doxygen documentation in doxygen, this handbook in handbook, and the
DuMux logo in various formats in logo. The html documentation produced by Doxygen can be
accessed as usual, namely, by opening doc/doxygen/html/index.html with a web browser.

• dumux: the DuMux source files. See Section 4.1.1 for details.

• test: tests for each numerical model and the property system. See Section 4.1.2 for details.

• tutorial: contains the tutorials described in Chapter 3.

4.1.1 The directory dumux

The directory dumux contains the DuMux source files. It consists of the following subdirectories (see
Figure 4.1):

• implicit: the general fully implicit method is contained in the subdirectory common. The
subdirectories box and cellcentered contain the code for the according discretization types.
They also contain files ..fvelementgeometry.hh employed by the box or cc method to extract
the dual mesh geometry information out of the primal one. Each of the other subdirectories
contain a derived specific numerical model.

• common: general stuff like the property system and the time management for the fully coupled
as well as the decoupled models, and the start.hh file that includes the common routine for
starting a model called in the main function.

• decoupled: numerical models to solve the pressure equation as part of the fractional flow for-
mulation. The specific models are contained in corresponding subdirectories. In each model
folder are subdirectories for the implicit pressure equation sorted by the employed discretization

42

4 Structure, Guidelines, New Folder Setup

method, and for the explicit transport equation. The general decoupled formulation for the
implicit pressure explicit transport formulation can be found in the subdirectory common.

• io: additional in-/output possibilities like restart files, gnuplot-interface and a VTKWriter ex-
tension.

• material: everything related to material parameters and constitutive equations. The properties
of a pure chemical substance (e.g. water) or pseudo substance (e.g. air) can be found in the
subdirectory components with the base class components/component.hh. The fluidsytem in
the folder fluidsystems collects the information from the respective component and binary
coefficients files, and contains the fluid characteristics of phases (e.g. viscosity, density, enthalpy,
diffusion coefficients) for compositional or non-compositional multi-phase flow.

The base class for all spatially dependend variables – like permeability and porosity – can be
found in spatialparams. The base class in implicitspatialparameters.hh also provides spa-
tial averaging routines. All other spatial properties are specified in the specific files of the
respective models. Furthermore, the constitutive relations – e.g. pc(Sw) – are in fluidma-

trixinteractions, while the necessary binary coefficients like the Henry coefficient or binary
diffusion coefficients are definded in binarycoefficients.

• nonlinear: Newton’s method.

4.1.2 The directory test

The directory test contains a test for each numerical model and for the property system. The tests
for the property system can be found in common. The subfolder implicit contains tests for the
fully coupled models (1p, 1p2c, 2p, 2p2c, 2p2cni, 2pni, 3p3c, 3p3cni, mpnc and richards), while the
subdirectory decoupled corresponds to the decoupled models. Each subdirectory contains one or more
program files test *.cc, where * usually is the name of the folder. Moreover, the problem definitions
can be found in the *problem.hh files and the definition of the spatially dependent parameters in
*spatialparameters.hh. Simply executing the tests should either run the full test or give a list of
required command line arguments. After test execution, VTK output files should have been generated.
For more detailed descriptions of the tests, the problem definitions and their corresponding Doxygen
documentation should be considered.

4.2 Setup of a New Folder and New Tests

Setting up a New Folder In this section it is described how to set up a new folder and how to tell
the build system, that there is a new one.

1) create new folder with content

2) adapt the CMakeList.txt in the folder above and add a line with add_subdirectory(NEW_FOLDER)

3) adapt the CMakeList.txt in the newly created folder and add your test (see below for more infor-
mation)

4) go to your build-directory and type make to reconfigure the system

43

4 Structure, Guidelines, New Folder Setup

dumux

li
n

ea
r

io

im
p

li
ci

t

co
m

m
on

ce
ll

ce
n
te

re
d

b
ox

sp
ec

ifi
c

m
o
d

el
s

fr
ee

fl
ow

sp
ec

ifi
c

m
o
d

el
s

d
ec

ou
p

le
d

co
m

m
on

sp
ec

ifi
c

m
o
d

el
s

co
m

m
o
n

m
a
te

ri
a
l

b
in

a
ry

co
effi

ci
en

ts

co
m

p
on

en
ts

co
n

st
ra

in
ts

ol
ve

rs

eo
s

fl
u

id
m

at
ri

x
-

in
te

ra
ct

io
n

s

fl
u

id
st

at
es

fl
u

id
sy

st
em

s

sp
at

ia
lp

ar
am

et
er

s

n
on

li
n

ea
r

p
a
ra

ll
el

C
om

m
on

fi
le

s
of

th
e

im
p

li
ci

t
(b

ox
a
n

d
ce

ll
ce

n
te

re
d

)
m

o
d

el
s

an
d

th
e

d
e-

co
u

p
le

d
m

o
d

el
s:

ti
m

e
in

te
gr

a
ti

on
,

st
a
rt

ro
u

ti
n

e,
th

e
p
ro

p
er

ty
sy

st
em

,
..

.

S
p

ec
ifi

c
m

o
d

el
d

efi
n

it
io

n
fo

r
th

e
d

ec
ou

p
le

d
fo

rm
u

la
ti

on
.

In
ea

ch
m

o
d

el
fo

ld
er

ar
e

su
b

d
ir

ec
to

ri
es

fo
r

th
e

im
p

li
ci

t
p

re
ss

u
re

eq
u

at
io

n
,

so
rt

ed
b
y

d
is

cr
et

iz
at

io
n

m
et

h
o
d

,
an

d
fo

r
th

e
ex

p
li

ci
t

tr
a
n

sp
or

t.

B
as

e
cl

as
se

s
an

d
ge

n
er

al
fi

le
s

fo
r

th
e

d
ec

ou
p

le
d

fo
rm

u
la

ti
on

.

S
p

ec
ifi

c
m

o
d

el
d

efi
n

it
io

n
fo

r
fr

ee
fl

ow
p

ro
b

le
m

s
u

si
n

g
th

e
S

tr
o
ke

s
eq

u
at

io
n

:
n

on
-i

so
th

er
m

a
l,

co
m

p
os

it
io

n
al

,
on

e-
p

h
as

e
m

o
d

el
s.

M
o
d

el
an

d
p

ro
b

le
m

d
efi

n
it

io
n

:
im

p
le

m
en

ta
ti

on
o
f

eq
u

a
ti

on
s,

m
o
d

el
sp

e-
ci

fi
c

p
ro

p
er

ti
es

an
d

in
d
ic

es
.

S
p

ec
ifi

c
fi

le
s

fo
r

ge
re

n
al

fu
ll

y
im

p
li

ci
t

b
ox

m
et

h
o
d

:
b

ox
a
ss

em
b

le
r,

d
u

al
m

es
h

ge
om

et
ry

in
b

ox
fv

el
em

en
tg

eo
m

et
ry

.h
h

,
b

a
se

cl
as

se
s

fo
r

m
o
d

el
an

d
p

ro
b

le
m

d
efi

n
it

io
n

.
S

p
ec

ifi
c

fi
le

s
fo

r
fu

ll
y

im
p

li
ci

t
ce

ll
ce

n
te

re
d

m
et

h
o
d

:
cc

as
se

m
b

le
r,

m
es

h
ge

om
et

ry
in

cc
fv

el
em

en
tg

eo
m

et
ry

.h
h

,
b

as
e

cl
a
ss

es
fo

r
m

o
d

el
an

d
p

ro
b

le
m

d
efi

n
it

io
n

.
C

om
m

on
fu

n
ct

io
n

al
it

y
of

ce
ll

ce
n
te

re
d

a
n

d
b

ox
fo

rm
u

la
ti

o
n

:
as

se
m

b
li

n
g

in
im

p
li

ci
tl

o
ca

lj
ac

ob
ia

n
.h

h
,

ev
al

u
at

io
n

of
p

ar
ti

a
l

d
er

iv
a
ti

v
e

in
im

p
li

ci
tl

o
ca

lr
es

id
u

al
.h

h
,

b
as

e
cl

a
ss

es
fo

r
m

o
d

el
a
n

d
p

ro
b

le
m

d
efi

n
it

io
n

.
A

d
d

it
io

n
al

in
-/

ou
tp

u
t

p
os

si
b

il
it

ie
s

li
ke

re
st

a
rt

fi
le

s,
gn

u
p
lo

t-
in

te
rf

ac
e

an
d

a
V

T
K

W
ri

te
r

ex
te

n
si

on
.

G
ri

d
C

re
at

or
fi

le
s.

L
in

ea
r

so
lv

er
b

ac
ke

n
d

.

B
in

ar
y

co
effi

ci
en

ts
(l

ik
e

b
in

a
ry

d
iff

u
si

on
co

effi
ci

en
ts

)
a
n

d
th

os
e

n
ee

d
ed

fo
r

th
e

co
n

st
it

u
ti

ve
re

la
ti

on
sh

ip
s

(e
.g

.
H

en
ry

co
effi

ci
en

t)
.

P
ro

p
er

ti
es

of
a

p
u
re

ch
em

ic
a
l

su
b

st
a
n

ce
(e

.g
.

w
a
te

r)
or

p
se

u
d

o
su

b
st

an
ce

(e
.g

.
a
ir

).

C
on

st
ra

in
t

so
lv

er
s

sp
ec

if
y

a
w

el
l

d
efi

n
ed

se
t

of
in

p
u

t
va

ri
a
b

le
s

a
n

d
m

a
ke

su
re

th
at

th
e

re
su

lt
in

g
fl

u
id

st
a
te

is
co

n
si

st
en

t
w

it
h

a
gi

ve
n

se
t

o
f

th
er

m
o
d

y
n

am
ic

eq
u

at
io

n
s.

E
q
u

at
io

n
s

of
st

at
e

(e
os

)
ar

e
au

x
il

ia
ry

cl
as

se
s

w
h

ic
h

p
ro

v
id

e
re

la
ti

o
n

s
b

et
w

ee
n

a
fl

u
id

p
h

as
e’

s
te

m
p

er
at

u
re

,
p

re
ss

u
re

,
co

m
p

o
si

ti
o
n

an
d

d
en

si
ty

.

C
on

st
it

u
ti

ve
re

la
ti

on
sh

ip
s

(e
.g

.
ca

p
il

la
ry

p
re

ss
u

re
-

sa
tu

ra
ti

on
-

cu
rv

e)
.

F
lu

id
st

at
es

ar
e

re
sp

on
si

b
le

fo
r

re
p

re
se

n
ti

n
g

th
e

co
m

p
le

te
th

er
m

o
d

y
n

a
m

ic
co

n
fi

gu
ra

ti
on

of
a

sy
st

em
a
t

a
g
iv

en
sp

a
ti

al
an

d
te

m
p

o
ra

l
p

o
si

ti
o
n

.

F
lu

id
sy

st
em

s
ex

p
re

ss
th

e
th

er
m

o
d

y
n

am
ic

re
la

ti
o
n

s
b

et
w

ee
n

q
u

an
ti

ti
es

.

B
as

e
cl

as
s

fo
r

al
l

sp
at

ia
ll

y
d
ep

en
d

en
t

va
ri

ab
le

s,
li

k
e

p
er

m
ea

b
il

it
y

a
n

d
p

or
os

it
y.

In
cl

u
d
es

sp
at

ia
l

av
er

a
gi

n
g

ro
u

ti
n

es
.

A
ll

ot
h

er
p

ro
p

er
ti

es
a
re

sp
ec

ifi
ed

in
th

e
sp

ec
ifi

c
fi

le
s

o
f

th
e

re
sp

ec
ti

v
e

m
o
d

el
s.

N
ew

to
n

’s
m

et
h

o
d

.

F
il

es
fo

r
p

ar
al

le
l

p
ro

gr
am

m
in

g
.

F
ig

u
re

4.
1:

S
tr

u
ct

u
re

of
th

e
d

ir
ec

to
ry

d
u
m
u
x

co
n
ta

in
in

g
th

e
D

u
M

u
x

so
u

rc
e

fi
le

s.

44

4 Structure, Guidelines, New Folder Setup

Adding a New Test Program To simply add a new executable use the following macro. The test
will not be built automatically when running ctest. You have to compile it manually by make test -

program.

add_executable_all(test_program test_program.cc)

To add a test, which should be compiled when running ctest, use the add dumux test macro. You
can decide whether, the program should be run after compiling or not. Please note that the name of
the test (first argument) must be unique, whereas the name of the executable (second argument) can
occur multiple times.

add_dumux_test(test_program test_program test_program.cc

test_program # add this line, if the program should also be run

)

To add a test which should be run and compared to a reference solution when using ctest, please use
the following structure. The macro $CMAKE SOURCE DIR gives the location of your source code. The
macro $CMAKE CURRENT BINARY DIR gives the current folder with the executable.

add_dumux_test(test_program test_program test_program.cc

${CMAKE_SOURCE_DIR}/bin/runTest.sh

${CMAKE_SOURCE_DIR}/bin/fuzzycomparevtu.py

LOCATION_TO_THE_REFERNCE_SOLUTION/test_program-reference.vtu

${CMAKE_CURRENT_BINARY_DIR}/test_program-00009.vtu

${CMAKE_CURRENT_BINARY_DIR}/test_program)

Committing a New older to SVN For those who work with Subversion (svn) and want to commit a
newly setup folder to the repository some basics are given in this paragraph. For further reading please
check out the Subversion User Manual found at [4] where you will also find a ”High Speed Turorial”
in the appendix.
The four most important commands are svn checkout, svn update, svn add and svn commit. The
first one (svn checkout) you probably already know from the DuMux installation. It will create a
copy of the trunk version from the svn server on your local system. Use svn update to get the latest
changes in the repository (commits from other users). In order to add a new folder to the repository
the following steps have to be taken:

1) svn update: The first step is to update your DuMux. You should execute this command in your
dumux-stable or dumux-devel folder.

2) svn add --depth=empty YOURFOLDER: This command adds the folder without its content.

3) In your folder: use svn add YOURFILES to add your files. Generally, you should only add your
header files (.hh), your source files (.cc), your input file (.input), if required your grid file (.dgf) or
if necessary other text-based files. Please do not upload (large) binary files.

4) Type svn status in your dumux-root directory the see all the file changes. ? indicates possible
forgotten files. Make sure that you include all necessary files in your commit.

5) Use svn commit from the directory level containing your folder. This uploads all your changes to
the svn server. You will be asked to briefly explain the content of your commit in an editor.

45

4 Structure, Guidelines, New Folder Setup

4.3 Parameter Files in DuMux

DuMux simulations can be run with the use parameter files. Here basic information how to set, extend,
and improve your problem by using parameter files. A list of all available parameters is provided in the
doxygen documentation of the file parameterfile, which is accessible via Modules -> Parameters.

4.3.1 Advantages of Parameter Files

Parameter files are worth of taking a closer look at, because using then considerably improves the
workflow.

• The parameter file is read in by the compiled program. This way you can change values without
having to recompile the whole application.

• With a very generic model, you can use different input files for defining different setups and
always use the same program.

• You can use the parameter file in order to back up parameters that you used for a certain model
run.

4.3.2 Changing Parameters

After having run the example application from section 2.2 you will get the following output at the end
of the simulation run 1 :

Run−t ime s p e c i f i e d p a r a m e t e r s :
[Grid]

File = "./ grids/test_2p.dgf"

[Implicit]

EnableJacobianRecycling = "1"

EnablePartialReassemble = "1"

[Problem]

Name = "lensbox"

[SpatialParams]

LensLowerLeftX = "1.0"

LensLowerLeftY = "2.0"

LensUpperRightX = "4.0"

LensUpperRightY = "3.0"

[TimeManager]

DtInitial = "250"

TEnd = "3000"

Compile−t ime s p e c i f i e d p a r a m e t e r s :
[Implicit]

EnableHints = "0"

MassUpwindWeight = "1"

MaxTimeStepDivisions = "10"

MobilityUpwindWeight = "1"

1If you did not get the output, restart the application the following way: ./test box2p -parameterFile ./test -

box2p.input -PrintParameters 1, this will print the parameters once your simulation is finished

46

4 Structure, Guidelines, New Folder Setup

NumericDifferenceMethod = "1"

UseTwoPointFlux = "0"

[LinearSolver]

MaxIterations = "250"

PreconditionerRelaxation = "1"

ResidualReduction = "1e-06"

Verbosity = "0"

[Newton]

EnableResidualCriterion = "0"

EnableShiftCriterion = "1"

MaxRelativeShift = "1e-08"

MaxSteps = "18"

ResidualReduction = "1e-05"

SatisfyResidualAndShiftCriterion = "0"

TargetSteps = "10"

UseLineSearch = "0"

WriteConvergence = "0"

[Problem]

EnableGravity = "1"

[TimeManager]

MaxTimeStepSize = "1.79769e+308"

[Vtk]

AddVelocity = "0"

A number of things can be learned from this. Most prominently it tells you the parameters, that can
easily be added to the input file without having to change anything in the source code. The output
will tell you, which parameters are available to the problem and whether they have been specified

• run-time via your input file

• compile-time and have not been overwritten by the input file

• in your input file, but are UNUSED by the simulation

For example by adding

[Newton]

MaxRelativeShift = "1e-11"

to the input file you can specify that the Newton solver considers itself converged for an error a
thousand times smaller.

The UNUSED warning

UNUSED p a r a m e t e r s :
Problem.ImportantVariable = "42"

is important, because it shows that the application did not read in this value. Maybe because it
was attributed to the wrong group or there was a typo. This feature is very useful for debugging or
spotting typos, like when you wanted to overwrite one of the parameters listed under Compile-time

specified parameters and misspelled it in the input file, it will be listed in the UNUSED parameters

section.

47

4 Structure, Guidelines, New Folder Setup

4.3.3 Technical Issues on Parameters

In case you want to learn more about how the input files work, please have a look at the very helpful
DUNE documentation, look for Dune::ParameterTree.

The parameter tree can also be filled without the help of a text file. Everything that is specified in
a DuMux input file can also be specified directly on the command line. If there is also an input file,
the respective parameter on the command line has precedence.

All applications have a help message which you can read by giving --help as a command line
argument to the application. A message listing syntax and the mandatory input will be displayed on
the command line.

4.4 Restart DuMux Simulations

Using the restart capability of DuMux can be advantageous for computationally expensive or time
consuming simulations, because you can restart the simulation from a specific point in time and e.g.
extend the simulation beyond the originally end of simulation. What you need is a *.drs file (which
contains the all necessary restart information. Then you can simply restart a simulation via

./ test_program -ParameterFile test_program.input -TimeManager.Restart

RESTART_TIME

To the test restart behavior e.g. use the test box1p2cni problem in the test/implicit/1p2c folder.
You get the RESTART TIME from the name of your .drs file. Please note, that restarting will only work
by giving a exact time from an existing restart file. Depending on your type of model, you should get
a .drs file every 5th or 10th time step. If this not frequently enough, you can change it by using the
following function into your problem header:

1 /*!

2 * \brief Returns true if a restart file should be written to

3 * disk.

4 */

5 bool shouldWriteRestartFile () const

6 {

7 return true;

8 }

4.5 Coding Guidelines

An important characteristic of source code is that it is written only once but usually it is read many
times (e.g. when debugging things, adding features, etc.). For this reason, good programming frame-
works always aim to be as readable as possible, even if comes with higher effort to write them in the
first place. The remainder of this section is almost a verbatim copy of the DUNE coding guidelines
found at http://www.dune-project.org/doc/devel/codingstyle.html. These guidelines are also
recommended for coding with DuMux as developer and user.

In order to keep the code maintainable we have decided upon a set of coding rules. Some of them
may seem like splitting hairs to you, but they do make it much easier for everybody to work on code
that hasn’t been written by oneself.

48

http://www.dune-project.org/doc/devel/codingstyle.html

4 Structure, Guidelines, New Folder Setup

Documentation: DuMux, as any software project of similar complexity, will stand and fall with
the quality of its documentation. Therefore it is of paramount importance that you document well
everything you do! We use the Doxygen system to extract easily-readable documentation from the
source code. Please use its syntax everywhere.
We proclaim the Doc-Me Dogma. It goes like this: Whatever you do, and in whatever hurry you happen
to be, please document everything at least with a /** \todo Please doc me! */. That way at least
the absence of documentation is documented, and it is easier to get rid of it systematically. Please
document freely what each part of your code does. All comments/ documentation is in English. In
particular, please comment all:

• Method Parameters (in / out)

• Method parameters which are not self-explanatory should always have a meaningful comment at
calling sites. Example:

1 localResidual.eval(/* includeBoundaries=*/true);

• Template Parameters

• Return Values

• Exceptions thrown by a method

• svn-Commits

Naming: In order to avoid duplicated types or variables a better understanding and usability of the
code we have the following naming principles.

• Variables/Functions. . .

– use letters and digits

– first letter is lower case.

– CamelCase: if your variable names consists of several words, then the first letter of each
new word should be capital.

– Abbreviations: If and only if a single letter that represents an abbreviation or index is
followed by a single letter (abbreviation or index), CamelCase is not used. An inner-word
underscore is only permitted if it symbolizes a fraction line. Afterwards, we continue with
lower case, i.e. the common rules apply to both enumerator and denominator. Examples:
pw but pressureW → because “pressure” is a word.
srnw but sReg → because “reg” is not an abbreviation of a single letter. “n” abbreviates
“non”, “w” is “wetting”, so not CamelCase.
pcgw but dTauDPi → Both “Tau” and “Pi” are words, plus longer than a letter.
But: CaCO3 The only exception: chemical formulas are written in their chemically correct
way →

– Self-Explaining : especially abbreviations should be avoided (saturation in stead of S)

• Private Data Variables: Names of private data variables end with an underscore and are the
only variables that contain underscores.

49

4 Structure, Guidelines, New Folder Setup

• Type names: For type names, the same rules as for variables apply. The only difference is that
the first letter is capital.

• Files: File names should consist of lower case letters exclusively. Header files get the suffix .hh,
implementation files the suffix .cc

• The Exclusive-Access Macro: Every header file traditionally begins with the definition of a
preprocessor constant that is used to make sure that each header file is only included once. If your
header file is called ’myheaderfile.hh’, this constant should be DUMUX MYHEADERFILE HH.

• Macros: The use of preprocessor macros is strongly discouraged. If you have to use them for
whatever reason, please use capital letters only.

Exceptions: The use of exceptions for error handling is encouraged. Until further notice, all excep-
tions thrown are Dune exceptions.

Debugging Code: Global debugging code is switched off by setting the macro NDEBUG or the
compiler flag -DNDEBUG. In particular, all asserts are automatically removed. Use those asserts
freely!

50

5 The DuMux Property System

This section is dedicated to the DuMux property system. First, a high level overview over its design
and principle ideas is given, then follows a short reference and a short self-contained example.

5.1 Concepts and Features of the DuMux Property System

The DuMux property system was designed as an attempt to mitigate the problems of traits classes.
In fact, it can be seen as a traits system which allows easy inheritance and any acyclic dependency
of parameter definitions. Just like traits, the DuMux property system is a compile time mechanism,
which means that there are no run-time performance penalties associated with it. It is based on the
following concepts:

Property: In the context of the DuMux property system, a property is an arbitrary class body which
may contain type definitions, values and methods. Each property has a so-called property tag
which can be seen as a label with its name.

Property Inheritance: Just like normal classes, properties can be arranged in hierarchies. In the
context of the DuMux property system, nodes of the inheritance hierarchy are called type tags.

It also supports property nesting and introspection. Property nesting means that the definition
of a property can depend on the value of other properties which may be defined for arbitrary levels of
the inheritance hierarchy. The term introspection denotes the ability to generate diagnostic messages
which can be used to find out where a certain property was defined and how it was inherited.

5.2 DuMux Property System Reference

All source files which use the DuMux property system should include the header file dumux/common/

propertysystem.hh. Declaration of type tags and property tags as well as defining properties must
be done inside the namespace Dumux::Properties.

Defining Type Tags

New nodes in the type tag hierarchy can be defined using

1 NEW_TYPE_TAG(NewTypeTagName , INHERITS_FROM(BaseTagName1 , BaseTagName2 , ...));

where the INHERITS FROM part is optional. To avoid inconsistencies in the hierarchy, each type tag
may be defined only once for a program.

Example:

51

5 The DuMux Property System

1 namespace Dumux {

2 namespace Properties {

3 NEW_TYPE_TAG(MyBaseTypeTag1);

4 NEW_TYPE_TAG(MyBaseTypeTag2);

5

6 NEW_TYPE_TAG(MyDerivedTypeTag , INHERITS_FROM(MyBaseTypeTag1 , MyBaseTypeTag2));

7 }}

Declaring Property Tags

New property tags – i.e. labels for properties – are declared using

1 NEW_PROP_TAG(NewPropTagName);

A property tag can be declared arbitrarily often, in fact it is recommended that all properties are
declared in each file where they are used.

Example:

1 namespace Dumux {

2 namespace Properties {

3 NEW_PROP_TAG(MyPropertyTag);

4 }}

Defining Properties

The value of a property on a given node of the type tag hierarchy is defined using

1 SET_PROP(TypeTagName , PropertyTagName)

2 {

3 // arbitrary body of a struct

4 };

For each program, a property itself can be declared at most once, although properties may be over-
written for derived type tags.

Also, the following convenience macros are available to define simple properties:

1 SET_TYPE_PROP(TypeTagName , PropertyTagName , type);

2 SET_BOOL_PROP(TypeTagName , PropertyTagName , booleanValue);

3 SET_INT_PROP(TypeTagName , PropertyTagName , integerValue);

4 SET_SCALAR_PROP(TypeTagName , PropertyTagName , floatingPointValue);

Example:

1 namespace Dumux {

2 namespace Properties {

3 NEW_TYPE_TAG(MyTypeTag);

4

5 NEW_PROP_TAG(MyCustomProperty);

6 NEW_PROP_TAG(MyType);

7

8 NEW_PROP_TAG(MyBoolValue);

9 NEW_PROP_TAG(MyIntValue);

10 NEW_PROP_TAG(MyScalarValue);

11

12 SET_PROP(MyTypeTag , MyCustomProperty)

13 {

14 static void print() { std::cout << "Hello , World!\n"; }

15 };

16 SET_TYPE_PROP(MyTypeTag , MyType , unsigned int);

52

5 The DuMux Property System

17

18 SET_BOOL_PROP(MyTypeTag , MyBoolValue , true);

19 SET_INT_PROP(MyTypeTag , MyIntValue , 12345);

20 SET_SCALAR_PROP(MyTypeTag , MyScalarValue , 12345.67890);

21 }}

Un-setting Properties

Sometimes some inherited properties do not make sense for a certain node in the type tag hierarchy.
These properties can be explicitly un-set using

1 UNSET_PROP(TypeTagName , PropertyTagName);

The un-set property can not be set for the same type tag, but of course derived type tags may set it
again.

Example:

1 namespace Dumux {

2 namespace Properties {

3 NEW_TYPE_TAG(BaseTypeTag);

4 NEW_TYPE_TAG(DerivedTypeTag , INHERITS_FROM(BaseTypeTag));

5

6 NEW_PROP_TAG(TestProp);

7

8 SET_TYPE_PROP(BaseTypeTag , TestProp , int);

9 UNSET_PROP(DerivedTypeTag , TestProp);

10 // trying to access the ’TestProp ’ property for ’DerivedTypeTag ’

11 // will trigger a compiler error!

12 }}

Converting Tag Names to Tag Types

For the C++ compiler, property and type tags are like ordinary types. Both can thus be used as
template arguments. To convert a property tag name or a type tag name into the corresponding type,
the macros TTAG(TypeTagName) and PTAG(PropertyTagName) ought to be used.

Retrieving Property Values

The value of a property can be retrieved using

1 GET_PROP(TypeTag , PropertyTag)

or using the convenience macros

1 GET_PROP_TYPE(TypeTag , PropertyTag)

2 GET_PROP_VALUE(TypeTag , PropertyTag)

The first convenience macro retrieves the type defined using SET TYPE PROP and is equivalent to

1 GET_PROP(TypeTag , PropertyTag)::type

while the second convenience macro retrieves the value of any property defined using one of the macros
SET {INT,BOOL,SCALAR} PROP and is equivalent to

1 GET_PROP(TypeTag , PropertyTag)::value

Example:

53

5 The DuMux Property System

1 template <TypeTag >

2 class MyClass {

3 // retrieve the ::value attribute of the ’NumEq’ property

4 enum { numEq = GET_PROP(TypeTag , NumEq):: value };

5 // retrieve the ::value attribute of the ’NumPhases ’ property using the convenience macro

6 enum { numPhases = GET_PROP_VALUE(TypeTag , NumPhases) };

7

8 // retrieve the ::type attribute of the ’Scalar ’ property

9 typedef typename GET_PROP(TypeTag , Scalar)::type Scalar;

10 // retrieve the ::type attribute of the ’Vector ’ property using the convenience macro

11 typedef typename GET_PROP_TYPE(TypeTag , Vector) Vector;

12 };

Nesting Property Definitions

Inside property definitions there is access to all other properties which are defined somewhere on the
type tag hierarchy. The node for which the current property is requested is available via the keyword
TypeTag. Inside property class bodies this can be used to retrieve other properties using the GET PROP

macros.

Example:

1 SET_PROP(MyModelTypeTag , Vector)

2 {

3 private: typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

4 public: typedef std::vector <Scalar > type;

5 };

5.3 A Self-Contained Example

As a concrete example, let us consider some kinds of cars: Compact cars, sedans, trucks, pickups,
military tanks and the Hummer-H1 sports utility vehicle. Since all these cars share some characteristics,
it makes sense to inherit those from the closest matching car type and only specify the properties which
are different. Thus, an inheritance diagram for the car types above might look like outlined in Figure
5.1a.

Using the DuMux property system, this inheritance hierarchy is defined by:

1 #include <dumux/common/propertysystem.hh >

2 #include <iostream >

3

4 namespace Dumux {

5 namespace Properties {

6 NEW_TYPE_TAG(CompactCar);

7 NEW_TYPE_TAG(Truck);

8 NEW_TYPE_TAG(Tank);

9 NEW_TYPE_TAG(Sedan , INHERITS_FROM(CompactCar));

10 NEW_TYPE_TAG(Pickup , INHERITS_FROM(Sedan , Truck));

11 NEW_TYPE_TAG(HummerH1 , INHERITS_FROM(Pickup , Tank));

Figure 5.1b lists a few property names which make sense for at least one of the nodes of Figure 5.1a.
These property names can be declared as follows:

12 NEW_PROP_TAG(TopSpeed); // [km/h]

13 NEW_PROP_TAG(NumSeats); // []

14 NEW_PROP_TAG(CanonCaliber); // [mm]

15 NEW_PROP_TAG(GasUsage); // [l/100km]

54

5 The DuMux Property System

Compact car

Sedan

Truck

Pickup

Tank

Hummer

(a)

GasUsage

TopSpeed

NumSeats

AutomaticTransmission

CannonCalibre

Payload

(b)

Figure 5.1: (a) A possible property inheritance graph for various kinds of cars. The lower nodes inherit
from higher ones; Inherited properties from nodes on the right take precedence over the
properties defined on the left. (b) Property names which make sense for at least one of
the car types of (a).

16 NEW_PROP_TAG(AutomaticTransmission); // true/false

17 NEW_PROP_TAG(Payload); // [t]

So far, the inheritance hierarchy and the property names are completely separate. What is missing
is setting some values for the property names on specific nodes of the inheritance hierarchy. Let us
assume the following:

• For a compact car, the top speed is the gas usage in l/100km times 30, the number of seats is 5
and the gas usage is 4 l/100km.

• A truck is by law limited to 100 km/h top speed, the number of seats is 2, it uses 18 l/100km and
has a cargo payload of 35 t.

• A tank exhibits a top speed of 60 km/h, uses 65 l/100km and features a 120 mm diameter canon

• A sedan has a gas usage of 7 l/100km, as well as an automatic transmission, in every other aspect
it is like a compact car.

• A pick-up truck has a top speed of 120 km/h and a payload of 5 t. In every other aspect it is like
a sedan or a truck but if in doubt, it is more like a truck.

• The Hummer-H1 SUV exhibits the same top speed as a pick-up truck. In all other aspects it is
similar to a pickup and a tank, but, if in doubt, more like a tank.

Using the DuMux property system, these assumptions are formulated using

18 SET_INT_PROP(CompactCar , TopSpeed , GET_PROP_VALUE(TypeTag , GasUsage) * 30);

19 SET_INT_PROP(CompactCar , NumSeats , 5);

20 SET_INT_PROP(CompactCar , GasUsage , 4);

21

22 SET_INT_PROP(Truck , TopSpeed , 100);

23 SET_INT_PROP(Truck , NumSeats , 2);

24 SET_INT_PROP(Truck , GasUsage , 18);

25 SET_INT_PROP(Truck , Payload , 35);

26

55

5 The DuMux Property System

27 SET_INT_PROP(Tank , TopSpeed , 60);

28 SET_INT_PROP(Tank , GasUsage , 65);

29 SET_INT_PROP(Tank , CanonCaliber , 120);

30

31 SET_INT_PROP(Sedan , GasUsage , 7);

32 SET_BOOL_PROP(Sedan , AutomaticTransmission , true);

33

34 SET_INT_PROP(Pickup , TopSpeed , 120);

35 SET_INT_PROP(Pickup , Payload , 5);

36

37 SET_INT_PROP(HummerH1 , TopSpeed , GET_PROP_VALUE(TTAG(Pickup), TopSpeed));

At this point, the Hummer-H1 has a 120 mm canon which it inherited from its military ancestor. It
can be removed by

38 UNSET_PROP(HummerH1 , CanonCaliber);

39

40 }} // close namespaces

Now property values can be retrieved and some diagnostic messages can be generated. For example

41 int main()

42 {

43 std::cout << "top speed of sedan: " << GET_PROP_VALUE(TTAG(Sedan), TopSpeed) << "\n";

44 std::cout << "top speed of truck: " << GET_PROP_VALUE(TTAG(Truck), TopSpeed) << "\n";

45

46 std::cout << PROP_DIAGNOSTIC(TTAG(Sedan), TopSpeed);

47 std::cout << PROP_DIAGNOSTIC(TTAG(HummerH1), CanonCaliber);

48

49 Dumux:: Properties ::print <TTAG(Sedan) >();

50 }

will yield the following output:

1 top speed of sedan: 210

2 top speed of truck: 100

3 Properties for Sedan:

4 bool AutomaticTransmission = ’true’ defined at test_propertysystem.cc:68

5 int GasUsage = ’7’ defined at test_propertysystem.cc:67

6 Inherited from CompactCar:

7 int NumSeats = ’5’ defined at test_propertysystem.cc:55

8 int TopSpeed = ’::Dumux:: Properties :: GetProperty <TypeTag , ::Dumux :: Properties ::PTag::

GasUsage >::p:: value * 30’ defined at test_propertysystem.cc:54

56

6 The DuMux Fluid Framework

This chapter discusses the DuMux fluid framework. DuMux users who do not want to write new
models and who do not need new fluid configurations may skip this chapter.

In the chapter, a high level overview over the the principle concepts is provided first, then some
implementation details follow.

6.1 Overview of the Fluid Framework

The DuMux fluid framework currently features the following concepts (listed roughly in their order of
importance):

Fluid state: Fluid states are responsible for representing the complete thermodynamic configuration
of a system at a given spatial and temporal position. A fluid state always provides access
methods to all thermodynamic quantities, but the concept of a fluid state does not mandate
what assumptions are made to store these thermodynamic quantities. What fluid states also do
not do is to make sure that the thermodynamic state which they represent is physically possible.

Fluid system: Fluid systems express the thermodynamic relations1 between quantities. Since func-
tions do not exhibit any internal state, fluid systems are stateless classes, i.e. all member functions
are static. This is a conscious decision since the thermodynamic state of the system is expressed
by a fluid state!

Parameter cache: Fluid systems sometimes require computationally expensive parameters for multi-
ple relations. Such parameters can be cached using a so-called parameter cache. Parameter cache
objects are specific for each fluid system but they must provide a common interface to update
the internal parameters depending on the quantities which changed since the last update.

Constraint solver: Constraint solvers are auxiliary tools to make sure that a fluid state is consistent
with some thermodynamic constraints. All constraint solvers specify a well defined set of input
variables and make sure that the resulting fluid state is consistent with a given set of thermo-
dynamic equations. See section 6.4 for a detailed description of the constraint solvers which are
currently available in DuMux.

Equation of state: Equations of state (EOS) are auxiliary classes which provide relations between a
fluid phase’s temperature, pressure, composition and density. Since these classes are only used
internally in fluid systems, their programming interface is currently ad-hoc.

Component: Components are fluid systems which provide the thermodynamic relations for the liquid
and gas phase of a single chemical species or a fixed mixture of species. Their main purpose is to

1Strictly speaking, these relations are functions, mathematically.

57

6 The DuMux Fluid Framework

provide a convenient way to access these quantities from full-fledged fluid systems. Components
are not supposed to be used by models directly.

Binary coefficient: Binary coefficients describe the relations of a mixture of two components. Typical
binary coefficients are Henry coefficients or binary molecular diffusion coefficients. So far, the
programming interface for accessing binary coefficients has not been standardized in DuMux.

6.2 Fluid States

Fluid state objects express the complete thermodynamic state of a system at a given spatial and
temporal position.

6.2.1 Exported Constants

All fluid states must export the following constants:

numPhases: The number of fluid phases considered.

numComponents: The number of considered chemical species or pseudo-species.

6.2.2 Accessible Thermodynamic Quantities

Also, all fluid states must provide the following methods:

temperature(): The absolute temperature Tα of a fluid phase α.

pressure(): The absolute pressure pα of a fluid phase α.

saturation(): The saturation Sα of a fluid phase α. The saturation is defined as the pore space
occupied by the fluid divided by the total pore space:

Sα :=
φVα
φV

moleFraction(): Returns the molar fraction xκα of the component κ in fluid phase α. The molar
fraction xκα is defined as the ratio of the number of molecules of component κ and the total
number of molecules of the phase α.

massFraction(): Returns the mass fraction Xκ
α of component κ in fluid phase α. The mass fraction

Xκ
α is defined as the weight of all molecules of a component divided by the total mass of the fluid

phase. It is related with the component’s mole fraction by means of the relation

Xκ
α = xκα

Mκ

Mα

,

where Mκ is the molar mass of component κ and Mα is the mean molar mass of a molecule of
phase α.

58

6 The DuMux Fluid Framework

averageMolarMass(): Returns Mα, the mean molar mass of a molecule of phase α. For a mixture of
N > 0 components, Mα is defined as

Mα =

N∑
κ=1

xκαM
κ

density(): Returns the density ρα of the fluid phase α.

molarDensity(): Returns the molar density ρmol,α of a fluid phase α. The molar density is defined by
the mass density ρα and the mean molar mass Mα:

ρmol,α =
ρα

Mα

.

molarVolume(): Returns the molar volume vmol,α of a fluid phase α. This quantity is the inverse of
the molar density.

molarity(): Returns the molar concentration cκα of component κ in fluid phase α.

fugacity(): Returns the fugacity fκα of component κ in fluid phase α. The fugacity is defined as

fκα := Φκ
αx

κ
αpα ,

where Φκ
α is the fugacity coefficient [23]. The physical meaning of fugacity becomes clear from

the equation

fκα = pα exp

{
ζκα
RTα

}
,

where ζκα represents the κ’s chemical potential in phase α, R stands for the ideal gas constant,
and Tα for the absolute temperature of phase α. Assuming thermal equilibrium, there is a one-
to-one mapping between a component’s chemical potential ζκα and its fugacity fκα . In this case
chemical equilibrium can thus be expressed by

fκ := fκα = fκβ ∀α, β

fugacityCoefficient(): Returns the fugacity coefficient Φκ
α of component κ in fluid phase α.

enthalpy(): Returns specific enthalpy hα of a fluid phase α.

internalEnergy(): Returns specific internal energy uα of a fluid phase α. The specific internal energy
is defined by the relation

uα = hα −
pα
ρα

viscosity(): Returns the dynamic viscosity µα of fluid phase α.

59

6 The DuMux Fluid Framework

6.2.3 Available Fluid States

Currently, the following fluid states are provided by DuMux:

NonEquilibriumFluidState: This is the most general fluid state supplied. It does not assume ther-
modynamic equilibrium and thus stores all phase compositions (using mole fractions), fugacity
coefficients, phase temperatures, phase pressures, saturations and specific enthalpies.

CompositionalFluidState: This fluid state is very similar to the NonEquilibriumFluidState with
the difference that the CompositionalFluidState assumes thermodynamic equilibrium. In the
context of multi-phase flow in porous media, this means that only a single temperature needs to
be stored.

ImmisicibleFluidState: This fluid state assumes that the fluid phases are immiscible, which implies
that the phase compositions and the fugacity coefficients do not need to be stored explicitly.

PressureOverlayFluidState: This is a so-called overlay fluid state. It allows to set the pressure of all
fluid phases but forwards everything else to another fluid state.

SaturationOverlayFluidState: This fluid state is like the PressureOverlayFluidState, except that
the phase saturations are settable instead of the phase pressures.

TempeatureOverlayFluidState: This fluid state is like the PressureOverlayFluidState, except that
the temperature is settable instead of the phase pressures. Note that this overlay state assumes
thermal equilibrium regardless of underlying fluid state.

CompositionOverlayFluidState: This fluid state is like the PressureOverlayFluidState, except that
the phase composition is settable (in terms of mole fractions) instead of the phase pressures.

6.3 Fluid Systems

Fluid systems express the thermodynamic relations between the quantities of a fluid state.

6.3.1 Parameter Caches

All fluid systems must export a type for their ParameterCache objects. Parameter caches can be used
to cache parameter that are expensive to compute and are required in multiple thermodynamic rela-
tions. For fluid systems which do need to cache parameters, DuMux provides a NullParameterCache

class.
The actual quantities stored by parameter cache objects are specific to the fluid system and no

assumptions on what they provide should be made outside of their fluid system. Parameter cache
objects provide a well-defined set of methods to make them coherent with a given fluid state, though.
These update are:

updateAll(fluidState, except): Update all cached quantities for all phases. The except argument
contains a bit field of the quantities which have not been modified since the last call to a update()

method.

60

6 The DuMux Fluid Framework

updateAllPresures(fluidState): Update all cached quantities which depend on the pressure of any
fluid phase.

updateAllTemperatures(fluidState): Update all cached quantities which depend on temperature of
any fluid phase.

updatePhase(fluidState, phaseIdx, except): Update all cached quantities for a given phase. The
quantities specified by the except bit field have not been modified since the last call to an
update() method.

updateTemperature(fluidState, phaseIdx): Update all cached quantities which depend on the tem-
perature of a given phase.

updatePressure(fluidState, phaseIdx): Update all cached quantities which depend on the pressure of
a given phase.

updateComposition(fluidState, phaseIdx): Update all cached quantities which depend on the com-
position of a given phase.

updateSingleMoleFraction(fluidState, phaseIdx, compIdx): Update all cached quantities which de-
pend on the value of the mole fraction of a component in a phase.

Note, that the parameter cache interface only guarantees that if a more specialized update() method is
called, it is not slower than the next more-general method (e.g. calling updateSingleMoleFraction()

may be as expensive as updateAll()). It is thus advisable to rather use a more general update()
method once than multiple calls to specialized update() methods.

To make usage of parameter caches easier for the case where all cached quantities ought to be re-
calculated if a quantity of a phase was changed, it is possible to only define the updatePhase() method
and derive the parameter cache from Dumux::ParameterCacheBase.

6.3.2 Exported Constants and Capabilities

Besides providing the type of their ParameterCache objects, fluid systems need to export the following
constants and auxiliary methods:

numPhases: The number of considered fluid phases.

numComponents: The number of considered chemical (pseudo-) species.

init(): Initialize the fluid system. This is usually used to tabulate some quantities

phaseName(): Given the index of a fluid phase, return its name as human-readable string.

componentName(): Given the index of a component, return its name as human-readable string.

isLiquid(): Return whether the phase is a liquid, given the index of a phase.

isIdealMixture(): Return whether the phase is an ideal mixture, given the phase index. In the context
of the DuMux fluid framework a phase α is an ideal mixture if, and only if, all its fugacity
coefficients Φκ

α do not depend on the phase composition. (Although they might very well depend
on temperature and pressure.)

61

6 The DuMux Fluid Framework

isIdealGas(): Return whether a phase α is an ideal gas, i.e. it adheres to the relation

pαvmol,α = RTα ,

with R being the ideal gas constant.

isCompressible(): Return whether a phase α is compressible, i.e. its density depends on pressure pα.

molarMass(): Given a component index, return the molar mass of the corresponding component.

6.3.3 Thermodynamic Relations

Fluid systems have been explicitly designed to provide as few thermodynamic relations as possible. A
full-fledged fluid system thus only needs to provide the following thermodynamic relations:

density(): Given a fluid state, an up-to-date parameter cache and a phase index, return the mass
density ρα of the phase.

fugacityCoefficient(): Given a fluid state, an up-to-date parameter cache as well as a phase and a
component index, return the fugacity coefficient Φκ

α of a the component for the phase.

viscosity(): Given a fluid state, an up-to-date parameter cache and a phase index, return the dynamic
viscosity µα of the phase.

diffusionCoefficient(): Given a fluid state, an up-to-date parameter cache, a phase and a component
index, return the calculate the molecular diffusion coefficient for the component in the fluid
phase.

Molecular diffusion of a component κ in phase α is caused by a gradient of the chemical potential
and follows the law

Jκα = −Dκ
α gradζκα ,

where ζκα is the component’s chemical potential, Dκ
α is the diffusion coefficient and Jκα is the

diffusive flux. ζκα is connected to the component’s fugacity fκα by the relation

ζκα = RTαln
fκα
pα

.

binaryDiffusionCoefficient(): Given a fluid state, an up-to-date parameter cache, a phase index and
two component indices, return the binary diffusion coefficient for the binary mixture. This
method is less general than diffusionCoefficient method, but relations can only be found for
binary diffusion coefficients in the literature.

enthalpy(): Given a fluid state, an up-to-date parameter cache and a phase index, this method calu-
lates the specific enthalpy hα of the phase.

thermalConductivity: Given a fluid state, an up-to-date parameter cache and a phase index, this
method returns the thermal conductivity λα of the fluid phase. The thermal conductivity is
defined by means of the relation

Q̇ = λαgrad Tα ,

where Q̇ is the heat flux caused by the temperature gradient grad Tα.

62

6 The DuMux Fluid Framework

heatCapacity(): Given a fluid state, an up-to-date parameter cache and a phase index, this method
computes the isobaric heat capacity cp,α of the fluid phase. The isobaric heat capacity is defined
as the partial derivative of the specific enthalpy hα to the fluid pressure:

cp,α =
∂hα
∂pα

Fluid systems may chose not to implement some of these methods and throw an exception of type
Dune::NotImplemented instead. Obviously, such fluid systems cannot be used for models that depend
on those methods.

6.3.4 Available Fluid Systems

Currently, the following fluid systems are available in DuMux:

Dumux::FluidSystems::TwoPImmiscible: A two-phase fluid system which assumes immiscibility of
the fluid phases. The fluid phases are thus completely specified by means of their constituting
components. This fluid system is intended to be used with models that assume immiscibility.

Dumux::FluidSystems::H2ON2: A two-phase fluid system featuring gas and liquid phases and distilled
water (H2O) and pure molecular Nitrogen (N2) as components.

Dumux::FluidSystems::H2OAir: A two-phase fluid system featuring gas and liquid phases and dis-
tilled water (H2O) and air (Pseudo component composed of 79% N2, 20% O2 and 1% Ar) as
components.

Dumux::FluidSystems::H2OAirMesitylene: A three-phase fluid system featuring gas, NAPL and wa-
ter phases and distilled water, air and Mesitylene (C6H3(CH3)3) as components. This fluid
system assumes all phases to be ideal mixtures.

Dumux::FluidSystems::H2OAirXylene: A three-phase fluid system featuring gas, NAPL and water as
phases and distilled water, air and Xylene (C8H10) as components. This fluid system assumes
all phases to be ideal mixtures.

Dumux::FluidSystems::Spe5: A three-phase fluid system featuring gas, oil and water as phases and
the seven components distilled water, Methane (C1), Propane (C3), Pentane (C5), Heptane
(C7), Decane (C10), Pentadecane (C15) and Icosane (C20). For the water phase the IAPWS-
97 formulation is used as equation of state, while for the gas and oil phases a Peng-Robinson
equation of state with slightly modified parameters is used. This fluid system is highly non-linear,
and the gas and oil phases also cannot be considered ideal mixtures[21].

6.4 Constraint Solvers

Constraint solvers connect the thermodynamic relations expressed by fluid systems with the thermo-
dynamic quantities stored by fluid states. Using them is not mandatory for models, but given the
fact that some thermodynamic constraints can be quite complex to solve, sharing this code between
models makes sense. Currently, DuMux provides the following constraint solvers:

63

6 The DuMux Fluid Framework

CompositionFromFugacities: This constraint solver takes all component fugacities, the temperature
and pressure of a phase as input and calculates the composition of the fluid phase. This means
that the thermodynamic constraints used by this solver are

fκ = Φκ
α({xβα}, Tα, pα)pαx

κ
α ,

where fκ, Tα and pα are fixed values.

ComputeFromReferencePhase: This solver brings all fluid phases into thermodynamic equilibrium
with a reference phase β, assuming that all phase temperatures and saturations have already
been set. The constraints used by this solver are thus

fκβ = fκα = Φκ
α({xβα}, Tα, pα)pαx

κ
α ,

pα = pβ + pcβα ,

where pcβα is the capillary pressure between the fluid phases β and α.

CompositionalFlash: A compositional 2p2c flash solver for the sequential models in DuMux. Input
is temperature, phase pressures and feed mass fraction, the solver computes the compositional
variables and saturations.

NcpFlash: This is a so-called flash solver. A flash solver takes the total mass of all components per
volume unit and the phase temperatures as input and calculates all phase pressures, satura-
tions and compositions. This flash solver works for an arbitrary number of phases M > 0 and
components N ≥M − 1. In this case, the unknown quantities are the following:

• M pressures pα

• M saturations Sα

• M ·N mole fractions xκα

This sums up to M · (N + 2). The equations side of things provides:

• (M − 1) · N equations stemming from the fact that the fugacity of any component is the
same in all phases, i.e.

fκα = fκβ

holds for all phases α, β and all components κ.

• 1 equation comes from the fact that the whole pore space is filled by some fluid, i.e.

M∑
α=1

Sα = 1

• M − 1 constraints are given by the capillary pressures:

pβ = pα + pcβα ,

for all phases α, β

64

6 The DuMux Fluid Framework

• N constraints come the fact that the total mass of each component is given:

cκtot =
M∑
α=1

xκα ρmol,α = const

• And finally M model assumptions are used. This solver uses the NCP constraints proposed
in [22]:

0 = min{Sα, 1−
N∑
κ=1

xκα}

The number of equations also sums up to M · (N + 2). Thus, the system of equations is closed.

ImmiscibleFlash: This is a flash solver assuming immiscibility of the phases. It is similar to the
NcpFlash solver but a lot simpler.

MiscibleMultiphaseComposition: This solver calculates the composition of all phases provided that
each of the phases is potentially present. Currently, this solver does not support non-ideal
mixtures.

65

7 Physical and Numerical Models Available in
DuMux

7.1 Physical and Mathematical Description

Characteristic of compositional multiphase models is that the phases are not only matter of a single
chemical substance. Instead, their composition in general includes several species, and for the mass
transfer, the component behavior is quite different from the phase behavior. In the following, we give
some basic definitions and assumptions that are required for the formulation of the model concept
below. As an example, we take a three-phase three-component system water-NAPL-gas [8]. The
modification for other multicomponent systems is straightforward and can be found, e. g., in [6, 1].

7.1.1 Basic Definitions and Assumptions for the Compositional Model Concept

Components: The term component stands for constituents of the phases which can be associated
with a unique chemical species, or, more generally, with a group of species exploiting similar physical
behavior. In this work, we assume a water-gas-NAPL system composed of the phases water (subscript
w), gas (g), and NAPL (n). These phases are composed of the components water (superscript w), air
(a), and the organic contaminant (c) (see Fig. 7.1).

Equilibrium: For the non-isothermal multiphase processes in porous media under consideration,
we state that the assumption of local thermal equilibrium is valid since flow velocities are small. We
neglect chemical reactions and biological decomposition and assume chemical equilibrium. Mechanical
equilibrium is not valid in a porous medium, since discontinuities in pressure can occur across a fluid-
fluid interface due to capillary effects.

Notation: The index α ∈ {w, n, g} refers to the phase, while the superscript κ ∈ {w, a, c} refers to
the component.
pα phase pressure φ porosity
T temperature K absolute permeability tensor
Sα phase saturation τ tortuosity
xκα mole fraction of component κ in phase α g gravitational acceleration
Xκ
α mass fraction of component κ in phase α qκα volume source term of κ in α

%mol,α molar density of phase α uα specific internal energy
%α mass density of phase α hα specific enthalpy
M molar mass of a phase or component cs specific heat enthalpy
krα relative permeability λpm heat conductivity
µα phase viscosity qh heat source term
Dκ
α diffusivity of component κ in phase α va,α advective velocity

vα velocity (Darcy or free flow)

66

7 The DuMux Models

solid phase (porous matrix)

water phase (w) gas phase (g)

NAPL phase (n)

adsorption

desorption

condensation, dissolution

evaporation, degassing

diss
ol

utio
n

evaporation

condensation

gas

NAPL

thermal energy (h)

Mass components

Air

Water

Organic contaminant (NAPL)

Solid phase

Figure 7.1: Mass and energy transfer between the phases

7.1.2 Balance Equations

For the balance equations for multicomponent systems, it is in many cases convenient to use a molar
formulation of the continuity equation. Considering the mass conservation for each component allows
us to drop source/sink terms for describing the mass transfer between phases. Then, the molar mass
balance can be written as:

φ
∂(
∑

α %mol,αx
κ
αSα)

∂t
−
∑
α

div

{
krα

µα
%mol,αx

κ
αK(grad pα − %αg)

}
−
∑
α

div {τφSαDκ
α%mol,α gradxκα} − qκ = 0, κ ∈ {w,a,c}. (7.1)

The component mass balance can also be written in terms of mass fractions by replacing molar
densities by mass densities and mole by mass fractions. To obtain a single conserved quantity in the
temporal derivative, the total concentration, representing the mass of one component per unit volume,
is defined as

Cκ =
∑
α

φSα%mass,αX
κ
α .

Using this definition, the component mass balance is written as:

∂Cκ

∂t
=
∑
α

div

{
krα

µα
%mass,αX

κ
αK(grad pα + %mass,αg)

}
+
∑
α

div

{
τφSαD

κ
α%mass,α

Mκ

Mα
gradxκα

}
+ qκ = 0, κ ∈ {w,a,c}. (7.2)

67

7 The DuMux Models

In the case of non-isothermal systems, we further have to balance the thermal energy. We assume
fully reversible processes, such that entropy is not needed as a model parameter. Furthermore, we
neglect dissipative effects and the heat transport due to molecular diffusion. The energy balance can
then be formulated as:

φ
∂ (
∑

α %αuαSα)

∂t
+ (1− φ)

∂%scsT

∂t
− div (λpm gradT)

−
∑
α

div

{
krα

µα
%αhαK (grad pα − %αg)

}
− qh = 0. (7.3)

In order to close the system, supplementary constraints for capillary pressure, saturations and mole
fractions are needed, [20]. According to the Gibbsian phase rule, the number of degrees of freedom
in a non-isothermal compositional multiphase system is equal to the number of components plus one.
This means we need as many independent unknowns in the system description. The available primary
variables are, e. g., saturations, mole/mass fractions, temperature, pressures, etc.

7.2 Implicit Spatial Discretization Schemes

For the implicit models there are two spatial discretization schemes (box and Cell Centered Finite
Volume Method) available which are shortly introduced in this section.

7.2.1 Box Method – A Short Introduction

The so called box method unites the advantages of the finite-volume (FV) and finite-element (FE)
methods.

First, the model domain G is discretized with a FE mesh consisting of nodes i and corresponding
elements Ek. Then, a secondary FV mesh is constructed by connecting the midpoints and barycenters
of the elements surrounding node i creating a box Bi around node i (see Figure 7.2a).

The FE mesh divides the box Bi into subcontrolvolumes (scv’s) bki (see Figure 7.2b). Figure 7.2c
shows the finite element Ek and the scv’s bki inside Ek, which belong to four different boxes Bi. Also
necessary for the discretization are the faces of the subcontrolvolumes (scvf’s) ekij between the scv’s bki
and bkj , where |ekij | is the length of the scvf. The integration points xkij on ekij and the outer normal

vector nkij are also to be defined (see Figure 7.2c).
The advantage of the FE method is that unstructured grids can be used, while the FV method is

mass conservative. The idea is to apply the FV method (balance of fluxes across the interfaces) to
each FV box Bi and to get the fluxes across the interfaces ekij at the integration points xkij from the
FE approach. Consequently, at each scvf the following expression results:

f(ũ(xkij)) · nkij |ekij | with ũ(xkij) =
∑
i

Ni(x
k
ij) · ûi. (7.4)

In the following, the discretization of the balance equation is going to be derived. From the
Reynolds transport theorem follows the general balance equation:∫

G

∂

∂t
u dG︸ ︷︷ ︸

1

+

∫
∂G

(vu+ w) · n dΓ︸ ︷︷ ︸
2

=

∫
G
q dG︸ ︷︷ ︸
3

(7.5)

68

7 The DuMux Models

Figure 7.2: Discretization of the box method

f(u) =

∫
G

∂u

∂t
dG+

∫
G
∇ · [vu+ w(u)]︸ ︷︷ ︸

F (u)

dG−
∫
G
q dG = 0 (7.6)

where term 1 describes the changes of entity u within a control volume over time, term 2 the advective,
diffusive and dispersive fluxes over the interfaces of the control volume and term 3 is the source and
sink term. G denotes the model domain and F (u) = F (v, p) = F (v(x, t), p(x, t)).

Like the FE method, the box method follows the principle of weighted residuals. In the function
f(u) the unknown u is approximated by discrete values at the nodes of the FE mesh ûi and linear
basis functions Ni yielding an approximate function f(ũ). For u ∈ {v, p, xκ} this means

p̃ =
∑
i

Nip̂i (7.7)

ṽ =
∑
i

Niv̂ (7.8)

x̃κ =
∑
i

Nix̂
κ (7.9)

∇p̃ =
∑
i

∇Nip̂i (7.10)

∇ṽ =
∑
i

∇Niv̂ (7.11)

∇x̃κ =
∑
i

∇Nix̂
κ. (7.12)

Due to the approximation with node values and basis functions the differential equations are not
exactly fulfilled anymore but a residual ε is produced.

f(u) = 0 ⇒ f(ũ) = ε (7.13)

Application of the principle of weighted residuals, meaning the multiplication of the residual ε with
a weighting function Wj and claiming that this product has to vanish within the whole domain,

69

7 The DuMux Models

∫
G
Wj · ε

!
= 0 with

∑
j

Wj = 1 (7.14)

yields the following equation:∫
G
Wj

∂ũ

∂t
dG+

∫
G
Wj · [∇ · F (ũ)] dG−

∫
G
Wj · q dG =

∫
G
Wj · ε dG

!
= 0. (7.15)

Then, the chain rule and the Green-Gaussian integral theorem are applied.

∫
G
Wj

∂
∑

iNiûi
∂t

dG+

∫
∂G

[Wj · F (ũ)] · n dΓG +

∫
G
∇Wj · F (ũ) dG−

∫
G
Wj · q dG = 0 (7.16)

A mass lumping technique is applied by assuming that the storage capacity is reduced to the nodes.
This means that the integrals Mi,j =

∫
GWj Ni dG are replaced by the mass lumping term M lump

i,j

which is defined as:

M lump
i,j =

{∫
GWj dG =

∫
GNi dG = Vi i = j

0 i 6= j
(7.17)

where Vi is the volume of the FV box Bi associated with node i. The application of this assumption
in combination with

∫
GWj q dG = Vi q yields

Vi
∂ûi
∂t

+

∫
∂G

[Wj · F (ũ)] · n dΓG +

∫
G
∇Wj · F (ũ) dG− Vi · q = 0 . (7.18)

Defining the weighting function Wj to be piecewisely constant over a control volume box Bi

Wj(x) =

{
1 x ∈ Bi
0 x /∈ Bi

(7.19)

causes ∇Wj = 0:

Vi
∂ûi
∂t

+

∫
∂Bi

[Wj · F (ũ)] · n dΓBi − Vi · q = 0. (7.20)

The consideration of the time discretization and inserting Wj = 1 finally lead to the discretized form
which will be applied to the mathematical flow and transport equations:

Vi
ûn+1
i − ûni

∆t
+

∫
∂Bi

F (ũn+1) · n dΓBi − Vi qn+1 = 0 (7.21)

7.2.2 Cell Centered Finite Volume Method – A Short Introduction

The cell centered finite volume method uses the elements of the grid as control volumes. For each con-
trol volume all discrete values are determined at the element/control volume center (see Figure 7.3).
The mass or energy fluxes are evaluated at the integration points (xij), which are located at the mid-
points of the control volume faces. This is a two point flux approximation since the flux between the

70

7 The DuMux Models

Figure 7.3: Discretization of the cell centered finite volume method

element/control volume centers i and j is calculated only with information from these two points. In
contrast the box method uses a multi-point flux approximation where all nodes of the element influence
the flux between two specific nodes.
Neumann boundary conditions are applied at the boundary control volume faces and Dirichlet bound-
ary conditions at the boundary control volumes.
The cell centered finite volume method is robust and mass conservative but should only be applied for
structured grids (the control volume face normal vector (nij) should be parallel to the direction of the
gradient between the two element/control volume centers).

7.3 Available Models

The following description of the available models is automatically extracted from the Doxygen docu-
mentation.

7.3.1 Fully-Implicit Models

The fully-implicit models described in this section are using the box or the cell centered finite volume
method as described in section 7.2.1 and 7.2.2 for spatial and the implicit Euler method as temporal
discretization. The models themselves are located in subdirectories of dumux/implicit of the DuMux

distribution.

The Single-Phase Model: OnePModel

Single-phase, isothermal flow model, which uses a standard Darcy approach as the equation for the
conservation of momentum:

v = −K

µ
(grad p− %g)

71

7 The DuMux Models

and solves the mass continuity equation:

φ
∂%

∂t
+ div

{
−%K

µ
(grad p− %g)

}
= q,

All equations are discretized using a vertex-centered finite volume (box) or cell-centered finite vol-
ume scheme as spatial and the implicit Euler method as time discretization. The model supports
compressible as well as incompressible fluids.

The Single-Phase,Two-Component Model: OnePTwoCModel

This model implements a one-phase flow of a compressible fluid, that consists of two components,
using a standard Darcy approach as the equation for the conservation of momentum:

v = −K

µ
(grad p− %g)

Gravity can be enabled or disabled via the property system. By inserting this into the continuity
equation, one gets

φ
∂%

∂t
− div

{
%
K

µ
(grad p− %g)

}
= q ,

The transport of the components κ ∈ {w, a} is described by the following equation:

φ
∂%Xκ

∂t
− div

{
%XκK

µ
(grad p− %g) + %Dκ

pm

Mκ

Mα
gradxκ

}
= q.

All equations are discretized using a vertex-centered finite volume (box) or cell-centered finite volume
scheme as spatial and the implicit Euler method as time discretization. The model is able to use either
mole or mass fractions. The property useMoles can be set to either true or false in the problem file.
Make sure that the according units are used in the problem setup. useMoles is set to true by default.

The primary variables are the pressure p and the mole or mass fraction of dissolved component x.

The Two-Phase Model Using the Richards Assumption: RichardsModel

In the unsaturated zone, Richards’ equation

∂ φSw%w
∂t

− div

{
%w
krw
µw

K (gradpw − %wg)

}
= qw,

is frequently used to approximate the water distribution above the groundwater level.
It can be derived from the two-phase equations, i.e.

φ
∂Sα%α
∂t

− div

{
%α
krα
µα

K (gradpα − %αg)

}
= qα,

where α ∈ {w, n} is the fluid phase, κ ∈ {w, a} are the components, ρα is the fluid density, Sα is the
fluid saturation, φ is the porosity of the soil, krα is the relative permeability for the fluid, µα is the
fluid’s dynamic viscosity, K is the intrinsic permeability, pα is the fluid pressure and g is the potential
of the gravity field.

72

7 The DuMux Models

In contrast to the full two-phase model, the Richards model assumes gas as the non-wetting fluid and
that it exhibits a much lower viscosity than the (liquid) wetting phase. (For example at atmospheric
pressure and at room temperature, the viscosity of air is only about 1% of the viscosity of liquid water.)
As a consequence, the krα

µα
term typically is much larger for the gas phase than for the wetting phase.

For this reason, the Richards model assumes that krn
µn

is infinitly large. This implies that the pressure
of the gas phase is equivalent to the static pressure distribution and that therefore, mass conservation
only needs to be considered for the wetting phase.

The model thus choses the absolute pressure of the wetting phase pw as its only primary variable.
The wetting phase saturation is calculated using the inverse of the capillary pressure, i.e.

Sw = p−1
c (pn − pw)

holds, where pn is a given reference pressure. Nota bene, that the last step is assumes that the capillary
pressure-saturation curve can be uniquely inverted, so it is not possible to set the capillary pressure
to zero when using the Richards model!

The Two-Phase MOdel: TwoPModel

This model implements two-phase flow of two immiscible fluids α ∈ {w, n} using a standard multiphase
Darcy approach as the equation for the conservation of momentum, i.e.

vα = −krα
µα

K (grad pα − %αg)

By inserting this into the equation for the conservation of the phase mass, one gets

φ
∂%αSα
∂t

− div

{
%α
krα
µα

K (grad pα − %αg)

}
− qα = 0 ,

All equations are discretized using a vertex-centered finite volume (box) or cell-centered finite volume
scheme as spatial and the implicit Euler method as time discretization.

By using constitutive relations for the capillary pressure pc = pn − pw and relative permeability
krα and taking advantage of the fact that Sw + Sn = 1, the number of unknowns can be reduced to
two. Currently the model supports choosing either pw and Sn or pn and Sw as primary variables. The
formulation which ought to be used can be specified by setting the Formulation property to either
TwoPCommonIndices::pWsN or TwoPCommonIndices::pNsW. By default, the model uses pw and Sn.

The Two-Phase, Two-Component Model: TwoPTwoCModel

This model implements two-phase two-component flow of two compressible and partially miscible fluids
α ∈ {w, n} composed of the two components κ ∈ {w, a}. The standard multiphase Darcy approach is
used as the equation for the conservation of momentum:

vα = −krα
µα

K (grad pα − %αg)

73

7 The DuMux Models

By inserting this into the equations for the conservation of the components, one gets one transport
equation for each component

φ
∂(
∑

α %α
Mκ

Mα
xκαSα)

∂t
−
∑
α

div

{
%α
Mκ

Mα
xκα
krα
µα

K(grad pα − %αg)

}

−
∑
α

div

{
Dκ
α,pm%α

Mκ

Mα
gradxκα

}
−
∑
α

qκα = 0 κ ∈ {w, a} , α ∈ {w, g}

All equations are discretized using a vertex-centered finite volume (box) or cell-centered finite volume
scheme as spatial and the implicit Euler method as time discretization.

By using constitutive relations for the capillary pressure pc = pn − pw and relative permeability krα
and taking advantage of the fact that Sw + Sn = 1 and xκw + xκn = 1, the number of unknowns can be
reduced to two. The used primary variables are, like in the two-phase model, either pw and Sn or pn
and Sw. The formulation which ought to be used can be specified by setting the Formulation property
to either TwoPTwoCIndices::pWsN or TwoPTwoCIndices::pNsW. By default, the model uses pw and
Sn. Moreover, the second primary variable depends on the phase state, since a primary variable switch
is included. The phase state is stored for all nodes of the system. The model is able to use either
mole or mass fractions. The property useMoles can be set to either true or false in the problem file.
Make sure that the according units are used in the problem setup. useMoles is set to true by default.
Following cases can be distinguished:

• Both phases are present: The saturation is used (either Sn or Sw, dependent on the chosen
Formulation), as long as 0 < Sα < 1.

• Only wetting phase is present: The mole fraction of, e.g., air in the wetting phase xaw is used, as
long as the maximum mole fraction is not exceeded (xaw < xaw,max)

• Only non-wetting phase is present: The mole fraction of, e.g., water in the non-wetting phase,
xwn , is used, as long as the maximum mole fraction is not exceeded (xwn < xwn,max)

The CO2 Model: CO2Model

See TwoPTwoCModel for reference to the equations used. The CO2 model is derived from the 2p2c
model. In the CO2 model the phase switch criterion is different from the 2p2c model. The phase
switch occurs when the equilibrium concentration of a component in a phase is exceeded, instead
of the sum of the components in the virtual phase (the phase which is not present) being greater
that unity as done in the 2p2c model. The CO2VolumeVariables do not use a constraint solver for
calculating the mole fractions as is the case in the 2p2c model. Instead mole fractions are calculated
in the FluidSystem with a given temperature, pressurem and salinity. The model is able to use either
mole or mass fractions. The property useMoles can be set to either true or false in the problem file.
Make sure that the according units are used in the problem setup. useMoles is set to false by default.

The Three-Phase Model: ThreePModel

This model implements three-phase flow of three fluid phases α ∈ {water, gas,NAPL} The standard
multiphase Darcy approach is used as the equation for the conservation of momentum.

74

7 The DuMux Models

By inserting this into the equations for the conservation of the components, the well-known multi-
phase flow equation is obtained.

All equations are discretized using a vertex-centered finite volume (box) or cell-centered finite volume
scheme as spatial and the implicit Euler method as time discretization.

The model uses commonly applied auxiliary conditions like Sw + Sn + Sg = 1 for the saturations.
Furthermore, the phase pressures are related to each other via capillary pressures between the fluid
phases, which are functions of the saturation, e.g. according to the approach of Parker et al.

The used primary variables are gas phase pressure pg, water saturation Sw and NAPL saturation
Sn.

The three-Phase, Three-Component Model: ThreePThreeCModel

This model implements three-phase three-component flow of three fluid phases α ∈ {water, gas,NAPL}
each composed of up to three components κ ∈ {water, air, contaminant}. The standard multiphase
Darcy approach is used as the equation for the conservation of momentum:

vα = −krα
µα

K (grad pα − %αg)

By inserting this into the equations for the conservation of the components, one transport equation
for each component is obtained as

φ
∂(
∑

α %αX
κ
αSα)

∂t
−
∑
α

div

{
krα
µα

%αx
κ
αK(grad pα − %αg)

}

−
∑
α

div

{
Dκ

pm%α
Mκ

Mα
gradxκα

}
− qκ = 0 ∀κ, ∀α

Note that these balance equations are molar.
All equations are discretized using a vertex-centered finite volume (box) or cell-centered finite volume

scheme as spatial and the implicit Euler method as time discretization.
The model uses commonly applied auxiliary conditions like Sw+Sn+Sg = 1 for the saturations and

xwα + xaα + xcα = 1 for the mole fractions. Furthermore, the phase pressures are related to each other
via capillary pressures between the fluid phases, which are functions of the saturation, e.g. according
to the approach of Parker et al.

The used primary variables are dependent on the locally present fluid phases. An adaptive primary
variable switch is included. The phase state is stored for all nodes of the system. The following cases
can be distinguished:

• All three phases are present: Primary variables are two saturations (Sw and Sn), and a pressure,
in this case pg.

• Only the water phase is present: Primary variables are now the mole fractions of air and con-
taminant in the water phase (xaw and xcw), as well as the gas pressure, which is, of course, in a
case where only the water phase is present, just the same as the water pressure.

• Gas and NAPL phases are present: Primary variables (Sn, xwg , pg).

75

7 The DuMux Models

• Water and NAPL phases are present: Primary variables (Sn, xaw, pg).

• Only gas phase is present: Primary variables (xwg , xcg, pg).

• Water and gas phases are present: Primary variables (Sw, xgw, pg).

The Non-Isothermal Model: NIModel

This model implements a generic energy balance for single and multi-phase transport problems. Cur-
rently the non-isothermal model can be used on top of the 1p2c, 2p, 2p2c and 3p3c models. Comparison
to simple analytical solutions for pure convective and conductive problems are found in the 1p2c test.
Also refer to this test for details on how to activate the non-isothermal model.

For the energy balance, local thermal equilibrium is assumed. This results in one energy conservation
equation for the porous solid matrix and the fluids:

φ
∂
∑

α %αuαSα
∂t

+ (1− φ)
∂(%scsT)

∂t
−
∑
α

div

{
%αhα

krα
µα

K (grad pα − %αg)

}
− div (λpmgradT)− qh = 0.

where hα is the specific enthalpy of a fluid phase α and uα = hα−pα/%α is the specific internal energy
of the phase.

The M-Phase, N-Component Model: MpNcModel

This model implements a M -phase flow of a fluid mixture composed of N chemical species. The phases
are denoted by lower index α ∈ {1, . . . ,M}. All fluid phases are mixtures of N ≥ M − 1 chemical
species which are denoted by the upper index κ ∈ {1, . . . , N}.

The momentum approximation can be selected via ”BaseFluxVariables”: Darcy (ImplicitDarcy-
FluxVariables) and Forchheimer (ImplicitForchheimerFluxVariables) relations are available for all Box
models.

By inserting this into the equations for the conservation of the mass of each component, one gets
one mass-continuity equation for each component κ∑

κ

(
φ
∂ (%αx

κ
αSα)

∂t
+ div

{
vα

%α

Mα

xκα

})
= qκ

with Mα being the average molar mass of the phase α:

Mα =
∑
κ

Mκ xκα

For the missing M model assumptions, the model assumes that if a fluid phase is not present, the
sum of the mole fractions of this fluid phase is smaller than 1, i.e.

∀α : Sα = 0 =⇒
∑
κ

xκα ≤ 1

76

7 The DuMux Models

Also, if a fluid phase may be present at a given spatial location its saturation must be positive:

∀α :
∑
κ

xκα = 1 =⇒ Sα ≥ 0

Since at any given spatial location, a phase is always either present or not present, one of the strict
equalities on the right hand side is always true, i.e.

∀α : Sα

(∑
κ

xκα − 1

)
= 0

always holds.
These three equations constitute a non-linear complementarity problem, which can be solved using

so-called non-linear complementarity functions Φ(a, b) which have the property

Φ(a, b) = 0 ⇐⇒ a ≥ 0 ∧ b ≥ 0 ∧ a · b = 0

Several non-linear complementarity functions have been suggested, e.g. the Fischer-Burmeister
function

Φ(a, b) = a+ b−
√
a2 + b2 .

This model uses
Φ(a, b) = min{a, b} ,

because of its piecewise linearity.
These equations are then discretized using a fully-implicit vertex centered finite volume scheme

(often known as ’box’-scheme) for spatial discretization and the implicit Euler method as temporal
discretization.

The model assumes local thermodynamic equilibrium and uses the following primary variables:

• The component fugacities f1, . . . , fN

• The pressure of the first phase p1

• The saturations of the first M − 1 phases S1, . . . , SM−1

• Temperature T if the energy equation is enabled

The Two-Phase, Discrete Fracture Model: TwoPDFMModel

This model implements two-phase flow of two immiscible fluids α ∈ {w, n} using a standard multiphase
Darcy approach as the equation for the conservation of momentum, i.e.

vα = −krα
µα

K (grad pα − %αg)

By inserting this into the equation for the conservation of the phase mass, one gets

φ
∂%αSα
∂t

− div

{
%α
krα
µα

K (grad pα − %αg)

}
− qα = 0 ,

77

7 The DuMux Models

These equations are discretized by a fully-coupled vertex centered finite volume (box) scheme as
spatial and the implicit Euler method as time discretization.

By using constitutive relations for the capillary pressure pc = pn − pw and relative permeability
krα and taking advantage of the fact that Sw + Sn = 1, the number of unknowns can be reduced to
two. Currently the model supports choosing either pw and Sn or pn and Sw as primary variables. The
formulation which ought to be used can be specified by setting the Formulation property to either
TwoPCommonIndices::pWsN or TwoPCommonIndices::pNsW. By default, the model uses pw and Sn.

The Stokes Model: StokesModel

This model implements laminar Stokes flow of a single fluid, solving the momentum balance equation

∂ (%gvg)

∂t
+∇ ·

(
pgI− µg

(
∇vg +∇vTg

))
− %gg = 0,

and the mass balance equation

∂%g
∂t

+∇ · (%gvg)− qg = 0.

By setting the property EnableNavierStokes to true the Navier-Stokes equation can be solved. In
this case an additional term

+%g (vg · ∇)vg

is added to the momentum balance equation.
This is discretized by a fully-coupled vertex-centered finite volume (box) scheme in space and by

the implicit Euler method in time.

The Isothermal N-Component Stokes Model: StokesNcModel

This model implements an isothermal n-component Stokes flow of a fluid solving a momentum balance,
a mass balance and a conservation equation for each component. When using mole fractions naturally
the densities represent molar densites

Momentum Balance:

∂ (%gvg)

∂t
+∇ ·

(
pgI− µg

(
∇vg +∇vTg

))
− %gg = 0,

Mass balance equation:
∂%g
∂t

+∇ · (%gvg)− qg = 0

Component mass balance equations:

∂
(
%gX

κ
g

)
∂t

+∇ ·
(
%gvgX

κ
g −Dκ

g%g
Mκ

Mg
∇Xκ

g

)
− qκg = 0

This is discretized using a fully-coupled vertex centered finite volume (box) scheme as spatial and
the implicit Euler method in time.

78

7 The DuMux Models

The Non-Isothermal N-Component Stokes Model: StokesNcNIModel

This model implements a non-isothermal n-component Stokes flow of a fluid solving a momentum
balance, a mass balance, a conservation equation for one component, and one balance equation for the
energy.

Momentum Balance:

∂ (%gvg)

∂t
+∇ ·

(
pgI− µg

(
∇vg +∇vTg

))
− %gg = 0,

Mass balance equation:
∂%g
∂t

+∇ · (%gvg)− qg = 0

Component mass balance equation:

∂
(
%gX

κ
g

)
∂t

+∇ ·
(
%gvgX

κ
g −Dκ

g%g
Mκ

Mg
∇xκg

)
− qκg = 0

Energy balance equation:

∂(%gug)

∂t
+∇ ·

(
%ghgvg −

∑
κ

[
hκgD

κ
g%g

Mκ

Mg
∇xκg

]
− λg∇T

)
− qT = 0

This is discretized using a fully-coupled vertex centered finite volume (box) scheme as spatial and
the implicit Euler method as temporal discretization.

The Linear Elastic Model: ElasticModel

This model implements a linear elastic solid using Hooke’s law as stress-strain relation and a quasi-
stationary momentum balance equation:

σ = 2G ε+ λ tr(ε) I.

with the strain tensor ε as a function of the solid displacement gradient gradu:

ε =
1

2
(gradu+ gradTu).

Gravity can be enabled or disabled via the property system. By inserting this into the momentum
balance equation, one gets

divσ + %g = 0 ,

The equation is discretized using a vertex-centered finite volume (box) scheme as spatial discretiza-
tion.

79

7 The DuMux Models

The Linear Elastic One-Phase Two-Component Model: ElOnePTwoCModel

This model implements a one-phase flow of an incompressible fluid, that consists of two components.
The deformation of the solid matrix is described with a quasi-stationary momentum balance equation.
The influence of the pore fluid is accounted for through the effective stress concept (Biot 1941). The
total stress acting on a rock is partially supported by the rock matrix and partially supported by the
pore fluid. The effective stress represents the share of the total stress which is supported by the solid
rock matrix and can be determined as a function of the strain according to Hooke’s law.

As an equation for the conservation of momentum within the fluid phase Darcy’s approach is used:

v = −K

µ
(grad p− %wg)

Gravity can be enabled or disabled via the property system. By inserting this into the volume
balance of the solid-fluid mixture, one gets

∂divu

∂t
− div

{
K

µ
(grad p− %wg)

}
= q ,

The transport of the components κ ∈ {w, a} is described by the following equation:

∂φeffX
κ

∂t
− div

{
XκK

µ
(grad p− %wg) +Dκ

pm

Mκ

Mα
gradxκ − φeffXκ∂u

∂t

}
= q.

If the model encounters stability problems, a stabilization term can be switched on. The stabilization
term is defined in Aguilar et al (2008):

βdivgrad
∂p

∂t

with β:
β = h2/4(λ+ 2µ)

where h is the discretization length.
The balance equations with the stabilization term are given below:

∂divu

∂t
− div

{
K

µ
(grad p− %wg) + %wβgrad

∂p

∂t

}
= q ,

The transport of the components κ ∈ {w, a} is described by the following equation:

∂φeffX
κ

∂t
− div

{
XκK

µ
(grad p− %wg) + %wX

κβgrad
∂p

∂t
+Dκ

pm

Mκ

Mα
gradxκ − φeffXκ∂u

∂t

}
= q.

The quasi-stationary momentum balance equation is:

div
(
σ′ − pI

)
+ (φeff%w + (1− φeff) ∗ %s) g = 0 ,

with the effective stress:
σ′ = 2G ε+ λ tr(ε) I.

80

7 The DuMux Models

and the strain tensor ε as a function of the solid displacement gradient gradu:

ε =
1

2
(gradu+ gradTu).

Here, the rock mechanics sign convention is switch off which means compressive stresses are < 0 and
tensile stresses are > 0. The rock mechanics sign convention can be switched on for the vtk output
via the property system.

The effective porosity is calculated as a function of the solid displacement:

φeff =
φinit + divu

1 + div

All equations are discretized using a vertex-centered finite volume (box) or cell-centered finite volume
scheme as spatial and the implicit Euler method as time discretization.

The primary variables are the pressure p and the mole or mass fraction of dissolved component x
and the solid displacement vector u.

The Linear Elastic Two-Phase Model: ElTwoPModel

This model implements a two-phase flow of compressible immiscible fluids α ∈ {w, n}. The deformation
of the solid matrix is described with a quasi-stationary momentum balance equation. The influence of
the pore fluid is accounted for through the effective stress concept (Biot 1941). The total stress acting
on a rock is partially supported by the rock matrix and partially supported by the pore fluid. The
effective stress represents the share of the total stress which is supported by the solid rock matrix and
can be determined as a function of the strain according to Hooke’s law.

As an equation for the conservation of momentum within the fluid phases the standard multiphase
Darcy’s approach is used:

vα = −krα
µα

K (grad pα − %αg)

Gravity can be enabled or disabled via the property system. By inserting this into the continuity
equation, one gets

∂φeff%αSα
∂t

− div

{
%α
krα
µα

Keff (grad pα − %αg)− φeff%αSα
∂u

∂t

}
− qα = 0 ,

A quasi-stationary momentum balance equation is solved for the changes with respect to the initial
conditions (Darcis 2012), note that this implementation assumes the soil mechanics sign convention
(i.e. compressive stresses are negative):

div
(
∆σ′ −∆peffI

)
+ ∆%bg = 0 ,

with the effective stress:
σ′ = 2G ε+ λ tr(ε) I.

and the strain tensor ε as a function of the solid displacement gradient gradu:

ε =
1

2
(gradu + gradTu).

81

7 The DuMux Models

Here, the rock mechanics sign convention is switch off which means compressive stresses are < 0 and
tensile stresses are > 0. The rock mechanics sign convention can be switched on for the vtk output
via the property system.

The effective porosity and the effective permeability are calculated as a function of the solid displacement-
:

φeff =
φinit + divu

1 + divu

Keff = Kinitexp (22.2(φeff/φinit − 1))

The mass balance equations are discretized using a vertex-centered finite volume (box) or cell-centered
finite volume scheme as spatial and the implicit Euler method as time discretization. The momen-
tum balance equations are discretized using a standard Galerkin Finite Element method as spatial
discretization scheme.

The primary variables are the wetting phase pressure pw, the nonwetting phase saturation Sn and
the solid displacement vector u (changes in solid displacement with respect to initial conditions).

7.3.2 Decoupled Models

The basic idea the so-called decoupled models have in common is to reformulate the equations of
multi-phase flow (e.g. Eq. 7.1) into one equation for pressure and equations for phase-/component-
/etc. transport. The pressure equation is the sum of the mass balance equations and thus considers the
total flow of the fluid system. The new set of equations is considered as decoupled (or weakly coupled)
and can thus be solved sequentially. The most popular decoupled model is the so-called fractional flow
formulation for two-phase flow which is usually implemented applying an IMplicit Pressure Explicit
Saturation algorithm (IMPES). In comparison to a fully implicit model, the decoupled structure allows
the use of different discretization methods for the different equations. The standard method used in
the decoupled models is a cell centered finite volume method. Further schemes, so far only available for
the two-phase pressure equation, are cell centered finite volumes with multi-point flux approximation
(MPFA O-method) and mimetic finite differences.

An h-adaptive implementation of both The two-phase model and The Two-Phase, Two-Component
Model is provided for two dimensions.

The one-phase model

This model solves equations of the form
divv = q.

The velocity v is the single phase Darcy velocity:

v = − 1

µ
K (grad p+ ρ g grad z) ,

where p is the pressure, K the absolute permeability, µ the viscosity, ρ the density, and g the gravity
constant, and q is the source term. At the boundary, p = pD on ΓDirichlet, and v ·n = qN on ΓNeumann.

82

7 The DuMux Models

The two-phase model

Pressure Model This model solves equations of the form

φ

(
ρw
∂Sw
∂t

+ ρn
∂Sn
∂t

)
+ divvtotal = q.

The definition of the total velocity vtotal depends on the choice of the primary pressure variable. Fur-
ther, fluids can be assumed to be compressible or incompressible (Property: EnableCompressibility).
In the incompressible case a wetting (w) phase pressure as primary variable leads to

−div
[
λK

(
grad pw + fngrad pc +

∑
fαρα g grad z

)]
= q,

a non-wetting (n) phase pressure yields

−div
[
λK

(
grad pn − fwgrad pc +

∑
fαρα g grad z

)]
= q,

and a global pressure leads to

−div
[
λK

(
grad pglobal +

∑
fαρα g grad z

)]
= q.

Here, pα is a phase pressure, pglobal the global pressure of a classical fractional flow formulation (see e.g.
P. Binning and M. A. Celia, ”Practical implementation of the fractional flow approach to multi-phase
flow simulation”, Advances in water resources, vol. 22, no. 5, pp. 461-478, 1999.), pc = pn − pw is
the capillary pressure, K the absolute permeability, λ = λw + λn the total mobility depending on the
saturation (λα = krα/µα), fα = λα/λ the fractional flow function of a phase, ρα a phase density, g
the gravity constant and q the source term.

For all cases, p = pD on ΓDirichlet, and vtotal · n = qN on ΓNeumann.
The slightly compressible case is only implemented for phase pressures! In this case for a wetting

(w) phase pressure as primary variable the equations are formulated as

φ

(
ρw
∂Sw
∂t

+ ρn
∂Sn
∂t

)
− div

[
λK

(
grad pw + fn grad pc +

∑
fαρα g grad z

)]
= q,

and for a non-wetting (n) phase pressure as

φ

(
ρw
∂Sw
∂t

+ ρn
∂Sn
∂t

)
− div

[
λK

(
grad pn − fwgrad pc +

∑
fαρα g grad z

)]
= q,

In this slightly compressible case the following definitions are valid: λ = ρwλw + ρnλn, fα = (ραλα)/λ
This model assumes that temporal changes in density are very small and thus terms of temporal
derivatives are negligible in the pressure equation. Depending on the formulation the terms including
time derivatives of saturations are simplified by inserting Sw + Sn = 1.

In the IMPES models the default setting is:

• formulation: pw−Sw (Property: Formulation defined as DecoupledTwoPCommonIndices::pwsw)

• compressibility: disabled (Property: EnableCompressibility set to false)

83

7 The DuMux Models

Saturation Model This model solves equations of the form

φ
∂(ραSα)

∂t
+ div (ραvα) = qα,

where Sα is the saturation of phase α (wetting (w), non-wetting (n)) and vα is the phase velocity
defined by the multi-phase Darcy equation. If a phase velocity is reconstructed from the pressure
solution it can be directly inserted into the previous equation. In the incompressible case the equation
is further divided by the phase density ρα. If a total velocity is reconstructed the saturation equation
is reformulated into:

φ
∂Sw
∂t

+ fwdivvt + fwλnK (grad pc + (ρn − ρw) g gradz) = qα,

to get a wetting phase saturation or

φ
∂Sn
∂t

+ fndivvt − fnλwK (grad pc + (ρn − ρw) g gradz) = qα,

if the non-wetting phase saturation is the primary transport variable.
The total velocity formulation is only implemented for incompressible fluids and fα is the fractional

flow function, λα is the mobility, K the absolute permeability, pc the capillary pressure, ρ the fluid
density, g the gravity constant, and q the source term.

In the IMPES models the default setting is:
formulation: pw - Sw (Property: Formulation defined as DecoupledTwoPCommonIndices::pwsw)
compressibility: disabled (Property: EnableCompressibility set to false)

The Two-Phase, Two-Component Model

Provides a Finite Volume implementation for the pressure equation of a compressible system with two
components. An IMPES-like method is used for the sequential solution of the problem. Diffusion is
neglected, capillarity can be regarded. Isothermal conditions and local thermodynamic equilibrium
are assumed. Gravity is included.

ctotal
∂p

∂t
+
∑
κ

∂vtotal
∂Cκ

∇ ·

(∑
α

Xκ
α%αvα

)
=
∑
κ

∂vtotal
∂Cκ

qκ,

where vα = −λαK (∇pα + ραg). ctotal represents the total compressibility, for constant porosity this
yields −∂Vtotal

∂pα
, pα denotes the phase pressure, K the absolute permeability, λα the phase mobility, ρα

the phase density and g the gravity constant and Cκ the total Component concentration. See paper
SPE 99619 or ”Analysis of a Compositional Model for Fluid Flow in Porous Media” by Chen, Qin and
Ewing for derivation.

The pressure base class FVPressure assembles the matrix and right-hand-side vector and solves for
the pressure vector, whereas this class provides the actual entries for the matrix and RHS vector. The
partial derivatives of the actual fluid volume vtotal are gained by using a secant method.

The transport step is described by the finite volume model for the solution of the transport equation
for compositional two-phase flow.

∂Cκ

∂t
= −∇ ·

(∑
α

Xκ
α%αvα

)
+ qκ,

84

7 The DuMux Models

where vα = −λαK (∇pα + ραg). pα denotes the phase pressure, K the absolute permeability, λα
the phase mobility, ρα the phase density and g the gravity constant and Cκ the total Component
concentration. The whole flux contribution for each cell is subdivided into a storage term, a flux term
and a source term. Corresponding functions (getFlux() and getFluxOnBoundary()) are provided,
internal sources are directly treated.

85

8 The flow of things in DuMux

This chapter is supposed to show how things are “handed around” in DuMux. This is not a compre-
henisve guide through the modeling framework of DuMux, but hopefully it will help getting to grips
with it.

In Section 8.1 the structure of DuMux is shown from a content point of view. Section 8.2 is written
from the point of view of the implementation. These two approaches are linked by the circled numbers
(like 1©) in the flowchart of Section 8.2 corresponding to the enumeration of the list of Section 8.1. This
is supposed to demonstrate at which point of the program-flow you are content- and implementation-
wise.

Section 8.2 is structured by boxes and −−−−→arrows. Boxes stand for more or less important points in
the programm. They may may be reckoned “step stones”. Likewise, the arrows connect the boxes. If
important things happen in between, it is written under the arrows.

Plain boxes stand for generic parts of the program. double {{boundings}} stand for the imple-

mentatin specific part of the program, like 2p, 2p2c.... This will be the most important part for
most users.

::::::::
snakelike

:::::
lines tell you that this part is specific to the components considered.

For keeping things simple, the program flow of a 2p model is shown. There are extensive comments
regarding the formating in the tex file: so feel free, to enhance this description.

8.1 Structure – by Content

This list shows the algorithmic outline of a typical DuMux run. Each item stands for a characteristic
step within the modeling framework.

86

8 The flow of things in DuMux

In Figure 8.1, the algorithmic representations of both approaches down to the element level are
illustrated.

1. m
ai

n

2. tim
e

st
ep

3. N
ew

to
n

4. el
em

en
t

initialize
foreach time step

prepare update
foreach Newton iteration

foreach element
- calculate element

residual vector and
Jacobian matrix

- assemble into global
residual vector and

Jacobian matrix
endfor
solve linear system
update solution
check for Newton convergence

endfor
- adapt time step size,

possibly redo with smaller step size
- write result

endfor
finalize

1.
m

ai
n

2.
tim

e
st

ep

3.
IM

PES/C

4.
el

em
en

t

initialize
foreach time step

prepare update
foreach IMPES/C step

if grid is adaptive
- calculate refinement indicator
- mark elements, adapt the grid
- map old solution to new grid

- calculate flow field
foreach element

- calculate element stiffness matrix
- assemble into global matrix

endfor
solve linear system
- calculate transport

(saturations, concentrations,...)
foreach element

-calculate update (explicitly)
- adapt time step (CFL-like criterion)

endfor
- update old solution
- postprocess (flash calculation, etc.)

endfor
- write result

endfor
finalize

Figure 8.1: Structure of a coupled fully-implicit (left) and a decoupled semi-implicit (right) scheme
in DuMux.

8.1.1 Levels

1© main
2© time step
3© Newton step
4© Element-wise assembly

8.2 Structure – by Implementation

This section is supposed to help you in getting an idea how things are handled in DuMux and in which
files things are written down. This is not intuitivly clear, therefore it is mentioned for each step-stone .

called by tells you from which file a function is accessed. implemented in tells you in which file the
function is written down. The name of the function is set in typewriter. Being a function is indicated
by round brackets () but only the function name is given and not the full signature (arguments...) .
Comments regarding the events within one step-stone are set smaller.

87

1©start()

start the simulation

called by: main()
implemented in: start.hh

−→

1©timeManager.init()

initialization

called by: start()
implemented in: timemanager.hh

−→

1©timeManager.run()

called by: start()
implemented in: timemanager.hh

−−−−−−−−−−−−−−−→
while(!finished)
1©→ 2©

2©problem->timeIntegration()

execute time integration scheme

called by: timemanager.hh
implemented in: implicitproblem.hh

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
define number of allowed Newton fails
(each halving dt)

2©model->update()

sth like numerical model

called by: implicitproblem.hh
implemented in: implicitmodel.hh

−→

2©solver.execute()
not only solving in there: applying Newton method
 solver keeps track of things
catching errors

called by: implicitmodel.hh
implemented in: newtonmethod.hh : execute ()

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
2©→ 3©
while(ctl.newtonProceed())

uLastIter = uCurrentIter(model.uCur())

3©jacobianAsm.assemble()

linearize the problem:

add all element contributions to global Jacobian and global residual

called by: newtonmethod.hh
implemented in: implicitassembler.hh

−→

3©resetSystem_()

set r.h.s. (i.e. residual) and

set Jacobian to zero

called by: implicitassembler.hh
implemented in: implicitassembler.hh

−−−−−−−−−−−−−−−−→
3©→ 4©
loop all elements

4©assembleElement_()

call local Jacobian and residual assembly

called by: implicitassembler.hh
implemented in: implicitassembler.hh

−→

4©model_().localJacobian().assemble()

set curr. element, update element’s fin.vol.geom.

reset local Jacobian to 0

update types of boundaries on this element

called by: implicitassembler.hh
implemented in: implicitlocaljacobian.hh

−→

4©prevVolVars_.update(), 4©curVolVars_.update()

call model specific update of quantities defined for the volume:

variables for the current and previous timestep...!!

called by: implicitlocaljacobian.hh
implemented in: implicitelementvolumevariables.hh

−→

4©update()

calculate all two-phase specific quantites defined in the volume

called by: boxelementvolumevariables.hh
implemented in: 2pvolumevariables.hh

−→

4©completeFluidState()

calculate all required fluid properties from the primary variables

called by: 2pvolumevariables.hh
implemented in: 2pvolumevariables.hh

−→

:::

4© e.g: rho = Fluidsystem::density()

fluidState.setDensity(phaseIdx,rho)

The fluid system does the real work:

calculates densities, diffusivities ...

The fluidstate save and provides them.

called by: 2pvolumevariables.hh
implemented in: 2pvolumevariables.hh

:::

−→

4©localResidual().eval()

the element’s local residual is calculated:

see the next two stepstones

called by: implicitlocaljacobian.hh
implemented in: boxlocalresidual.hh

−→

4©asImp_().evalFluxes_()

evaluate the fluxes going into each finite volume

how this is done is model specific (see below)

called by: boxlocalresidual.hh
implemented in: boxlocalresidual.hh

−→

4©computeFluxes()

model specific flux computation

called by: boxlocalresidual.hh
implemented in: 2plocalresidual.hh

−→

4©FluxVariables fluxVars()

this is a call to a constructor:

calculate the velocities

called by: 2plocalresidual.hh
implemented in: boxdarcyfluxvariables.hh

−→

4©computeAdvectiveFlux() (other models: also diffusive)
upwinding decision via massUpwindWeight_

called by: 2plocalresidual.hh
implemented in: 2plocalresidual.hh

−→

4©asImp_().evalVolumeTerms_()

evaluate the storage and source terms for each finite volume

how this is done is model specific (see below)

called by: boxlocalresidual.hh
implemented in: boxlocalresidual.hh

−→

4©asImp_().evalBoundary_()

deal with the boundary conditions

may be model specific

called by: boxlocalresidual.hh
implemented in: boxlocalresidual.hh (or modelspecific)

−→

4©asImp_().evalPartialDerivative()

actually calculate the element’s (local) Jacobian matrix

a property chooses backward/central/foward differences

here: central differences

called by: implicitlocaljacobian.hh
implemented in: implicitlocaljacobian.hh

−→

approximation of partial derivatives: numerical differentiation

add ±ε solution, divide difference of residual by 2ε

all partial derivatives for the element from the local Jacobian

matrix

priVars[pvIdx]+=eps

this is adding eps to the current solution

curVolVars_[scvIdx].update(+eps)

recalculate volume variables, having ε added

localResidual().eval(+eps)

calculate local residual for modified solution as before: involves

- computeFlux
- computeStorage
- computeSource

store the residual()

repeat for priVars[pvIdx]-=eps

derivative is (residual(+eps) - residual(-eps))/2eps

−→

4©assembleElement_()

model_().localJacobian().assemble()

Residual of the current solution is now

“numerically differentiated”, for the element i.e.

the local Jacobian matrix is calculated.

called by: implicitassembler.hh
implemented in: implicitassembler.hh

−→

∣∣∣∣∣∣
The contribution of a single element is done.
Now, it needs to be added to the global quantities:
Add to global residual and global Jacobian.

∣∣∣∣∣∣ −→
4©resdidual_[globI]+=

model_().globalJacobian().resdidual(i)

Add to global residual.

called by: continuing in the function.
implemented in: implicitassembler.hh

−−−−−−−−−−−→
loop vertices
of an element

4©(*matrix_)[globI][globJ] +=

model_().localJacobian().mat(i,j)

Add to global Jacobian.

called by: continuing in the function.
implemented in: implicitassembler.hh

−−−−−−−−→
4©→ 3©

3©assemble()

Assembling of elements to global quantities is done.

called by: continuing in the function.
implemented in: implicitassembler.hh

−→

3©while newtonProceed()

Print information.

start/ stop timer.

called by: continuing in the function, execute ()

implemented in: newtonmethod.hh

−−−−−−−−−−−−−−−−−−−→
set delta Vector to zero
(this is what is
solved for later)

3©newtonSolveLinear()

Ask the linear solver to solve the system.

i.e. : give Jacobian(matrix), delta(x), r.h.s.(residual) to linear solver

∇r(xk) ·∆xk = r(xk)

tricky: each Newtonstep solves a linear system of equations.

called by: continuing in the function, execute ().
implemented in: newtonmethod.hh

−→

3©newtonSolveLinear()

Catching errors.

called by: newtonmethod.hh
implemented in: newtoncontroller.hh

−→

3©linearSolver_.solve()

Solve the linear system with the chosen backend.

called by: newtoncontroller.hh
implemented in: boxlinearsolver.hh

−→

3©ctl.newtonUpdate()

We solved for the change in solution, but need the solution:

Calculate current (this iteration) solution

from last (iteration) solution and current (iteration) change in solution:

xk+1 = xk −∆xk where ∆xk = (∇r(xk))−1 · r(xk)

called by: newtonmethod.hh
implemented in: newtoncontroller.hh

−→

3©newtonupdateRelError()

calculate the relative error between two iterations

find the prim. var. that changed most between

last(uLastIter) and current (uCurrentIter)

Newton iteration.

called by: newtoncontroller.hh
implemented in: newtoncontroller.hh

−→

3©ctl.newtonEndStep()

Increase counter for number of Newton steps.

Print info.

called by: newtonmethod.hh
implemented in: newtoncontroller.hh

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
check whether to do another Newton iteration:
that is: check if the error is below tolerance or
maximum number of iterations was reached.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
3©→ 2©
Newton done.
if failed halve timestep size, restart loop

2©ctl.newtonEnd()

Tell the controller we are done

called by: newtonmethod.hh
implemented in: newtoncontroller.hh

−→

2©asImp_().updateSuccessful()

Can be filled by the model .

called by: implicitmodel.hh
implemented in: implicitmodel.hh

−−−−−−−−−−−−−−−→
in while(!finished)

2©problem_.postTimeStep(),writeOutput()

Give the problem the chance to

post-process the solution.

called by: timemanager.hh
implemented in: implicitproblem.hh

−−−−−−−−−−−−−−−−−−−−−−−−−→
write output
uPrev ← uCur
time += dt, timestepIdx++
deal with restart and episodes

2©newtonCtl_.suggestTimestepSize()

Determine new time step size from number of Newton steps.

called by: timemanager.hh, implicitproblem.hh
implemented in: newtoncontroller.hh

−→
−−−−−−−−−−−−−−→

timemanager.hh
2©→ 1©

9 Newton in a Nutshell

Coming back to the example of chapter 8 the following mass conservation equation is to be solved:

φ
∂%αSα
∂t

− div

{
%α
krα
µα

K (grad pα − %αg)

}
− qα︸ ︷︷ ︸

f(ur)

= 0 . (9.1)

Because of the nonlinear dependencies (even in this comparativly simple equation) in there, this is a
really difficult task. However, for finding roots of of difficult equations there is a really handy method
out there: Newton’s method.

When using a fully coupled numerical model, one timestep essentially consists of the application of
the Newton algorithm to solve the nonlinear system.

One step of the Newton method can be formalized as follows:
Newton method:

ur+1 = ur −
(
f′(ur)

)−1
f(ur) (9.2a)

⇔ f′(ur)(ur+1 − ur) = −f(ur) (9.2b)

⇔ f′(ur)︸ ︷︷ ︸
Jacobian

(ur − ur+1) = f(ur) (9.2c)

with

• r: last iteration, r+1: current iteration,

• ′: derivative

• u: vector of unknowns, the actual primary variables

• f(ur): function of vector of unknowns

1-D example with slope m:

m =
y(ur+1)− y(ur)

ur+1 − ur
for a root of a function: m = − y(ur)

ur+1 − ur
(9.3)

The value of u (generally a vector of unknowns) for which f becomes zero is searched for. Therefore
the quantity of interest is ur+1.

But the (BiCGSTAB / Pardiso / ...) linear solver solves systems of the form:

Ax = b. (9.4)

Comparing (9.4) with (9.2c) leads to:

93

9 Newton in a Nutshell

• b = f(ur) r.h.s. as it is known from the last iteration. Here, f(ur) is called residual. It is
obtained by evaluating the balance equations with the primary variables, as obtained from the
last iteration step.

• A = f′(ur) coefficient matrix or Jacobian. It is obtained by numerical differentiation. Evalu-
ating the balance equations at the last solution + eps, then evaluating the balance equations at
the last solution - eps, division by 2eps: numerical differentiation complete.

• x = (ur+1 − ur) this is what the linear solver finds as an solution.

This is equivalent to stating that the implemented algorithm solves for the change of the solution.
Or in other words: until the u does not change with one more Newton-iteration (do not confuse with
timestep!).

In the rest of Dumux (everywhere besides in the solver), not the change of the solution is looked for,
but the actual solution is used. Therefore the outcome of the linear solver needs to be reformulated as
done in updateMethod.update(*this, u, *uOld, model);. In this function the “change in solution”
is changed to “solution”. Afterwards the quantity *u stands for the solution.

94

10 Tips & Tricks

This chapter tries to be a useful collection of tips and tricks that can be handy when working with
DuMux. One of the most prominent ideas for developing DUNE/ DuMux is that reinventing the wheel
in terms of FEM code should be avoided. We try to follow this idea also in the day-to-day work by
stating the tell us dogma: “If you found something useful, handy or for other reasons helping when
working with DuMux: put it into this chapter.” or inform other developers and write to

10.1 DuMux- General Remarks

Flyspray Flyspray or bug-tracking system is a software application mainly designed to keep track of
reported software development requests. This includes reported bugs and development requests for
new or improved features. The main benefit of a bug-tracking system is to provide a clear centralized
overview of all recorded requests and their state. DuMux users and developers can submit development
requests at http://www.dumux.org/flyspray/.

Dashboard The testing-dashboard is a tool to constantly check the DuMux problems for compiling or
running correctly. It is a useful tool to check the impacts of your commits and for quality management.
The dashboard is available at http://www.dumux.org/dashboard.php.

The DuMux Mailing List: If you have questions concerning DuMux, hints for the DuMux-developers
or specific problems, which you really struggle to solve on your own, you can contact the mailing list
dumux@iws.uni-stuttgart.de. You can also subscribed to the mailing list via https://listserv.

uni-stuttgart.de/mailman/listinfo/dumux, then you will be informed about upcoming releases or
events.

The Commit Mailing List: If you further want to be informed about commits to the dumux can
subscribe to the commit mailing list: https://listserv.uni-stuttgart.de/mailman/listinfo/

dumux-commits.

10.2 Developing DuMux

Checking Your Commits: DuMux is developed with the help of Subversion (svn). This means that
at some point you will commit your new and/or advanced features to the repository. In the following
some additional guidelines are shown which are are good practice. Especially if you plan on committing
to the stable part of DuMux you must follow these steps.

• add files and folders to your repository

• run make doc in your build-directory

95

http://www.dumux.org/flyspray/
http://www.dumux.org/dashboard.php
dumux@iws.uni-stuttgart.de
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux-commits
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux-commits

10 Tips & Tricks

• run make headercheck in your build-directory

• run ctest in your build-directory

• double-check whether the test are working. If not please investigate whether an update of the
reference solution or a review of your changes is necessary

• double-check whether you include all necessary files to your commit

• commit

• check-out dumux in new folder and test if everything is still working (this is necessary to keep
bump in the workflow small).

• check the testing-dashboard (see above), whether everything is still working

Naming conventions General guidelines for naming conventions are specified in Section 4.5. However,
in order to avoid ambiguity a list of proposed names for variables, types, functions etc is provided where
users and mainly DuMux developers can refer for standards (check dumux-devel/doc/naminglist/

naming-conventions.odt).

Errors Messages Related to the Property System The property system is a powerful tool and
internally does some template and macro magic. The price for it are sometimes unintuitive compiler
error messages. For example if the definition of a property could not be found, the error is:

error: no type named ’p’ in ’struct Dumux:: Properties :: GetProperty <Dumux :: Properties ::TTag::

TestProblem , Dumux:: Properties ::PTag::Scalar , Dumux:: Properties ::TTag:: TestProblem , -1000>’

So check whether you did not misspelled any name related to the property system in the line of the
error message and whether you really declared the type tag you use there.
Further check, if the Problem property was defined and spelled correctly.

Patching Files or Modules See 11.2 if you need to apply patches to DuMux or DUNE. If you want
to send changes to an other developer of DuMux providing patches can be quite smart. To create a
patch simply type:

$ svn diff > PATCHFILE

which creates a text file containing all your changes to the files in the current folder or its subdirectories.
Other developers can now simply apply this patch by

$ path -p0 < PATCHFILE

96

10 Tips & Tricks

Using DUNE Debug Streams DUNE provides a helpful feature, for keeping your debug-output
organized. In stead of juggling with a bazillion std::cout << statements or keeping some debug-
precompiler statements organized, which are generally and strongly discouraged see 4.5 in order not
to get flooded away by your output DUNE gives you a nice tool by the so called debug streams.

These are streams like cout but they can be switched on and off for the whole project. Maybe if
you are really in the dark you want to see all your debug information. Another time you may only
want to be warned if something is going seriously wrong during a simulation. This can be achieved by
setting the debug streams to desired values. There are five levels:

5 - grave (dgrave)

4 - warning (dwarn)

3 - info (dinfo)

2 - verbose (dverb)

1 - very verbose (dvverb)

They are used as follows: Dune::dinfo << "message"; or Dune::dgrave << "message"; . The
debug streams are switched on/off via setting #define DUNE_MINIMAL_DEBUG_LEVEL 4 in the source
your application. If the value is set to e. g. 4 only the output generated after Dune::dwarn and
Dune::dgrave will be printed.

File Name and Line Number by Predefined Macro If you want to know where some output or
debug information came from, you can use the predefined macros __FILE__ and __LINE__ which are
used like
dataFile << "# This was written from "<< __FILE__ << ", line "<< __LINE__ << "\n";

which translates into a line in the output file reading
This was written from [..]/dumux/dumux/io/outputToFile.hh, line 261

This can also be very useful, if you want to have information about where some warning or debug
information was issued.

Option Files optim.opts and debug.opts DUNE and DuMux are built with the help of dunecontrol,
as explained on page 6. A lot of options need to be specified for that, which is done in option files.
DuMux provides two example files debug.opts and optim.opts. These two files differ in the way
DUNE and DuMux are compiled: either for debugging or for fast simulation. Switching between these
two states can lead to a speedup of factor up to ten! Programs that are compiled with optimization
can hardly be debugged because the debugger gets confused. Debugging with the optimization options
active will lead to erratic behavior while debugging.

You can modify the files and add third-party dependencies or additional compiler flags.

Dunecontrol for selected modules A complete build using dunecontrol takes some time. In many
cases not all modules need to be re-built. Pass the flag --only=dumux to dunecontrol for configuring
or building only DuMux. A more complex example would be the use of an additional grid. Then you
have to configure and build only DUNE-grid and DuMux by adding --only=dune-grid,dumux to the
dunecontrol call.

97

10 Tips & Tricks

10.3 External Tools

10.3.1 Subversion (svn)

Subversion is a software versioning and revision control system. We use Subversion to manage the
source code of DuMux, archive changes and central storage.

Basic Commands The basic svn commands are:

• svn checkout checkout a repository

• svn update updates file/folder

• svn status to check which files/folders have been changed Modified, Deleted, Added, ? not in
repository

• svn diff to see the actual changes of a file/folder

• svn commit upload changes to the repository (only with meaningful commit messages)

The above shows you the necessary steps if you use the command line. There are also other tools
providing a graphical user interface for using svn like kdesvn or eclipse.

Properties/Attributes How to set the SVN attributes:

• eclipse: right click on the file/folder → “team” → “add to svn:ignore. . . ”

• kdesvn: right click on the file/folder → “ignore/unignore current item”

• SVN on shell: svn propedit svn:ignore .

10.3.2 Git

Git plays a similar role as Subversion, some see Git as a successor of Subversion. Git is used by DUNE.
The basic Git commands are:

• git clone clone a repository (similar to svn checkout)

• git pull pull changes from the repository (similar to svn update)

• git status to check which files/folders have been changed

• git diff to see the actual changes of a file/folder

98

10 Tips & Tricks

10.3.3 Eclipse

Using the DuMux-Eclipse Profile Everybody using the same profile has the advantage of resulting
in less conflicts when different developing environments are used:

a) in eclipse open: Window → Preferences → C/C++ → Code Style → Formatter

b) press the Import button

c) choose the file eclipse profile.xml from your dumux-devel directory

d) make sure that that now DuMux is chosen in Select a profile

10.3.4 ParaView

Reload Button: Yes, you read it right. There is script to reload pvd files or series of vtu files since
ParaView 4.2. The scripts are available under the links below. Just save the specific code portion in
a file and load it via Macros → Add new macro.
vtk: http://markmail.org/message/exxynsgishbvtngg#query:+page:1+mid:rxlwxs7uqrfgibyv+

state:results

pvd: http://markmail.org/message/exxynsgishbvtngg#query:+page:1+mid:rxlwxs7uqrfgibyv+

state:results.

Guide: Since ParaView 4.3.1 The ParaView Guide is partly available for free download, see http:

//www.paraview.org/documentation/. It corresponds to the ParaView book, only without three
application chaptes. Attention its size is 180 MiB.

99

http://markmail.org/message/exxynsgishbvtngg#query:+page:1+mid:rxlwxs7uqrfgibyv+state:results
http://markmail.org/message/exxynsgishbvtngg#query:+page:1+mid:rxlwxs7uqrfgibyv+state:results
http://markmail.org/message/exxynsgishbvtngg#query:+page:1+mid:rxlwxs7uqrfgibyv+state:results
http://markmail.org/message/exxynsgishbvtngg#query:+page:1+mid:rxlwxs7uqrfgibyv+state:results
http://www.paraview.org/documentation/
http://www.paraview.org/documentation/

11 Detailed Installation Instructions

In this section about the installation of DuMux it is assumed that you work with a Linux or Apple
OS X operating system and that you are familiar with the use of a command line shell. Installation
means that you unpack DUNE together with DuMux in a certain directory. Then, you compile it in
that directory tree in which you do the further work, too. You also should know how to install new
software packages or you should have a person on hand who can give you assistance with that. In
section 11.1 we list some prerequisites for running DUNE and DuMux. Please check in said paragraph
whether you can fulfill them. In addition, section 11.4 provides some details on optional libraries and
modules.

In a technical sense DuMux is a module of DUNE. Thus, the installation procedure of DuMux is
the same as that of DUNE. Details regarding the installation of DUNE are provided on the DUNE
website [17]. If you are interested in more details about the build system that is used, they can be
found in the DUNE Buildsystem Howto [13].

All DUNE modules, including DuMux, get extracted into a common directory, as it is done in an
ordinary DUNE installation. We refer to that directory abstractly as DUNE root directory or, in
short, as DUNE-Root. If it is used as directory’s path of a shell command it is typed as DUNE-Root.
For the real DUNE root directory on your file system any valid directory name can be chosen.

Source code files for each DUNE module are contained in their own subdirectory within DUNE-
Root. We name this directory of a certain module module root directory or module-root-directory

if it is a directory path, e. g. for the module dumux these names are dumux root directory respective
dumux-root-directory. The real directory names for the modules can be chosen arbitrarily. In this
manual they are the same as the module name or the module name extended by a version number
suffix. The name of each DUNE module is defined in the file dune.module, which is in the root
directory of the respective module. This should not be changed by the user.

After extracting the source code for all relevant DUNE modules, including DuMux, DUNE has to
be built by the shell-command dunecontrol which is part of the DUNE build system.

11.1 Prerequisites

The GNU tool chain of g++ and the tools of the GNU build system [25], also known as GNU autotools
(autoconf, automake, autogen, libtool), as well as make must be available in a recent version. For
a list of prerequisite software packages to install,see [18].

The building of included documentation like this handbook requires LATEX and auxiliary tools
bibtex. One usually chooses a LATEX distribution like texlive for this purpose. It is possible to
switch off the building of the documentation by setting the switch --disable-documentation in the
CONFIGURE FLAGS of the building options, see Chapter 2.1.2. Additional parts of documentation are
contained within the source code files as special formatted comments. Extracting them can be done
using doxygen, cf. Section 11.3.1.

100

11 Detailed Installation Instructions

Depending on whether you are going to use external libraries and modules for additional DUNE
features, additional software packages may be required. Some hints on that are given in Section 11.4.

Subversion (SVN) and a Git clients must be installed to download modules from Subversion and
Git repositories.

11.2 Obtaining Source Code for DUNE and DuMux

As stated above, the DuMux release and trunk (developer tree) are based on the most recent DUNE
release 2.3, comprising the core modules dune-common, dune-geometry, dune-grid, dune-istl and dune-
localfunctions. For working with DuMux, these modules are required. The external module dune-
PDELab is recommended and required for several DuMux features.

Two possibilities exist to get the source code of DUNE and DuMux. Firstly, DUNE and DuMux can
be downloaded as tar files from the respective DUNE and DuMux website. They have to be extracted
as described in the next paragraph. Secondly, a method to obtain the most recent source code (or,
more generally, any of its previous revisions) by direct access to the software repositories of the revision
control system is described in the subsequent part.

However, if a user does not want to use the most recent version, certain version tags or branches
(i. e. special names) are means of the software revision control system to provide access to different
versions of the software.

Obtaining the software by installing tar files

The slightly old-fashionedly named tape-archive-file, shortly named tar file or tarball, is a common file
format for distributing collections of files contained within these archives. The extraction from the tar
files is done as follows: Download the tarballs from the respective DUNE (version 2.3) and DuMux

websites to a certain folder in your file system. Create the DUNE root directory, named dune in the
example below. Then extract the content of the tar files, e. g. with the command-line program tar.
This can be achieved by the following shell commands. Replace path to tarball with the directory
name where the downloaded files are actually located. After extraction, the actual name of the dumux
root directory is dumux-2.7 (or whatever version you downloaded).

$ mkdir dune

$ cd dune

$ tar xzvf path_to_tarball_of/dune -common -2.3.1. tar.gz

$ tar xzvf path_to_tarball_of/dune -geometry -2.3.1. tar.gz

$ tar xzvf path_to_tarball_of/dune -grid -2.3.1. tar.gz

$ tar xzvf path_to_tarball_of/dune -istl -2.3.1. tar.gz

$ tar xzvf path_to_tarball_of/dune -localfunctions -2.3.1. tar.gz

$ tar xzvf path_to_tarball_of/dune -pdelab -2.0.0. tar.gz

$ tar xzvf path_to_tarball_of/dune -typetree -2.3.1. tar.gz

$ tar xzvf path_to_tarball_of/dumux -2.7. tar.gz

Furthermore, if you wish to install the optional DUNE Grid-Howto which provides a tutorial on the
Dune grid interface, act similar.

101

11 Detailed Installation Instructions

Obtaining DUNE and DuMux from software repositories

Direct access to a software revision control system for downloading code can be of advantage for the
user later on. It can be easier for him to keep up with code changes and to receive important bug fixes
using the update or pull command of the revision control system. DUNE uses Git and DuMux uses
Apache Subversion for their software repositories. To access them a certain programs are needed which
is referred to here shortly as Subversion client or Git client. In our description, we use the Subversion
client svn of the Apache Subversion software itself.

In the technical language of Apache Subversion checking out a certain software version means noth-
ing more then fetching a local copy from the software repository and laying it out in the file system.
In addition to the software some more files for the use of the software revision control system itself are
created. If you have developer access to DuMux, it is also possible to do the opposite, i. e. to load up
a modified revision of software into the software repository. This is usually termed as commit.

The installation procedure is done as follows: Create a DUNE root directory, named dune in the
lines below. Then, enter the previously created directory and check out the desired modules. As you
see below, the check-out uses two different servers for getting the sources, one for DUNE and one for
DuMux. The DUNE modules of the stable 2.3 release branch are checked out as described on the
DUNE website [14]:

$ mkdir DUMUX

$ cd DUMUX

$ git clone http ://git.dune -project.org/repositories/dune -common

$ cd dune -common

$ git checkout releases /2.3

$ cd ..

$ git clone http ://git.dune -project.org/repositories/dune -geometry

$ cd dune -geometry

$ git checkout releases /2.3

$ cd ..

$ git clone http ://git.dune -project.org/repositories/dune -grid

$ cd dune -grid

$ git checkout releases /2.3

$ cd ..

$ git clone http ://git.dune -project.org/repositories/dune -istl

$ cd dune -istl

$ git checkout releases /2.3

$ cd ..

$ git clone http ://git.dune -project.org/repositories/dune -localfunctions

$ cd dune -localfunctions

$ git checkout releases /2.3

$ cd ..

$ git clone http ://git.dune -project.org/repositories/dune -pdelab

$ cd dune -pdelab

$ git checkout releases /2.0

$ cd ..

$ git clone http ://git.dune -project.org/repositories/dune -typetree

$ cd dune -typetree

$ git checkout releases /2.3

$ cd ..

102

11 Detailed Installation Instructions

The newest and maybe unstable developments are also provided in these repositories and is called
master. Please check the DUNE website [14] for further information. However, the current DuMux

release is based on the stable 2.3 release and it might not compile without further adaptations using
the the newest versions of DUNE.

Furthermore, if you wish to install the optional DUNE Grid-Howto which provides a tutorial on the
Dune grid interface, act similar.

The dumux module is checked out as described below (see also the DuMux website [10]). Its file tree
has to be created in the DUNE-Root directory, where the DUNE modules have also been checked out
to. Subsequently, the next command is executed there, too. The dumux root directory is called dumux

here.

$ # make s u r e you are i n DUNE−Root
$ svn checkout --username=anonymous --password=’’ svn://svn.iws.uni -stuttgart

.de/DUMUX/dumux/trunk dumux

Patching DUNE or external libraries

Patching of DUNE modules in order to work together with DuMux can be necessary for several reasons.
Software like a compiler or even a standard library changes at times. But, for example, a certain release
of a software component that we depend on, may not reflect that change and thus it has to be modified.
In the dynamic developing process of software which depends on other modules it is not always feasible
to adapt everything to the most recent version of each module. They may fix problems with a certain
module of a certain release without introducing too much structural change.

DuMux contains patches and documentation about their usage and application within the directory
dumux/patches. Please check the README file in that directory for recent information. In general, a
patch can be applied as follows (the exact command or the used parameters may be slightly different).
We include here an example of a patching dune-grid.

$ # make s u r e you are i n DUNE−Root
$ cd dune -grid

$ patch -p0 < ../ dumux/patches/grid -2.3.1. patch

It can be removed by

$ path -p0 -R < ../ dumux/patches/grid -2.3.1. patch

The checkout-dumux script also applies patches, if not explicitly requested not to do so.

Hints for DuMux-Developers

If you also want to actively participate in the development of DuMux, you can allways send patches
to the Mailing list.

To get more involved, you can apply either for full developer access or for developer access on certain
parts of DuMux. Granted developer access means that you are allowed to commit own code and that
you can access the dumux-devel module. This enhances dumux by providing maybe unstable code
from the developer group. A developer usually checks out non-anonymously the modules dumux and

103

11 Detailed Installation Instructions

dumux-devel. Dumux-devel itself makes use of the stable part dumux. Hence, the two parts have to
be checked out together. This is done using the commands below. But joeuser needs to be replaced
by the actual user name of the developer for accessing the software repository. One can omit the
--username option in the commands above if the user name for the repository access is identical to
the one for the system account.

$ svn co --username=joeuser svn://svn.iws.uni -stuttgart.de/DUMUX/dumux/trunk

dumux

$ svn co --username=joeuser svn://svn.iws.uni -stuttgart.de/DUMUX/dune -mux/

trunk dumux -devel

Please choose either not to store the password by subversion in an insecure way or choose to store
it by subversion in a secure way, e. g. together with KDE’s KWallet or GNOME Keyring. Check the
documentation of Subversion for info on how this is done. A leaked out password can be used by evil
persons to abuse a software repository.

11.3 Building Documentation

11.3.1 Doxygen

Doxygen documentation is done by especially formatted comments integrated in the source code, which
can get extracted by the program doxygen. Beside extracting these comments, doxygen builds up a
web-browsable code structure documentation like class hierarchy of code displayed as graphs, see [9].

The Doxygen documentation of a module can be built, if doxygen is installed, by running dunecontrol,
entering the build-*directory, and execute make doc. Then point your web browser to the file
MODULE BUILD DIRECTORY/doc/doxygen/html/index.html to read the generated documentation. This
should also work for other DUNE modules.

11.3.2 Handbook

To build the DuMux handbook go into the build-directory and run make doc or make dumux-handbook -

pdf. The pdf can then be found in MODULE BUILD DIRECTORY/doc/handbook/dumux-handbook.pdf.

11.4 External Libraries and Modules

The libraries described below provide additional functionality but are not generally required to run
DuMux. If you are going to use an external library check the information provided on the DUNE
website [15]. If you are going to use an external DUNE module the website on external modules [16]
can be helpful.

Installing an external library can require additional libraries which are also used by DUNE. For
some libraries, such as BLAS or MPI, multiple versions can be installed on the system. Make sure
that it uses the same library as DUNE when configuring the external library.

104

11 Detailed Installation Instructions

11.4.1 List of External Libraries and Modules

In the following list, you can find some external modules and external libraries, and some more libraries
and tools which are prerequisites for their use.

• ALBERTA: External grid library. Adaptive multi-level grid manager using bisectioning re-
finement and error control by residual techniques for scientific Applications. Requires a For-
tran compiler like gfortran. Download: http://www.alberta-fem.de or for version 3.0 http:

//www.mathematik.uni-stuttgart.de/fak8/ians/lehrstuhl/nmh/downloads/alberta/.

• ALUGrid: External grid library. ALUGrid is built by a C++ compiler like g++. If you want to
build a parallel version, you will need MPI. It was successfully run with openmpi. The parallel
version needs also a graph partitioner, such as ParMETIS. Download: http://aam.mathematik.
uni-freiburg.de/IAM/Research/alugrid

• DUNE-multidomaingrid and DUNE-multidomain: External modules which offer a meta
grid that has different sub-domains. Each sub-domain can have a local operator that is coupled
by a coupling condition. They are used for multi-physics approaches or domain decomposition
methods. Download: https://github.com/smuething/dune-multidomaingrid and https:

//github.com/smuething/dune-multidomain

• DUNE-PDELab: External module to write more easily discretizations. PDELab provides
a sound number of discretizations like FEM or discontinuous Galerkin methods. Download:
http://www.dune-project.org/pdelab

• PARDISO: External library for solving linear equations. The package PARDISO is a thread-
safe, high-performance, robust, memory efficient and easy to use software for solving large sparse
symmetric and asymmetric linear systems of equations on shared memory multiprocessors. The
precompiled binary can be downloaded after personal registration from the PARDISO website:
http://www.pardiso-project.org

• SuperLU: External library for solving linear equations. SuperLU is a general purpose library
for the direct solution of large, sparse, non-symmetric systems of linear equations. Download:
http://crd.lbl.gov/~xiaoye/SuperLU

• UG: External library for use as grid. UG is a toolbox for unstructured grids, released under
GPL. To build UG the tools lex/yacc or the GNU variants of flex/bison must be provided.
Download: http://www.iwr.uni-heidelberg.de/frame/iwrwikiequipment/software/ug

The following are dependencies of some of the used libraries. You will need them depending on
which modules of DUNE and which external libraries you use.

• MPI: The parallel version of DUNE and also some of the external dependencies need MPI when
they are going to be built for parallel computing. OpenMPI and MPICH in a recent version have
been reported to work.

• BLAS: Alberta and SuperLU make use of BLAS. Thus install GotoBLAS2, ATLAS, non-
optimized BLAS or BLAS provided by a chip manufacturer. Take care that the installation
scripts select the intended version of BLAS.

105

http://www.alberta-fem.de
http://www.mathematik.uni-stuttgart.de/fak8/ians/lehrstuhl/nmh/downloads/alberta/
http://www.mathematik.uni-stuttgart.de/fak8/ians/lehrstuhl/nmh/downloads/alberta/
http://aam.mathematik.uni-freiburg.de/IAM/Research/alugrid
http://aam.mathematik.uni-freiburg.de/IAM/Research/alugrid
https://github.com/smuething/dune-multidomaingrid
https://github.com/smuething/dune-multidomain
https://github.com/smuething/dune-multidomain
http://www.dune-project.org/pdelab
http://www.pardiso-project.org
http://crd.lbl.gov/~xiaoye/SuperLU
http://www.iwr.uni-heidelberg.de/frame/iwrwikiequipment/software/ug

11 Detailed Installation Instructions

• METIS and ParMETIS: This are dependencies of ALUGrid and can be used with UG, if run
in parallel.

• Compilers: Beside g++, DUNE can be built with Clang from the LLVM project and Intel C++

compiler. C and Fortran compilers are needed for some external libraries. As code of different
compilers is linked together they have to be be compatible with each other. A good choice is the
GNU compiler suite consisting of gcc, g++ and gfortran.

11.4.2 Hints for Users from IWS

We provide some features to make life a little bit easier for users from the Institute for Modelling
Hydraulic and Environmental Systems, University of Stuttgart. There exists internally a Subversion
repository made for several external libraries. If you are allowed to access it, go to the DUNE-Root,
then type the following.

Prepare external directory:

$ # Make s u r e you are i n DUNE−Root
$ svn checkout svn://svn.iws.uni -stuttgart.de/DUMUX/external/trunk external

This directory external contains a script to install external libraries. type help to see which
modules are currently available:

$ cd external

$./ installExternal.sh help

Usage: ./ external/installExternal.sh [OPTIONS] PACKAGES

Where PACKAGES is one or more of the following

all Install everything and the kitchen sink.

alberta Install the alberta grid library.

alu Download dune -alugrid.

metis Install the METIS graph partitioner.

multidomain Download dune -multidomain.

multidomaingrid Download dune -multidomaingrid.

ug Install the UG grid library.

gstat Install the Gstat library.

The following options are recoginzed:

--parallel Enable parallelization if available.

--debug Compile with debugging symbols and without optimization.

--clean Delete all files for the given packages.

Some of the libraries are then compiled within that directory and are not installed in a different
place, but DUNE may need to know their location. Thus, one may have to refer to them as options for
dunecontrol, for example via the options file my-debug.opts. Make sure you compile the required
external libraries before you run dunecontrol.

106

Bibliography

[1] M. Acosta, C. Merten, G. Eigenberger, H. Class, R. Helmig, B. Thoben, and H. Müller-Steinhagen.
Modeling non-isothermal two-phase multicomponent flow in the cathode of pem fuel cells. Journal
of Power Sources, page in print, 2006.

[2] The ALBERTA website: http://www.alberta-fem.de/.

[3] The ALUGrid website: http://www.mathematik.uni-freiburg.de/IAM/Research/alugrid/.

[4] The apache subversion website: http://subversion.apache.org/.

[5] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and
O. Sander. A generic grid interface for parallel and adaptive scientific computing. part ii: imple-
mentation and tests in DUNE. Computing, 82(2):121–138, 2008.

[6] A. Bielinski. Numerical Simulation of CO2 Sequestration in Geological Formations. PhD thesis,
Institut für Wasserbau, Universität Stuttgart, 2006.

[7] A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger. An efficient implementation of an adap-
tive and parallel grid in dune. In Computational Science and High Performance Computing II,
volume 91, pages 67–82. Springer, 2006.

[8] H. Class, R. Helmig, and P. Bastian. Numerical simulation of nonisothermal multiphase mul-
ticomponent processes in porous media – 1. an efficient solution technique. Advances in Water
Resources, 25:533–550, 2002.

[9] Doxygen homepage: http://www.stack.nl/~dimitri/doxygen/.

[10] DuMuX homepage: http://www.dumux.org/.

[11] DuMuX download folder: http://www.dumux.org/download/.

[12] The DUNE project: http://www.dune-project.org/.

[13] DUNE build system howto: http://www.dune-project.org/doc/buildsystem/buildsystem.

pdf.

[14] Download of DUNE via git: http://www.dune-project.org/downloadgit.html.

[15] Use of external libraries in dune http://www.dune-project.org/external_libraries/index.

html.

[16] Use of external modules in dune http://www.dune-project.org/downloadext.html.

[17] Installation notes to DUNE: http://www.dune-project.org/doc/installation-notes.html.

107

http://www.alberta-fem.de/
http://www.mathematik.uni-freiburg.de/IAM/Research/alugrid/
http://subversion.apache.org/
http://www.stack.nl/~dimitri/doxygen/
http://www.dumux.org/
http://www.dumux.org/download/
http://www.dune-project.org/
http://www.dune-project.org/doc/buildsystem/buildsystem.pdf
http://www.dune-project.org/doc/buildsystem/buildsystem.pdf
http://www.dune-project.org/downloadgit.html
http://www.dune-project.org/external_libraries/index.html
http://www.dune-project.org/external_libraries/index.html
http://www.dune-project.org/downloadext.html
http://www.dune-project.org/doc/installation-notes.html

Bibliography

[18] DUNE user wiki, prerequisite software: http://users.dune-project.org/projects/main-

wiki/wiki/Installation_prerequisite_software.

[19] IAPWS (The International Association for the Properties of Water and Steam). Revised release
on the iapws industrial formulation 1997 for the thermodynamic properties of water and steam.
http://www.iapws.org/IF97-Rev.pdf, 1997.

[20] R. Helmig. Multiphase Flow and Transport Processes in the Subsurface — A Contribution to the
Modeling of Hydrosystems. Springer Verlag, 1997.

[21] J. E. Killough and C. A. Kossack. Fifth comparative solution project: Evaluation of miscible
flood simulators. Society of Petroleum Engineers, SPE 16000, 1987.

[22] A. Lauser, C. Hager, R. Helmig, and B. Wohlmuth. A new approach for phase transitions in
miscible multi-phase flow in porous media. Advances in Water Resources, 34(8):957–966, 2011.

[23] R.C. Reid, J.M. Prausnitz, and B.E. Poling. The Properties of Gases and Liquids. McGraw-Hill
Inc., 1987.

[24] The UG homepage: http://www.iwr.uni-heidelberg.de/frame/iwrwikiequipment/

software/ug.

[25] Wikipedia about gnu build system: http://en.wikipedia.org/wiki/GNU_build_system.

[26] Wikipedia about aliasing data location in memory: http://en.wikipedia.org/wiki/Aliasing_
(computing).

108

http://users.dune-project.org/projects/main-wiki/wiki/Installation_prerequisite_software
http://users.dune-project.org/projects/main-wiki/wiki/Installation_prerequisite_software
http://www.iapws.org/IF97-Rev.pdf
http://www.iwr.uni-heidelberg.de/frame/iwrwikiequipment/software/ug
http://www.iwr.uni-heidelberg.de/frame/iwrwikiequipment/software/ug
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/Aliasing_(computing)
http://en.wikipedia.org/wiki/Aliasing_(computing)

	Table of Contents
	Introduction
	Getting started
	Quick Installation of DuMuX
	Obtaining the Code with the Script checkout-dumux
	Build of DUNE and DuMuX

	Quick Start Guide

	Tutorial
	Fully-Implicit Model
	The Main File
	The Problem Class
	Defining Fluid Properties
	Defining Spatially Dependent Parameters
	Exercises

	Decoupled model
	The Problem Class
	The Definition of the Parameters that are Dependent on Space
	Exercises

	Structure, Guidelines, New Folder Setup
	Directory Structure
	The directory dumux
	The directory test

	Setup of a New Folder and New Tests
	Parameter Files in DuMuX
	Advantages of Parameter Files
	Changing Parameters
	Technical Issues on Parameters

	Restart DuMuX Simulations
	Coding Guidelines

	The DuMuX Property System
	Concepts and Features of the DuMuX Property System
	DuMuX Property System Reference
	A Self-Contained Example

	The DuMuX Fluid Framework
	Overview of the Fluid Framework
	Fluid States
	Exported Constants
	Accessible Thermodynamic Quantities
	Available Fluid States

	Fluid Systems
	Parameter Caches
	Exported Constants and Capabilities
	Thermodynamic Relations
	Available Fluid Systems

	Constraint Solvers

	The DuMuX Models
	Physical and Mathematical Description
	Basic Definitions and Assumptions for the Compositional Model Concept
	Balance Equations

	Implicit Spatial Discretization Schemes
	Box Method – A Short Introduction
	Cell Centered Finite Volume Method – A Short Introduction

	Available Models
	Fully-Implicit Models
	Decoupled Models

	The flow of things in DuMuX
	Structure – by Content
	Levels

	Structure – by Implementation

	Newton in a Nutshell
	Tips & Tricks
	DuMuX- General Remarks
	Developing DuMuX
	External Tools
	Subversion (svn)
	Git
	Eclipse
	ParaView

	Detailed Installation Instructions
	Prerequisites
	Obtaining Source Code for DUNE and DuMuX
	Building Documentation
	Doxygen
	Handbook

	External Libraries and Modules
	List of External Libraries and Modules
	Hints for Users from IWS

