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Abstract: Toxicological research faces the challenge of integrating knowledge from diverse fields and novel technological devel-
opments generally in the biological and medical sciences. We discuss herein the fact that the multiple facets of cancer research,
including discovery related to mechanisms, treatment and diagnosis, overlap many up and coming interest areas in toxicology,
including the need for improved methods and analysis tools. Common to both disciplines, in vitro and in silico methods serve as
alternative investigation routes to animal studies. Knowledge on cancer development helps in understanding the relevance of
chemical toxicity studies in cell models, and many bioinformatics-based cancer biomarker discovery tools are also applicable to
computational toxicology. Robotics-aided, cell-based, high-throughput screening, microscale immunostaining techniques and gene
expression profiling analyses are common tools in cancer research, and when sequentially combined, form a tiered approach to
structured safety evaluation of thousands of environmental agents, novel chemicals or engineered nanomaterials. Comprehensive
tumour data collections in databases have been translated into clinically useful data, and this concept serves as template for
computer-driven evaluation of toxicity data into meaningful results. Future ‘cancer research-inspired knowledge management’ of
toxicological data will aid the translation of basic discovery results and chemicals- and materials-testing data to information
relevant to human health and environmental safety.

Assessing the intrinsic toxicological properties of environmen-
tal agents is central to defining hazard within the paradigm of
human risk assessment used now for decades [1]. A constantly
increasing number of chemicals and engineered nanomaterials
(ENMs) emphasize the need of applying novel tools and
screening technologies outside of the standard, both lengthy
and expensive, rodent toxicological tests traditionally used in
such work [1–13]. Especially considered for the future innova-
tion of novel ENMs, safety evaluations should be integrated
proactively and efficiently already in the material and product
development phase [9,12]. Summarized under a concept termed
‘Toxicity Testing in the 21st Century’ or ‘Tox21’, biochemical
and cell-based in vitro assays coupled with bioinformatics and
modelling-driven in silico assays are now considered key to
transforming toxicology from a previously animal-based test-
ing practice into a computational science built on systems
biology [2,4,6,9–11,13]. The resulting novel research field is
variably termed ‘systems toxicology’, ‘toxicogenomics’ or
‘computational toxicology’ [3,4,8,14,15]. Such effort typically
relies on informatics-driven and modelling-based analyses of
results from several experimental systems and data-rich tech-
nologies for measuring pools of biological molecules, such as

mRNAs, the overall aim being to interdependently analyse
toxicity data and profiling results for understanding and
predicting toxicity. Optimally, such efforts can define the ‘bio-
identity’ or ‘hazard identity’ of chemicals or ENMs, serving
then as an ‘activity’ counterpart to the ‘physiochemical iden-
tity’ deduced from structural and physiochemical descriptors
[5,6,8,12]. Problematic to advancement of the field, the much
needed fusion of high-throughput in vitro and in silico tech-
nologies in toxicology has advanced slowly due to limited
comprehensive data collections and a lack of tools and solu-
tion-oriented approaches to assess existing data. We argue that
the central aims of systems toxicology research can be pro-
moted by making use of data analysis solutions and databases
developed for data-rich disciplines such as cancer research,
including both high-throughput screening (HTS) and high-
content screening (HCS) techniques. We support this claim by
outlining herein the paths leading from cancer biology via
toxicology to alternative methods development. We address
databases that span the cancer biology and toxicology fields
and utilize a well-studied chemotherapeutic agent to exemplify
the concept. Built primarily on developments in pre-clinical
cancer drug discovery in our own laboratories, we also depict a
three-step, systems toxicology and ‘Tox21’-inspired approach
which spans from the high-throughput toxicity assessment of
many agents through to genomic profiling analyses of the
selected few.
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Parallels between Cancer Biology, Toxicology and
Alternative Methods Research

An obvious parallel is that cancer development per se and
compound-driven toxicological effects both lead to the deregu-
lation of many normal physiological functions [16]. Thus, the
toxicity effects that arise following chemical or ENM expo-
sures both cause and reflect a diseased state at subcellular,
cellular and organ levels [2,4,12]. Such studies therefore serve
to probe the multiple and complex means whereby detrimental
effects and disease processes arise [7,9]. From technology
viewpoint, studies of normal and transformed cell line models
in vitro are central to both cancer biology and toxicology
work, paving the way to increasing application of cell mod-
els as alternatives to animal-based experiments (fig. 1)
[4,9,11,17,18]. Tumour cells are generally more easily grown
in vitro than normal tissue cell lines, but both are central to
the cancer biology and toxicology disciplines, as both require
information of the normal state as reference to the transformed
state [16–20]. Beneficial to both fields, standard immortalized
and tumour-derived monolayer culture models replicate
indefinitely, and therefore support a high throughput of data
generation [18]. Such models inform on early steps of cell
transformation, but they also provide reproducible models for
toxicological investigation [16,18,19]. Relevant to cancer
research, organotypic culture states commonly enable better
modelling of the therapy response to tumour treatments [20].
Similarly, toxicological investigation in organotypic states
benefits from the analysis of orientation and multicellular
organization by histological and pathological methods, as well
as permitting the study of transport of toxicants through com-
plex, multilayered tissue [17]. The mechanisms that drive
cancer development lead to loss of differentiation, defects in
growth control and resistance to cell killing [16]. Clearly, such
knowledge is also imperative for accurate understanding of the

usefulness and limitations of commonly applied infinite cell
line models to toxicity experiments [19]. Clinically oriented
studies for understanding responsiveness of tumour cells to
cell killing from exposure to cancer therapeutics provide
useful information on the biological fates that cells also
encounter from exposure to environmental agents [6,21,22].
Over-expression or knockout of oncogenes or tumour suppres-
sor genes provides much needed information on driving
forces underlying transformation, but useful to toxicology, also
informs on genes critically regulating survival or killing mech-
anisms [23]. Considering databases, the large repositories of
clinical cancer data, including genomics analyses of tumours
and bioinformatics tools, provide templates for what is also
increasingly explored in the toxicological sciences [24]. Bio-
marker discovery in cancer uses data patterns for prediction of
patient cancer prognosis, responsiveness to therapy or cancer
proneness; it has its counterpart in toxicology where the aim
is to understand the mass/number of genes which make up
‘the toxome’ (genes and pathways causatively involved in
toxicity effects) or which have application for modelling how
specific toxicity effects can be predicted with subsets of the
toxome [10,11,13,25–27]. Thus, for transforming and modern-
izing toxicology, the usefulness of considering following in
the footsteps of the extensive thrust of output generated in
other sciences, and especially cancer research, is likely exten-
sive. In reciprocal manners, the cancer biologist would also
naturally be able to benefit from the data generation in the
toxicology field (fig. 1). For example, such work could gather
the in vitro toxicological data of known compounds to find
new anticancer targets. Alternative methods development
represents a broad term that relies broadly on the two pillars
constituted by in vitro and in silico technologies [28]. Typi-
cally, protocols that allow for the expression of normal,
specific functions in human cell cultures are complementary
to the in silico tools required for interpretation of toxicoge-
nomics data, and when combined, serve together as a com-
plete non-animal-based novel tool for toxicological research
under the 3R principle [5,10,28].

From HTS of Many Agents to Genomic Profiling Analysis
of the Selected Few

Based on development work in our laboratories, we present
here a cancer research-inspired pipeline that applies high-
throughput and high-content profiling technologies integrated
with omics profiling for assessing toxicity of chemicals and
ENMs. Inspirational to increasing the efficiency of toxicologi-
cal evaluations, pre-clinical cancer drug development includes
the application of a variety of methods and technologies to
pinpoint the target specificity and the absence of unwanted
side effects [23]. The HTS experiments are mainly carried out
to discover new and more selective cancer-associated path-
ways or processes [16,21]. To study pathway activation or
repression caused by the drug candidates, reverse-phase pro-
tein lysate arrays (RPPA) or gene expression profiling are
commonly employed thereafter [29,30]. Fig. 2 exemplifies
cancer research-inspired workflows, equipments, tools and

Fig. 1. The fields of cancer biology, toxicology and alternative meth-
ods development go hand-in-hand. The figure aims to illustrate sche-
matically an advantageous example from consideration of a conscious
information flow among the indicated disciplines. Both basic and clini-
cal research data are able to cross-fertilize the fields. Alternative meth-
ods implicate in vitro (primarily cell culture experiment-driven) and
in silico (database and bioinformatics tools-driven) methodologies. The
data flow from (and not to) cancer biology is especially emphasized as
toxicology and toxicogenomics research using primarily alternative
methods constitutes the prime focus of this MiniReview.
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assays that are applicable also for modernized toxicological
testing under the ‘Tox21’ concept. The tiered approach to
chemical or ENM safety evaluation proceeds from HTS
(stage 1 and 2) to ‘omics’ analysis of selected compounds that
require further testing (stage 3).
In stage 1, toxicity tests with high sensitivity and accuracy

are used to find chemical/ENM class-representative agents, and
typically applied for relative toxic potency ranking of multiple
agents. Time lapse-based morphological assessments provide a
HCS dimension to the analyses, and moreover, generate a read-
out that controls for potential assay interference by the tested
agents. Stage 2 broadens the number of toxicity endpoints of
still multiple agents in the narrowed concentration intervals
considered relevant based on the stage 1 results. Both of these
stage analyses depend heavily on robotics-aided experimenta-
tions, and therefore represent the HTS tools (fig. 2). In stage 3,
class-representative agents with high intrinsic potency for
exerting toxic effects are typically subjected to even broader
characterization taking into account the concentrations and time

points defined in the stage 1 and 2 results. Additionally, if
following stage 1 testing, only a low number of compounds
has indicated toxicity, or if the toxicity mechanism remains
unclear, one could conceptually see stages 2 and 3 being
assayed simultaneously, or stage 2 could follow stage 3 to ver-
ify mechanisms inferred from genomics profiling [21,30]. Typ-
ically, the gene expression profiling analysis of stage 3 would
serve to determine broad toxicology-relevant bioidentities of
‘the selected few’ group. Such work includes the exploration
or verification of novel or known pathways of toxicity, MoA
mechanisms and in a broader sense, adverse outcome pathways
(AOP) [2,4,5,11–13,31,32]. Expanded testing regimes might
naturally apply a wider range of cell types and assays, including
the consideration of low-dose effects and application of differ-
entiated, metabolically competent cell models [6,7,19,33,34].
The second phase of toxicity testing shown in fig. 2 (middle

part) is typically carried out with more endpoints than in stage
1 and involves the use of antibody-based assays that can gen-
erate 1000 times more data points using 10,000 times less

Fig. 2. Systems toxicology: from high-throughput screening of many agents to genomic profiling analysis of the selected few. Systematic applica-
tion of multitechnological research equipment originally developed for cancer biology and drug screening studies permits environmental health
research related to safety classification of chemicals and engineered nanomaterials. The outlined tiered approach provides an example where mea-
surement initially of a limited number of toxicity endpoints establishes dose–response relationships for thousands of chemical and nanomaterial
entities. The subsequent steps lead to gradually broader characterization of intoxicating concentrations of selected, potentially class-representative
agents to the level of defining their toxic modes-of-action.
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sample volume than an ordinary Western blot [29]. It therefore
enables monitoring of quantitative proteomic responses for
various time-scale and input-dose gradients simultaneously. It
is more sensitive than high-throughput tandem mass spectrom-
etry proteomics, enabling for instance quantitative analysis of
changes in transcription factor levels [30]. Such sensitivity is
important as many toxicity pathways reflect a transcriptional
sensor that reacts to stimuli in the intracellular or extracellular
environment of the cell [35]. Antibodies for genes and path-
ways tested in large screening programmes, for example, the
US Environmental Protection Agency ToxCast project, are
available and could be considered for inclusion in the stage 2
phase.
The third phase of the testing involves the use of sequencing

or chip-based technologies for high-throughput genomewide
profiling of gene activities, for example., measuring mRNA
levels following a toxic insult. Reduced sets of toxicity associ-
ated genes can be assayed at higher throughput or lower cost,
for example with Luminex� technology [36,37]. Microarrays,
such as Affymetrix GeneChips�, form currently the basis
for most of the existing gene profiling data, including the
‘Japanese Toxicogenomics Project-Genomics Assisted Toxicity
Evaluation system’ (TG-GATEs) reference database [15,25,38].
Pathway activation can be studied using open source tools or
commercial tools, such as the Ingenuity Pathway Analysis
(Ingenuity� Systems, www.ingenuity.com) or the freely avail-
able InCroMap tool [39,40]. For mechanistic grouping of
compounds, various bioinformatics techniques can sort the
compounds into clusters by gene or pathway activation level
[14]. Network analysis of gene and protein activities may then
identify upstream regulators, regulatory nodes or key regulator
genes from the data, potentially constituting genomic signatures
or biomarkers of toxicity [14,25,26,35,41,42]. Data integration
across high-throughput, high-content, pathway-based cellular
assays, and omics profiling, gives the final picture on the
compound activity (fig. 2).

Surveying the Landscape of Databases for Cancer Biology
and Toxicology

In order to evaluate toxicity in the context of existing
knowledge, databases with corresponding results need to be
addressed in conjunction with the above data (table 1)
[26,38,43–61]. As annotations for genes and probes are
updated regularly, it is advantageous to start such analysis
with unprocessed or raw data. Gene expression and other
omics profiling databases include general databases, such as
the European Bioinformatics Institute (EBI) ArrayExpress data
repository or domain-specific databases, for example, for toxi-
cology [55] (table 1). The Japanese toxicogenomics project
released the Open TG-GATEs with transcriptomics profiles
from 170 different compounds, many with liver toxicities,
containing both rat and human hepatocyte data and in vivo
data from short- or long-term (up to 28 days) exposures [38].
The US National Toxicology Program DrugMatrix has trans-
criptomics, clinical chemistry and histopathology data from
657 chemical compounds in rats, both in vivo and in vitro

[43]. The chemical effects in the biological systems database
stores data of interest to toxicologists and environmental
health scientists and serves as a search portal [45]. Derived or
value-added databases have processed data and usually tools
for their analysis and are very useful for targeted analyses.
Databases such as Gene Expression Atlas and Human Protein
Atlas provide information on almost all the transcripts or pro-
teins, also in relation to their tissue and subcellular localization
[46,55].
When analysing the toxicological potency of a chemical,

knowing the phenotype of the cellular model system is impor-
tant as different cellular models vary in their susceptibility to
toxic treatment. Genomics of Drug Sensitivity in Cancer and
Cancer Therapeutics Response Portal (see table 1) enable con-
nections to be made between, for example, genomic alterations
and drug resistance, yielding MoA information about the
drugs themselves [48,51]. Connectivity mapping has therefore
been suggested as a very useful tool for toxicity testing and
for facilitating biological read-across [26]. The connectivity
map (CMap) has thousands of genomewide expression profiles
of chemical perturbations, mainly using US Food and Drug
Administration approved drugs, on three cancer cell lines [44].
Investigators searching the CMap enter over- and under-
expressed genes into the search engine, ranking chemothera-
peutic agents on whether they regulate the same genes, either
in an opposite or in similar fashion. The Mode of Action by
NeTwoRk Analysis Mantra 2.0 database has clustered the
CMap database and annotated the MoA of each compound,
enabling determination of an unknown compound’s MoA by
referring to the neighbouring compounds in the network [58].
Connectivity mapping has been implemented for the TG-
GATEs data set in the liver toxicity map service; the Toxy-
gates interface to the TG-GATEs data also enables ranking of
compounds based on the genes that they regulate [54,57].
In order to take full advantage of the data provided by the

pipeline cellular and pathway-based (stage 1 and 2, fig. 2)
assays need to be integrated with transcriptomics data as well
as with traditional toxicity data. The EPA Interactive Chemical
Safety for Sustainability (iCSS) dashboard which covers over
800 assays enables easy access to the ToxCast program data
that include many pathway activity assays, and more than 1800
compounds [6,50,59]. The Library of Integrated Network-
Based Cellular Signatures (http://www.lincsproject.org/) mea-
sures pathway activities with more than 100 antibody-based
assays, as well as gene expression data from more than 10,000
compounds and over 15 cellular models sharing data in standard-
ized format [61]. The US Environmental Protection Agency
aggregated computational toxicology resource (AcToR) data-
base, PubChem and chEMBL databases as well as the Compar-
ative Toxicogenomics Database connects chemicals with gene
expression changes and disease or toxicity associations
[50,52,56,59]. But the toxicology field would benefit from
even further developed integrated tools such as the Mantra
2.0 or the cBio Cancer genomics portal that integrates gene
expression information, genomic alterations, cancer survival
analysis and antibody-based pathway assays from more than 20
different cancer types and 1000 cellular models [24,58].
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Table 1.
Selected examples of databases and tools for systems toxicology.

Name Description Organisms URL

Data repositories (raw profiling data)
Gene Expression Omnibus US public repository of gene expression data Any http://www.ncbi.nlm.nih.gov/geo/
ArrayExpress European public repository of gene expression data Any http://www.ebi.ac.uk/arrayexpress/
ToxBank Data Warehouse Warehouse for SEURAT-1 (www.seurat-1.eu) cluster data Human, rat http://www.toxbank.net/data-warehouse
diXa data warehouse Warehouse for public toxicogenomics data by the diXa

project
Human, rat http://wwwdev.ebi.ac.uk/fg/dixa

Open TG-GATEs
repository

Japanese toxicogenomics database (in vivo, in vitro,
170 compounds)

Human, rat http://toxico.nibio.go.jp/

DrugMatrix US toxicogenomics database (in vivo, in vitro,
638 compounds)

Rat https://ntp.niehs.nih.gov/drugmatrix

Chemical Effects in
Biological Systems

Repository for public data from US National Toxicology
Program

Any http://cebs.niehs.nih.gov

Added value databases and tools (general and cancer research)
Gene Expression Atlas Gene expression patterns under different biological

conditions
Any http://www.ebi.ac.uk/gxa/

Human Protein Atlas Map protein expression in normal human tissues,
cancer and cells

Human http://www.proteinatlas.org/

cBio Cancer genomics
portal

Visualization, analysis and download of cancer
genomics data sets

Human http://www.cbioportal.org/
public-portal/

Molecular Signatures
Database

Collection of annotated gene sets (>5000) for
enrichment analysis

Human, other http://www.broadinstitute.
org/gsea/msigdb

KEGG Kyoto encyclopedia of Genes and Genomes,
pathway database

Any http://www.genome.jp/kegg/

InCroMap Software tools to perform pathway and gene
ontology analysis of processed data

Any http://www.ra.cs.uni-tuebingen.
de/software/InCroMAP/

Added value databases and tools (chemical genomics and toxicogenomics)
Genomics of Drug
Sensitivity in Cancer

Identify molecular features of cancers that predict
response to anti-cancer drugs (over 1000 cell
lines, 142 compounds)

Human http://www.cancerrxgene.org/

Cancer Therapeutics
Response Portal

Identify relationships between genomics and
small-molecule sensitivities (242 cell lines,
354 compounds)

Human http://www.broadinstitute.org/ctrp/

Connectivity Map Find similar compounds to your profile (3 cell lines,
1309 compounds)

Human http://www.broadinstitute.org/cmap/

Mantra 2.0 Mode of Action by NeTwoRk Analysis for MoA
annotated CMap analysis

Human http://mantra.tigem.it/

Comparative
Toxicogenomics
Database

Curated chemical, gene and disease connections and
tools to analyze chemicals, genes and gene signatures
(over 10000 compounds)

Human, other http://ctdbase.org/

Liver Toxicity Map TG-GATEs similarity search (158 compounds, in vivo/in
vitro Liver)

Human, rat http://tcm.zju.edu.cn/ltmap/

Toxygates TG-GATEs data portal: Explore, analyze and rank
compounds based on gene activity (170 compounds,
in vivo/in vitro liver/kidney)

Human, rat http://toxygates.nibio.go.jp/toxygates/

Chemical Safety information, high-throughput screening data and tools (chemical biology and toxicology)
AcTor US online warehouse of publicly available chemical

toxicity data
Any http://actor.epa.gov/

chEMBL Bioactive small molecules with structures, properties and
activities

Any https://www.ebi.ac.uk/chembl/

PubChem Information on the biological activities of small molecules Any https://pubchem.ncbi.nlm.nih.gov
Toxicity Prioritization
Index

A visual analytics tool for ranking compounds using
multiple toxicity data

Human, other http://www.epa.gov/ncct/ToxPi/

iCSS Dashboard Interactive Chemical Safety for Sustainability (iCSS)
Dashboard is a tool to explore ToxCast and Tox21
high throughput screening data

Human, other http://actor.epa.gov/dashboard/

NCI-60 DTP Tumor Cell Line Assay cytotoxicity data on over
100000 compounds

Human http://dtp.nci.nih.gov/

DrugBank Drug data with comprehensive drug target information Human, other http://www.drugbank.ca/
Opentox Interoperable predictive toxicology framework Any www.opentox.org
Liver Toxicity
Knowledge Base

US FDA drug induced liver injury centralized resource
(137 most-DILI-concern drugs, 85 less-DILI-concern
drugs, 65 no-DILI-concern drugs)

Human http://www.fda.gov/. . ./LiverToxicity
KnowledgeBase/ucm226811.htm
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Cancer Research-Inspired Analysis of Toxicity Data Using
Doxorubicin as Example

The European SEURAT-1 (Safety Evaluation Ultimately
Replacing Animal Testing 1) including the ToxBank consor-
tium (www.toxbank.net) has created a cross-cluster data
warehouse to facilitate storage and analysis of all data gener-
ated by the more than 70 research groups that form the
SEURAT-1 cluster [28,53]. The data warehouse uses the
Investigation/Study/Assay (ISA) tab-delimited (TAB) format
as a general purpose framework with which to collect and
communicate complex metadata (i.e. sample characteristics,
technologies used, type of measurements made) from experi-
ments employing a combination of technologies [62]. Pub-
licly available data from the ToxCast and the TG-GATEs
projects are used as a benchmark [6,10,38,43,45,53]. The
SEURAT-1 cluster has selected reference compounds, includ-

ing doxorubicin and compiled extensive information on
them in a semantic mediawiki (wiki.toxbank.net) [53]. Focus-
ing on in vitro data, fig. 3 illustrates the use of multiple
databases for storage of toxicity results in standardized
formats and for generating hypotheses about a compound’s
toxicity profile.
Adriamycin hydrochloride (Doxorubicin hydrochloride,

CAS Nr. 23214-92-8) is being screened as part of the Tox21
project, and results are made available via the EPA iCSS
dashboard and the PubChem database as well as the EBI
chEMBL database of bioactive drug-like small molecules also
contain information related to doxorubicin toxicity
[6,49,56,59]. Cytotoxicity studies in 59 cell lines from the US
National Cancer Institute human tumour cell line assay devel-
opmental therapeutics programme (NCI-60 DTP) indicate that
doxorubicin (NSC 123127) has an average LC50 of
30.55 lM, TGI of 2.48 lM and GI50 of 0.15 lM [22].

Fig. 3. Database and bioinformatics tool-driven analyses of doxorubicin toxicity. (A) Transcriptomics profiles of human hepatocytes treated with
doxorubicin from the Open TG-GATEs repository are found in databases, for example the ToxBank data warehouse. (B) Differentially expressed
genes can be extracted for different treatment concentrations relative the control (see legend). Kyoto Encyclopedia of Genes and Genomes pathway
analyses depict molecular pathways influenced by the treatments. (C) Top 100 up- and down-regulated genes (8 hr time point, 10 lM concentra-
tions) allows for connectivity mapping to genomic profiles of other agents with similar modes-of-action. Analysis with Mantra 2.0 implicates broad
association to topoisomerase inhibitors. (D) Analysis of the top 20 connectivity-retrieved agents relative the Comparative Toxicogenomics Database
generates hypotheses about the disease association; cardiovascular disease is the primer indication, being a known side effect of doxorubicin
treatment. Table 1 has further details on databases and the software used in the analyses.
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Gene expression data profiles of doxorubicin effects in
human hepatocytes exist in the TG-GATEs data, and such
results are also retrievable from the ToxBank, Toxygates or
the DiXa data warehouses (see table 1) (fig. 3A) [53,54].
Bioinformatics tools variably identify a number of key path-
ways at different doses (fig. 3B). Interestingly, an analysis
with the most significantly altered genes in the CMap service
identifies doxorubicin itself and other topoisomerase inhibitors
such as mitoxantrone and camptothecin (fig. 3C). Anthracy-
clines and related substances (ATC code L01DB01) are also
enriched as a class, showing that commonly used cancer cell
models and primary liver cells can have very similar profiles.
Analysis of the CMap-enriched compounds using the Mantra
2.0 tool likewise indicates many of the identified connections
are topoisomerase II inhibitor compounds (see fig. 3C) and
CMap results submitted into the CTD service, point to
‘Cardiovascular Diseases’ as the most strongly enriched dis-
ease. Therefore, results are in line with doxorubicin causing
cardiomyopathy and being a topoisomerase inhibitor that
intercalates with DNA and induces oxidative DNA damage
(fig. 3D) [63]. Thus, publicly available tools and databases
help generate a correct hypothesis of systemic toxicity and
define the mode of action of a toxicant.

Concluding Statements

Toxicity assessment can be seen both as a data-driven activity
and concept-driven activity. Connectivity mapping with gene
expression or HTS data is an example of data-driven activity
[10,13,44,54,57]. Differently, the identification of molecular
initiating events and key events that lead to an adverse out-
come is a concept-driven activity that facilitates evaluation
of evidence for toxicity [12,13,31,32,64]. The AOP Wiki
currently developed under the Organization for Economic
Co-operation and Development guidelines will allow users to
cooperate in documenting and evaluating information underly-
ing AOPs [13,31,64]. Integrating mechanistic understanding
with data from HTS and toxicogenomics efforts will facilitate
AOP development and use so that compounds and ENMs can
be assigned to various classes based on the cellular toxicity
pathway activities that they trigger.
Ongoing reductions in costs for sequencing and multiplexing

will make the use of high-content information technologies,
especially transcriptomics, increasingly attractive. Differently,
the cost of data interpretation is instead bound to increase
[36,65]. Considering a tiered approach for toxicity testing
(fig. 2), the numbers of compounds entering stages 3 and 2 in
parallel is likely to increase, which might aid data interpretation
as the results can be directly integrated. Development of well-
standardized and documented bioinformatics workflows is key
for integration of various omics and HTS data. Solutions to
standardization of data and metadata descriptions sufficiently
well for biomarker development and modelling come from
implementing standardized file formats such as ISA-TAB,
ontologies, for experimental factors, chemical structural and
ENM descriptors, and also standard operating procedures for
accurate models and classifiers of toxicity [47,53,62,66,67].

Constituting a useful example of such efforts, OpenTox has
provided an extensive specification for an open interoperable
standards-based predictive toxicology framework involving
components for data, algorithms, compounds, biological fea-
tures, models, validation and reporting which may be used to
develop such workflows [47,68].
In conclusion, recent cancer genomics and systems biology

studies have generated results and tools that can inspire to
systems toxicology/toxicogenomics-based investigation of the
toxicity effects of drugs, chemicals and ENMs; tutorials on
this topic are available at the ToxBank web site (www.tox-
bank.net). Key tasks will be to define the ‘bioidentity’ or
‘hazard identity’ of such agents from applying HTS, HCS and
bioinformatics tools and databases. The fusion of in vitro and
in silico methods in toxicology serves to analyse toxicity
effects from the subcellular levels up to the intact organism
or population level, and overall, focuses to define molecular
initiating events, pathways of toxicity, MoAs and AOPs. Bio-
informatics technologies and modelling approaches are central
to the data interpretation and knowledge management via data-
bases and give so far unprecedented opportunity for rapid
translational interpretation and application of research findings
from alternative methods experiments. Overall, existing data,
expertise and tools from cancer biology may fill central
knowledge gaps that exist at the moment in toxicology, argu-
ing for benefits from an information flow between the respec-
tive research fields. We argue for consideration of future in
vitro and in silico tiered strategies that can aid environmental
health research as well as constituting a safe-by-design testing
protocol for synthesized agents of diverse origin and type.
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