
Querying the Web of Data with SPARQL-LD

Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas

Computer Science Department, University of Crete, Greece, and
Institute of Computer Science, FORTH-ICS, Greece

{fafalios,yannakis,tzitzik}@ics.forth.gr

Abstract. A constantly increasing number of data providers publish
their data on the Web in the RDF format as Linked Data. SPARQL is
the standard query language for retrieving and manipulating RDF data.
However, the majority of SPARQL implementations requires the data
to be available in advance (in main memory or in a repository), not
exploiting thereby the real-time and dynamic nature of Linked Data. In
this paper we present SPARQL-LD, an extension of SPARQL 1.1 Federated
Query that allows to directly fetch and query RDF data from any Web
source. Using SPARQL-LD, one can even query a dataset coming from the
partial results of a query (i.e., discovered at query execution time), or
RDF data that is dynamically created by Web Services. Such a function-
ality motivates Web publishers to adopt the Linked Data principles and
enrich their digital contents and services with RDF, since their data is
made directly accessible and exploitable via SPARQL (without needing
to set up and maintain an endpoint). In this paper, we showcase the ben-
efits offered by SPARQL-LD through an example related to the Europeana
digital library, we report experimental results that demonstrate the fea-
sibility of SPARQL-LD, and we introduce optimizations that improve its
efficiency.

1 Introduction

While more and more structured data are published on the Web following the
Linked Data principles [6], an important question is how one can efficiently access
and query this constantly increasing body of knowledge. SPARQL [4] is the
standard query language for retrieving and manipulating RDF data. However,
the majority of SPARQL implementations requires the data to be available in
advance, i.e., to exist in main memory or in a RDF repository accessible through
a SPARQL endpoint. Nonetheless, Linked Data exists in the Web in various
forms; even an HTML Web page can contain RDF data through RDFa [3], or
RDF data may be dynamically created by Web Services.

In this paper we present SPARQL-LD, an extension (actually a generalization)
of SPARQL 1.1 Federated Query [5] that allows to directly and flexibly exploit
this wealth of data. SPARQL-LD extends the applicability of the service operator
enabling to query any HTTP Web source containing RDF data. This extension
does not require the named graphs to have been declared, thus one can even

Fafalios
Typewriter
This is a preprint of an article accepted for publication in: 20th International Conference on Theory and Practice of Digital Libraries (TPDL'16), Hannover, Germany, September 5-9, 2016The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-43997-6_14



2 Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas

fetch and query a dataset returned by a portion of the query (i.e., whose URI is
derived at query execution time).

Such a functionality can motivate Web publishers to enrich their documents
and digital libraries with RDF since it makes their data directly accessible via
SPARQL without needing to set up and maintain an endpoint (e.g., they can
just publish RDF dumps). Actually, availability is the main bottleneck towards
the success of the Semantic Web as a reliable technology. Buil-Aranda et al. [8]
tested 427 public endpoints and found that their performance can vary by up to
3-4 orders of magnitude, while only 32.2% of public endpoints can be expected to
have monthly uptimes of 99-100%. Therefore, it may be more reliable to directly
retrieve the triples of a dereferenceable URI than retrieving the same triples by
invoking a query against a remote endpoint (considering of course that the query
requirements are satisfied).

Fig. 1 shows a query that can be answered by SPARQL-LD. The query first
accesses Europeana’s [13, 15] SPARQL endpoint1 for retrieving artists of works
related to Renaissance (lines 2-3). Then, by querying the dereferenceable URI
of each artist, the query retrieves and shows a description (in English) and an
image of only those of Mannerist style (lines 4-6). Note that Europeana does
not contain information about artist styles. Notice also that the artist URIs are
derived at query execution time. One could also integrate in the same query
data from any Web resource or Web Service that offers its data in a standard
RDF format. As an example, consider that an online bookstore service exports
its search results in RDF. Using SPARQL-LD one can directly access this service
through SPARQL and find books about the artists returned by the two SERVICE

patterns in the query of Fig. 1. Likewise, in the same query one could exploit a
video service and find links of YouTube videos related to some of the artists.

Consequently, the functionality offered by SPARQL-LD can overcome the lim-
itations of digital libraries (and information sources in general) related to infor-
mation integration, enrichment and exploitation.

1 SELECT DISTINCT ?creator ?descr ?photo WHERE {
2 SERVICE <http://europeana.ontotext.com/sparql> {
3 ?work dc:subject dbr:Renaissance ; dc:creator ?creator }
4 SERVICE ?creator {
5 ?creator dct:subject dbc:Mannerist_painters ;
6 dbo:abstract ?descr ; foaf:depiction ?photo FILTER(lang(?descr)="en") } }

Fig. 1: An example of a SPARQL query that can be answered by SPARQL-LD.

SPARQL-LD was first demonstrated in a short (demo) paper [10]. With respect
to that paper, in this paper: i) we provide examples that illustrate the benefits
offered by SPARQL-LD, ii) we identify factors that affect efficiency and propose
optimizations, and iii) we extensively evaluate the efficiency of SPARQL-LD and
the effect of the proposed optimization techniques. In addition, this paper pro-
vides a more detailed related work. The rest of this paper is organized as follows:
§2 discusses related work, §3 introduces SPARQL-LD, §4 details optimization tech-
niques, §5 presents evaluation results, and finally §6 concludes the paper.

1 http://europeana.ontotext.com/sparql



Querying the Web of Data with SPARQL-LD 3

2 Related Work

The approach that we propose is considered a method to execute queries over the
Web of Linked Data. Such approaches can be classified in three main categories:
query federation, data centralization, and link traversal.

The idea of query federation is to provide integrated access to distributed
sources on the Web. For example, the systems DARQ [23] and SemWIQ [17]
provide access to distributed RDF data sources using a mediator service that
transparently distributes the execution of queries to multiple SPARQL services.
Given the need to address query federation, in 2013 the SPARQL W3C working
group proposed a query federation extension for SPARQL 1.1 [5]. Buil-Aranda
et al. [7] describe the syntax of that extension and formalize its semantics.

The idea of data centralization is to provide a query service over a collection
of data copied (and probably transformed) from different sources on the Web.
Such a collection is usually called “Warehouse”. There are domain independent
warehouses like SWSE [14], but also domain specific like the MarineTLO-based
Warehouse [25]. In the same category falls the case of digital libraries containing
descriptions and metadata about digital objects collected from multiple content
providers (like Europeana [15, 22]). Although such approaches require the data
to exist in a single repository, they can significantly benefit from the function-
ality offered by SPARQL-LD. For instance, a query service over such a repository
can support SPARQL-LD and offer the ability to also integrate (during query
execution) data coming from online RDF sources (like in the example of Fig. 1).

Link traversal approaches exploit the Linked Data principles for discovering
data related to URIs given in the query. For instance, the work in [11] dis-
covers data that might be relevant for answering a query by following RDF
links between data sources based on URIs in the query and in partial results.
Diamond [19] is a similar in spirit query engine to evaluate SPARQL queries on
distributed RDF data where, as a query is being evaluated, additional Linked
Data can be identified by exploiting dereferenceable URIs. Finally, LDQL [12] is
a declarative language to query Linked Data which is also based on link traver-
sal. LDQL separates query components for selecting query-relevant regions of
Linked Data, from components for specifying the query result.

SPARQL-LD actually complements the aforementioned approaches on query
federation, data centralization and link traversal; it can be used in combination
to such approaches. Works that focus on optimizing the execution of SPARQL
federated queries, and that can be also applied in our case, are discussed in §4.

3 SPARQL-LD: Functionality and Examples

Motivation. Although the majority of SPARQL implementations requires the
data to be available in advance (in main memory or in a repository), the spec-
ification of SPARQL allows to directly query a RDF dataset accessible on the
Web (in a standard format) and identifiable by an URI through the operators
FROM/FROM NAMED and GRAPH. However, this has an important limitation: it re-
quires knowing in advance the URI of the dataset and having declared it in the



4 Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas

FROM NAMED clause. Thus, a URI coming from partial results (that get bound
after executing an initial query fragment) cannot be used in the GRAPH operator
as the dataset to run a portion of the query. Furthermore, although RDFa [3]
and JSON-LD [1] are W3C standards that are exploited by an ever-increasing
number of publishers, we have not managed to find a SPARQL implementation
that can directly query such RDF data. In addition, using the service operator
of SPARQL 1.1 Federated Query [5], we can invoke a portion of a query against
a remote RDF repository. However, service requires the URI to be the address
of a SPARQL endpoint, thus one cannot exploit this operator for querying RDF
data accessible on the Web but not available through an endpoint.

Extended SERVICE definition. The SPARQL 1.1’s service operator (service
a P ) is defined (in [7]) as a graph pattern P evaluated in the SPARQL endpoint
specified by the URI a, while (service ?X P ) is defined by assigning to the
variable ?X all the URIs (of endpoints) coming from partial results, i.e. that get
bound after executing an initial query fragment. The idea behind SPARQL-LD

is to enable the evaluation of a graph pattern P not absolutely in a SPARQL
endpoint a, but generally in a RDF graph Gr specified by a Web Resource r.
Thus, now a URI given to the service operator can also be the dereferenceable
URI of a resource, the Web page of an entity (e.g., of a person), an ontology
(OWL), Turtle, or N3 file, etc. In case the URI is not the address of a SPARQL
endpoint, the RDF data that may exist in the resource are fetched at real-time
and queried for the graph pattern P .

SPARQL-LD is a generalization of SPARQL in the sense that every query that
can be answered by the original SPARQL can be also answered by SPARQL-LD.
Specifically, if the URI given to the service operator corresponds to a SPARQL
endpoint, then it works exactly as the original SPARQL (the remote endpoint
evaluates the query and returns the result). Otherwise, instead of returning an
error (and no bindings), it tries to fetch and query the triples that may exist in
the given resource.

Implementation. SPARQL-LD has been implemented using Apache Jena [2].
Jena is an open source Java framework for building Semantic Web applications.
Specifically, we have extended Jena 2.13 ARQ component. ARQ is a query engine
for Jena that supports SPARQL 1.1. The implementation is available as open
source2. An endpoint that supports SPARQL-LD is publicly available3.

The implementation can be described through the following process: we first
check if the URI corresponds to a SPARQL endpoint by submitting the ASK

query “ASK {?x ?y ?z}”. In case we get a valid answer, we continue just like the
default query federation approach, i.e. the corresponding graph pattern (query)
is submitted to the endpoint. In case we do not get a valid answer, it means
that the URI is not the address of an endpoint. Then, we read the content type
header field of the URI by opening an HTTP connection and setting the value
application/rdf+xml to the ACCEPT request property (we do that for handling
also the case of RDFa). Now, according to the returned content type, we fetch

2 https://github.com/fafalios/sparql-ld
3 http://users.ics.forth.gr/~fafalios/sparql-ld-endpoint



Querying the Web of Data with SPARQL-LD 5

and query the corresponding triples. For the case of HTML Web pages (the
content type is text/html or application/xhtml+xml), we try to fetch and
query the RDF triples that may be embedded in the Web page as RDFa. If the
Web page does not contain any RDF data, the query returns no bindings. For
reading possible RDF triples in a Web page, we exploit the Semargl framework
(https://github.com/levkhomich/semargl) which also offers an integration
with Jena. The implementation allows also reading and querying JSON-LD files.

Query Examples. Here we give two example queries that demonstrate the
functionality offered by SPARQL-LD. More examples are available at the endpoint
given in Footnote 3.

Querying dynamically-created RDF data. X-Link [9] is a Linked Data-based
Named Entity Extraction (NEE) framework which can export the result of the
NEE process in RDF using the Open NEE model [9]. An X-Link Web service
configured for the artistic domain is publicly available at http://83.212.107.

202/x-link-art. This service can identify names of several types of entities in
a given Web document and link them to Web resources (URIs). For instance,
we can request to perform NEE with painters and countries as the entities of
interest at the Web page “https://en.wikipedia.org/wiki/Mannerism” and
get the results in the default RDF/XML format, with the following request:
http://83.212.107.202/x-link-art/api?categories=painter;country&url=https:

//en.wikipedia.org/wiki/Mannerism

Using the proposed extension, one can exploit the APIs of such services di-
rectly through SPARQL. For instance, Fig. 2 depicts a query that parameterizes
and calls the above annotation service at query execution time (the namespaces
have been omitted to save space). The query first retrieves Web pages related
to Mona Lisa by querying its dereferenceable DBpedia URI (lines 2-3). Then, it
calls the X-Link service for identifying names of painters and countries in the
retrieved Web pages (lines 4-6), and for each detected entity the query retrieves
(and shows) its name, its category and its number of occurrences in the Web
pages (lines 7-9). Finally, the entities are ordered by the number of occurrences
in descending order (line 10).

1 SELECT DISTINCT ?detectedEntity ?categoryName (count(?position) as ?NumOfOccurrences) WHERE {
2 SERVICE <http://dbpedia.org/resource/Mona_Lisa> {
3 dbr:Mona_Lisa dbo:wikiPageExternalLink ?page }
4 VALUES ?templ { <http://83.212.107.202/x-link-art/api?categories=painter;country&url=PAGE> }
5 BIND(REPLACE(str(?templ), "PAGE", str(?page), "i") as ?x) BIND(URI(?x) as ?service)
6 SERVICE ?service {
7 ?annot oa:hasBody ?ent .
8 ?ent oae:regardsEntityName ?detectedEntity ; oae:position ?position .
9 ?ent oae:belongsTo ?category . ?category rdfs:label ?categoryName }

10 } GROUP BY ?detectedEntity ?categoryName ORDER BY DESC(?NumOfOccurrences)

Fig. 2: Example of a SPARQL query that parameterizes and calls an annotation
service at query execution time.

Querying RDFa. The first author of this paper has enriched his personal Web
page (http://users.ics.forth.gr/~fafalios) with RDFa describing infor-
mation about his publications. Using the proposed extension, such RDF data
embedded in Web pages is directly available through SPARQL. For example, the



6 Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas

query in Fig. 3 returns all his co-authors together with their publications. The
list of co-authors is obtained by querying the RDF data that is embedded in his
personal Web page (lines 2-4), while their names and publications are obtained
by querying the dereferenceable URI of each co-author (lines 5-7). Notice that
the author URIs are derived at query execution time.

1 SELECT DISTINCT ?authorName ?paper WHERE {
2 SERVICE <http://users.ics.forth.gr/~fafalios/> {
3 ?p <http://purl.org/dc/terms/creator> ?author
4 FILTER(?author != <http://dblp.l3s.de/d2r/resource/authors/Pavlos_Fafalios>) }
5 SERVICE ?author {
6 ?author <http://xmlns.com/foaf/0.1/name> ?authorName .
7 ?paper <http://purl.org/dc/elements/1.1/creator> ?author } }

Fig. 3: Example of a SPARQL query that reads and queries RDF data embedded
in a Web page (as RDFa) at query execution time.

4 Optimizations

Several approaches have been proposed in the literature that aim at optimizing
the execution of SPARQL federated queries, e.g., by reordering triple patterns
based on cost estimation [24], by optimizing the evaluation of the OPTIONAL op-
erator [7] (which is the most costly operator in SPARQL), by planning SERVICE

queries against multiple endpoints based on the expected number of returned
triples [20], or by parallelizing the execution of joins and union operators [24].
In addition, several caching approaches have been proposed that aim to improve
the performance on answering SPARQL queries [16, 18]. Obviously, all of them
are beneficial for SPARQL-LD too. However, SPARQL-LD has the following extra re-
quirements (points that need attention) that are not satisfied by existing works:
(a) to reduce the ASK queries that check whether a URI corresponds or not to
a SPARQL endpoint, and (b) to avoid fetching remote resources that have been
already fetched in the context of a single query execution.

Below we describe optimizations that cope with the above requirements.

4.1 Index of Known SPARQL Endpoints

We have seen that, compared to the original service operator, the only addi-
tional cost is the time to run an ASK query (as we will see in §5, this cost is about
200 ms in average). To eliminate this cost, we can keep a small index with the
URIs of known endpoints (like DBpedia’s and Europeana’s) as well as the URIs
of endpoints that have been already checked. Thereby, if the service URI exists
in the index, the query is directly forwarded to the endpoint, otherwise an ASK

query is first submitted.
For example, consider the query of Fig. 4. The query first retrieves Greek

painters from the dereferenceable URI of the corresponding DBpedia category
(lines 2-3), and then it queries Europeana’ SPARQL endpoint for retrieving
works of these painters (lines 4-6). However, if the number of painter URIs
returned by the first SERVICE invocation is n, the query will call the remote



Querying the Web of Data with SPARQL-LD 7

endpoint n times (one for each painter URI), which in turn requires to run n
ASK queries. Thus, in case we do not use the proposed index of known endpoints,
the expected cost for running n ASK queries is about n× 200 ms.

1 SELECT DISTINCT ?painter ?work WHERE {
2 SERVICE <http://dbpedia.org/resource/Category:Greek_painters> {
3 ?painter <http://purl.org/dc/terms/subject> ?greekPainter }
4 SERVICE <http://europeana.ontotext.com/sparql> {
5 ?objectInfo <http://purl.org/dc/elements/1.1/creator> ?painter .
6 ?objectInfo <http://www.openarchives.org/ore/terms/proxyFor> ?work } }

Fig. 4: Example of a SPARQL query that calls the same remote SPARQL end-
point multiple times.

4.2 Request-scope Caching of Fetched Datasets

A SPARQL query may contain multiple service invocations against the same
Web resource. Consider for example the query of Fig. 3. In case the same co-
author exists in more than one publications, the corresponding RDF triples (of
co-author’s URI) will be redundantly fetched multiple times.

In such cases, fetching and loading repeatedly the same resource triples costs
both in time, computer resources and traffic load. To avoid this, for a submitted
query we can use a request-scope cache (usable only in the context of a submitted
query) of datasets that have been already fetched. Thereby, in each new service

invocation, we first check if the corresponding URI exists in the cache in order
to avoid re-fetching its triples. The cache can be cleared after query execution.
Of course, one could instead apply a caching policy that will keep the fetched
resources in cache after query execution for serving future queries (for a period
of time and according to the available main memory), e.g., a combination of
static and dynamic caching as it is used by web search engines [21].

5 Evaluation

We have seen that using SPARQL-LD, one can run queries which are more ex-
pressive than those supported by SPARQL 1.1. Nevertheless, here we evaluate
the efficiency of the extended service operator for several querying scenarios,
examining also the cost of each task of query execution. We first evaluate the
time for retrieving the properties of several randomly selected resources (URIs)
using different access methods (§5.1). This can also reveal which RDF format
offers the lower average query time. Then, we examine the case of querying very
large Web resources, i.e. resources containing even millions of triples (§5.2). This
allows us to inspect the scalability of our implementation. Finally, we evaluate
the effect of the proposed optimizations (§5.3).

The experiments were carried out using an ordinary computer with processor
Intel Core i7 @ 3.4Ghz CPU, 8GB RAM and running Windows 7 (64 bit). The
implementation is in Java 1.7. All data used in the experiments (URIs, queries,
etc.), as well as the full results, are publicly available at http://users.ics.

forth.gr/~fafalios/sparql-ld/Eval.zip.



8 Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas

5.1 Query Execution Time

We run experiments for 1,000 randomly selected DBpedia URIs belonging to
the following 10 (randomly selected) DBpedia resource classes: Artist, Painter,
Scientist, Region, River, Fish, Athlete, BasketballPlayer, SportTeam, Chemical-
Compound. Notice that DBpedia publishes its data following the Linked Data
principles (i.e., the URIs are dereferenceable) and also offers the data of a
URI (properties and related entities) online in various formats including N3
and RDF/XML. Moreover, DBpedia has a publicly available SPARQL endpoint
(http://dbpedia.org/sparql). We measured the total time that is required for
retrieving the outgoing properties of each URI using the following 4 access meth-
ods: (1) by querying its dereferenceable URI, (2) by querying its RDF/XML file,
(3) by querying its N3 file, and (4) by querying DBpedia’s SPARQL endpoint.

Fig. 5 depicts a boxplot of the results. We notice that in all cases the average
query time is in the scale of milliseconds. Specifically, the average time is: 654 ms
when querying the dereferenceable URIs (and the mean 636 ms), 335 ms when
accessing the RDF/XML files (and the mean 297 ms), 323 ms when accessing the
N3 files (and the mean 293 ms), and 305 ms when querying DBpedia’s endpoint
(and the mean 288 ms). We notice that querying the RDF/XML or N3 files has
almost the same performance as querying the endpoint (the difference is only
a few milliseconds), although querying the endpoint does not require checking
the URI content type as well as reading and loading the corresponding RDF
triples (since the query is directly evaluated by the remote endpoint and the
result is returned). Moreover, we see that querying the dereferenceable URIs is
more costly compared to the other approaches. This is maybe due to the fact
that DBpedia first checks the value of the ACCEPT request property for returning
the URI contents in the RDF/XML format (and not in HTML).

DEREF.URI RDFXML N3 ENDPOINT

50
0

10
00

15
00

Access Method

T
im

e 
(m

s)

Fig. 5: Query execution time for several access methods.

We should stress here that the results are highly affected by the network
status at the time of query execution and by the status of the server hosting
the remote resource. This is evident by noticing the several outlier cases in the
boxplot. For example, for the case of N3 files, although the query execution time



Querying the Web of Data with SPARQL-LD 9

was about 300 ms for the majority of URIs, some of them required more that one
second. By inspecting the contents of these URIs, we noticed that their number
of triples does not differ compared to the average case, thus either the network
or the remote server (DBpedia’s server) is responsible for this delay.

We also examined the time required by the main subtasks of query execution,
specifically: (a) the time to check if the URI given to the service operator
corresponds to an endpoint, (b) the time to get the URI content type (in case it
is not an endpoint), and (c) the time to fetch and load the RDF statements that
correspond to the given URI (in case it is not an endpoint). Fig. 6 depicts the
results. The average time is 194 ms for (a) (and the mean 160 ms) and 174 ms
for (b) (and the mean 146 ms). Here also we notice some outliers due to network
delay. As regards (c), the average time is 289 ms (and the mean 283 ms) for
the case of dereferenceable URIs, 148 ms (and the mean 121 ms) for the case of
RDF/XML, and 138 ms (and the mean 118 ms) for the case of N3. We notice
that accessing the N3 files is slightly more efficient. This can be justified by the
fact that the N3 format is more compact and smaller in size than RDF/XML.

isEndpoint contentType

0
50

0
10

00
15

00

T
im

e 
(m

s)

DEREF.URI RDFXML N3

20
0

60
0

10
00

14
00

Access Method

T
im

e 
(m

s)

Fig. 6: Left: Time for (a) checking if the URI corresponds to a SPARQL endpoint,
and (b) checking the URI content type. Right: Time for (c) fetching and loading the
RDF statements corresponding to the given URI using different access methods.

5.2 Accessing Very Large Web Resources

We ran experiments for testing the case of accessing very large Web resources,
i.e., resources containing a big number of RDF triples. We created four N3 files
using real data coming from DBpedia. Specifically, we downloaded the triples
of the English titles from the canonicalized 2014 dataset (single file containing
about 11 millions triples). From this file, we created four files of 104, 105, 106,
and 107 triples respectively, and we uploaded them in a Web accessible server.
For each URI, we submitted a query that requests the properties of a particular
resource (that exists in all files as subject in the triple).

Table 1 depicts the results. We notice that the total query execution time is
less than 1 sec in the case of 104 triples, while for 1m triples the time is about 30
secs. For bigger files, the time can be in the scale of minutes. However, we should
stress here that, usually, the online RDF files are not very big in size because
large files cannot be easily handled/exchanged. For instance, DBpedia publishes



10 Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas

one file (of small size) for each named-entity. As regards the main subtasks of
query execution, we notice that, as expected, fetching and loading the triples is
the most time consuming task.

Table 1: Querying large online N3 files.

Num of triples Total Query Time Is endpoint Get content type Fetch triples

104 900 ms 318 ms 7 ms 449 ms

105 3.2 sec 1,3 sec 8 ms 1.8 sec

106 31 sec 11 sec 8 ms 19 sec

107 546 sec 111 sec 51 ms 433 sec

5.3 Effect of Optimizations

We run experiments with and without the proposed optimizations. As regards
the first optimization (index of known endpoints), the expected speedup depends
on the number of SERVICE calls to endpoints that exist in the index. As regards
the second optimization (caching of fetched datasets), the expected speedup de-
pends on both the number of SERVICE calls to already-fetched resources and on
the size (number of triples) of these resources. The queries used in this eval-
uation are available at http://users.ics.forth.gr/~fafalios/sparql-ld/

Eval.zip. We run each query 3 times and here we report the average values.
Regarding the first optimization, we run experiments for different number of

calls to “known” remote endpoints. Table 2 shows the speedup for each case.
The speedup is calculated as the query execution time when the optimization is
not applied divided by the optimized time. We notice that, using the proposed
optimization method, the query execution time can be significantly improved (in
our experiments, it is from 1.6 to 3.9 times faster).

Table 2: Effect of first optimization (index of known endpoints).

Query
Num of calls to

indexed endpoints
Time without Opt. Time with Opt. Speedup

Q1 10 3.5 sec 1.8 sec 1.9×
Q2 102 27.2 sec 16.5 sec 1.6×
Q3 103 9.6 min 2.5 min 3.9×
Q4 104 44.8 min 24 min 1.9×

As regards the second optimization, we run experiments for different number
of calls to already-fetched resources and for different number of triples in these
resources. Table 3 shows the results. As expected, this optimization can highly
improve the efficiency of query execution (in our experiments, it is from 1.2 to
24.6 times faster), while it also reduces the transfer of data between local server
and remote sources.

6 Conclusion

We have presented SPARQL-LD, a generalization of SPARQL 1.1 Federated Query
that allows to directly fetch and query RDF data from any HTTP Web source.



Querying the Web of Data with SPARQL-LD 11

Table 3: Effect of second optimization (caching of fetched datasets)

Query
Num of calls to
cached datasets

Num of
triples

Time without
Opt.

Time with
Opt.

Speedup

Q5 16 103 11.9 sec 1.4 sec 8.5×
Q6 16 104 72.9 sec 5.7 sec 12.7×
Q7 16 105 10.3 min 39.8 sec 15.5×
Q8 10 102 11.8 sec 9.6 sec 1.2×
Q9 102 102 35.9 sec 10.7 sec 3.4×
Q10 103 102 4.8 min 11.6 sec 24.6×

Using SPARQL-LD one can exploit and combine in the same SPARQL query:
i) data stored in the (local) repository, ii) data coming from online RDF or
JSON-LD files, iii) data embedded in Web pages as RDFa, iv) data coming from
dereferenceable URIs, v) data that is dynamically created by Web Services, and
vi) data coming by querying other SPARQL endpoints. A distinctive charac-
teristic of this extension is that it enables to also query datasets coming from
the partial results of a query (i.e., discovered at query execution time). We also
identified factors that can affect the efficiency of SPARQL-LD and we proposed
optimizations that manipulate such cases.

The functionality offered by SPARQL-LD motivates Web publishers to follow
the Linked Data principles and expose their data in RDF without needing to set
up and maintain a costly SPARQL endpoint. For instance, a museum can enrich
its Web page with RDFa, or just put online a RDF dump, and thereby make its
data directly accessible via SPARQL.

The conducted experiments showed that, as expected, the time for querying
the triples of online RDF resources highly depends on the number of triples
existing in the resource, on the status of the network between the local server
and the remote server hosting the resource, and on the status of the remote server
itself. Nevertheless, we saw that for common Web resources of normal size (less
than 104 triples), and without using any caching method, the total query time is
very low. We also saw that the performance of querying RDF/XML or N3 files
is almost the same as querying an endpoint. Finally, as regards the proposed
optimizations, experimental results showed that they can highly improve the
query execution time. For instance, in our experiments, using a request-scope
cache of fetched datasets, the execution time of a query reduced from about 5
minutes to only 12 seconds.

In future, we will study query planning approaches and more optimization
and caching techniques appropriate for SPARQL-LD.

Acknowledgements. This project / work has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme under the
BlueBRIDGE project (Grant agreement No 675680).

References

1. A JSON-based Serialization for Linked Data. http://www.w3.org/TR/json-ld/.
2. Apache Jena. http://jena.apache.org/.



12 Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas

3. RDFa Core 1.1. http://www.w3.org/TR/2015/REC-rdfa-core-20150317/.
4. SPARQL 1.1 Query Language (W3C). http://www.w3.org/TR/sparql11-query/.
5. SPARQL Federat. Query. http://www.w3.org/TR/sparql11-federated-query/.
6. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data-The Story So Far. Interna-

tional Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.
7. C. Buil-Aranda, M. Arenas, O. Corcho, and A. Polleres. Federating queries in

SPARQL 1.1: Syntax, semantics and evaluation. Web Semantics: Science, Services
and Agents on the World Wide Web, 18(1), 2013.

8. C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL Web-
Querying Infrastructure: Ready for Action? In ISWC 2013. Springer, 2013.

9. P. Fafalios, M. Baritakis, and Y. Tzitzikas. Exploiting Linked Data for Open
and Configurable Named Entity Extraction. International Journal on Artificial
Intelligence Tools, 24(02), 2015.

10. P. Fafalios and Y. Tzitzikas. SPARQL-LD: A SPARQL Extension for Fetching and
Querying Linked Data. In The Semantic Web–ISWC 2015 (Posters & Demonstra-
tions Track), Bethlehem, Pennsylvania, USA, 2015.

11. O. Hartig. SPARQL for a Web of Linked Data: Semantics and Computability. In
9th ISWC. Springer-Verlag, 2012.

12. O. Hartig and J. Pérez. LDQL: A Query Language for the Web of Linked Data.
In The Semantic Web-ISWC 2015, pages 73–91. Springer, 2015.

13. B. Haslhofer, E. Momeni Roochi, B. Schandl, and S. Zander. Europeana RDF
store report. 2011.

14. A. Hogan, A. Harth, J. Umbrich, S. Kinsella, A. Polleres, and S. Decker. Searching
and Browsing Linked Data with SWSE: The Semantic Web Search Engine. Web
Semantics: Science, Services and Agents on the World Wide Web, 9(4), 2011.

15. A. Isaac and B. Haslhofer. Europeana linked open data–data. europeana. eu.
Semantic Web, 4(3):291–297, 2013.

16. K. Kjernsmo. A survey of HTTP caching implementations on the open Semantic
Web. In The Semantic Web. Latest Advances and New Domains. Springer, 2015.

17. A. Langegger, W. Wöß, and M. Blöchl. A Semantic Web Middleware for Virtual
Data Integration on the Web. In 5th ESWC. Springer-Verlag, 2008.

18. M. Martin, J. Unbehauen, and S. Auer. Improving the performance of semantic
web applications with SPARQL query caching. In The Semantic Web: Research
and Applications, pages 304–318. Springer, 2010.

19. D. Miranker, R. Depena, H. Jung, J. Sequeda, and C. Reyna. Diamond: A SPARQL
query engine, for linked data based on the rete match. AImWD 2012, 2012.

20. G. Montoya, M.-E. Vidal, and M. Acosta. A Heuristic-Based Approach for Plan-
ning Federated SPARQL Queries. COLD, 905, 2012.

21. M. Papadakis and Y. Tzitzikas. Answering keyword queries through cached sub-
queries in best match retrieval models. Journal of Intelligent Information Systems,
44(1):67–106, 2015.

22. J. Purday. Think culture: Europeana. eu from concept to construction. The Elec-
tronic Library, 27(6):919–937, 2009.

23. B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL.
In 5th ESWC. Springer, 2008.

24. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization
techniques for federated query processing on Linked Data. In The Semantic Web–
ISWC 2011. Springer, 2011.

25. Y. Tzitzikas, C. Alloca, C. Bekiari, Y. Marketakis, P. Fafalios, M. Doerr, N. Mi-
nadakis, T. Patkos, and L. Candela. Integrating Heterogeneous and Distributed
Information about Marine Species through a Top Level Ontology. In MTSR, 2013.




