Journal article Open Access

Dispersive coupling between light and a rare-earth-ion–doped mechanical resonator

Klaus Mølmer; Yann Le Coq; Signe Seidelin


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/164424</identifier>
  <creators>
    <creator>
      <creatorName>Klaus Mølmer</creatorName>
      <affiliation>Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark</affiliation>
    </creator>
    <creator>
      <creatorName>Yann Le Coq</creatorName>
      <affiliation>LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 Avenue de l'Observatoire, 75014 Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Signe Seidelin</creatorName>
      <affiliation>Univ. Grenoble Alpes, CNRS, Inst. NEEL, F-38000 Grenoble, France  and Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dispersive coupling between light and a rare-earth-ion–doped mechanical resonator</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>Nano-scale technology, optics, rare-earth doped crystals, optomechanics, nano-resonators, strain-coupling</subject>
    <subject>Rare-earth</subject>
    <subject>Quantum Technologies</subject>
    <subject>NanOQTech</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-11-02</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/164424</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1103/PhysRevA.94.053804</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecfunded</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/nanoqtech-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;By spectrally hole burning an inhomogeneously broadened ensemble of ions while applying a controlled&lt;br&gt;
perturbation, one can obtain spectral holes that are functionalized for maximum sensitivity to different&lt;br&gt;
perturbations. We propose to use such hole-burned structures for the dispersive optical interaction with&lt;br&gt;
rare-earth-ion dopants whose frequencies are sensitive to crystal strain due to the bending motion of a crystal&lt;br&gt;
cantilever. A quantitative analysis shows that good optical sensitivity to the bending motion is obtained if a&lt;br&gt;
magnetic-field gradient is applied across the crystal during hole burning and that the resulting optomechanical&lt;br&gt;
coupling strength is sufficient for observing quantum features such as zero-point vibrations.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/712721/">712721</awardNumber>
      <awardTitle>Nanoscale Systems for Optical Quantum Technologies</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
90
64
views
downloads
Views 90
Downloads 64
Data volume 53.4 MB
Unique views 86
Unique downloads 62

Share

Cite as