
A distributed cross-layer monitoring system
based on QoS metrics models

Damianos Metallidis, Kyriakos Kritikos,
Chrysostomos Zeginis, and Dimitris Plexousakis

ICS-FORTH, Greece
{metal, kritikos, zegchris, dp}@ics.forth.gr

Abstract. Monitoring of business process workflows based on metric
quality models is associated to a gap between the definitions of work-
flow, service and infrastructure layer quality metrics. Most monitoring
frameworks rely only on a layer-specific quality model, covering, e.g., the
service layer, without considering the cross-layer dependencies it might
have with quality models in the rest of the layers. The novelty of this
paper closes the gap between the different functional layers by defining a
cross-layer dependency model indicating relationships of quality aspects
from three different semantic quality models. Each of these three quality
models define metrics, metric aggregations and computations for each
of the separate layers. These quality models are being addressed by a
continuously, yet evolving distributed monitoring system.

Keywords: quality models, cross-layer dependencies, quality metrics,
semantics, computation, monitoring, aggregation

1 Introduction

In order to implement cross-organisational workflows and to realise collabora-
tions between small and medium enterprises (SMEs) the use of Web service
technology and Service-oriented Architecture (SOA) has become a necessity.
Whilst, SMEs are continuously moving towards service-oriented infrastructures
where applications are being modeled, the need of hosting them has raised an
important issue for the quality of the underlying Cloud infrastructures. Virtu-
alization, provided by cloud infrastructures, delegates the use of any kind of
resources, such as computing environments or storage systems, to the data cen-
ter’s internal networks. All of the above issues raised the need for monitoring of
the quality of the acquired resources and of the services offered to final users as
also the workfload-based procedures used by SMEs in order to use services.

We address those aspects by specifying Quality Models (QMs) that a mon-
itoring system could adopt so as to gather monitoring data taken from three
different layers: (a) Workflow, (b) Service and (c) Infrastructure layer. State-
of-the-art research is based mostly on individual layers without considering the
cross-layer dependencies [17] that Quality Models (QM) might have. This leads



us to propose layer-specific QMs along with a cross-layer QM catering for depen-
dencies among layers. Intention of QMs is the specification of quality terms (e.g.,
quality attributes) as well as of the respective relationships between these terms.
In order to specify the legitimate structure of a QM, the respective conceptual-
isations and all possible types of quality term/concept relationships, a Quality
Meta-Model (QMM) [14] should be in place. In this paper we use OWL-Q [14]
as a semantic SQMM able to define semantic QMs. While different QMMs have
been proposed using different representation formalisms, ontologies seem to be
the best formalism as they provide a formal, syntactic and semantic description
model of concepts, properties and dependencies between concepts. Moreover,
they are extensible, human-understandable and machine-interpretable and en-
able reasoning via using Semantic Web technologies.

Fig. 1. Quality Models terms and cross-layer dependencies

Catering for the workflow-based usage of a service as well as the infrastructure
that supports software components realizing part of the workflow functionality,
we take into account three main QMs: (a) the workflow QM (WM) stressing
quality terms related to tasks and workflows, (b) the service QM (SM) indicating
quality terms for assessing the quality of services, and (c) the infrastructure QM
(IM) encompassing quality terms suitable for the assessment of the quality of
the underlying cloud infrastructure. Additionally, we have defined cross-layer
relationships between quality metrics defined in the three QMs, in a sense that
a metric defined in layer X can be used for the calculation of a metric defined in
layer Y . Figure 1 depicts the quality models and terms that have been defined
along with the cross-layer connection dependencies between them, indicating
relations between quality metrics.

We are heavily focused on WM quality metrics, in a manner such that a
possible user of any complicated workflow (we address this by an example of a
multi-structure workflow, see section 3.1) is able to evaluate results of procedures
that include benchmarking and conformance tests based on the aforementioned
aspects. Following this direction we will be able to deliver Workflow Monitor
as a Service (WMaaS) in any Workflow as a Service (WfaaS) procedure. The
definitions of the quality terms that are being proposed will help SMEs to give



performance and reliability grades on their business workflows, standardizing
the way that the workflows are going to be evaluated.

The rest of the paper is structured as follows. In Section 2 we review the
related work, while in Section 3 we represent the four QMs. In Section 4 we
demonstrate the architecture of our monitoring system, whilst Section 5 provides
conclusions and future work directions.

2 Related Work

As already mentioned, there are many layer-specific approaches for QMs. For
instance, approaches in [12] and [7] are based on stochastic models and proba-
bilistic theory having as a major concern the scalability of the Cloud resources
based on quality metric results. Several approaches have been proposed cap-
turing infrastructure QMs with focus on Cloud resources. Authors in [4] define
QMs which support the evaluation of public Cloud services; the validation of
these QMs is performed according to empirical case studies without taking into
account the relations that WM, IM and SM can have between them. Precise def-
initions of scalability and elasticity are given in [5] and [11], spanning mostly the
service and infrastructure layers; our work on the other hand defines scalability
and elasticity metric dependencies between those two layers and does not cope
with them in isolation.

In [6] a layer-specific extensive WM is proposed for the specification of work-
flow QoS, as well as methods to analyze and monitor QoS. In [10], the authors
introduce the hypothesis that reliability of workflows can be notably improved
by advocating scientists to preserve a minimal set of information that is es-
sential to assist the interpretations of these workflows and hence improve their
reproducibility and reusability, but with no user constraints taken into account.

A very interesting platform-independent solution has been proposed in [8]
in order to support reconfiguration in service-oriented distributed soft real-time
systems, in favor of time-bounded operations. As the main focus is on real-time
monitoring and reconfiguration, the fact that the services might be a functional
piece of a workflow has not been taken into account. This paper mainly involves
service-oriented applications, which could help in the possible re-organization of
the services themselves in order to function properly.

Finally, state-of-the-art research provides some approaches towards cross-
layer monitoring. Kazhamiakin et al. [13] define appropriate mechanisms and
techniques to address monitoring in an integrated cross-layer framework. In [9]
the authors present an integrated approach for monitoring and adapting multi-
layered SBAs. The approach coprises four main steps: 1) monitoring and correla-
tion, 2) analysis of adaptation needs, 3) identification of multi-layer adaptation
strategies and 4) adaptation enactment. Finally, in our previous work [17] we
propose a monitoring framework for Multi-Cloud SBAs, that is able to perform
cross-layer (Cloud and SOA) monitoring enabling concerted adaptation actions.



3 Definition of Quality Models

Quality dimensions cover an important aspect [14] of QMs involving dimension-
specific attributes that can be measured by one or more dimension-specific met-
rics. Calculation formulas, quality metrics and particular types of metric rela-
tionships are defined in a formal way to formulate the structure of the respective
layer. To achieve this, we have as initial guide quality dimensions/attributes,
that assist in finding candidate metrics at a lower layer which could be con-
nected/mapped to metrics at the higher layers. To produce suitable and com-
plete QMs, which can be easily exploited by cross-layer monitoring systems, the
quality terms included in them should satisfy the properties of measurability,
validity and definition formalization [16]. Before we continue with the definition
of the QMs to be used by a cross-layer monitoring system [17], we should also
mention that these QMs rely on characteristics, stated in [15] (using OWL-Q),
that each of the quality metrics should have.

3.1 Workflow Quality Model (WM)

We have defined a QM for the workflow layer, which contains workflow and task
metrics as advocated in [6]. It also explicates how task measurements can be
propagated to the level of workflow to produce the respective measurements of
workflow metrics through metric aggregations. The proposed QM comprises the
quality dimensions of time and reliability.

Time quality dimension of time is a fundamental aspect of performance that
describes the time needed in order to measure, execute, record, respond and
traverse through operations.

Concerning the Workflow level we have defined metrics of Workflow Process
Time (WPT), which is calculated by the addition of the Workflow Execution
Time (WET) and Workflow Delay Time (WDT) over all tasks along with the
Workflow Transition Delay Time (WTDT) from one task to another. In ad-
dition, we have defined Overall Workflow Execution Time (OWET) indicating
the overall execution time spent when executing all tasks in the workflow being
independent from the workflow structure.

Calculation of Workflow Execution Time To assist in the calculation of
WET we have defined a composite metric called sub-WorkflowExecution (sub-
WE) which represents the execution time of a workflows sub-structure/sub-
element. Possible values of the sub − WE metric depend on the type of the
respective sub-structure. A sub-structure could be any sequential or parallel
structure within a workflow (we neglect conditional ones as they are being pos-
sessed at run-time). In the case of a sequential structure, the respective sub-WE
metric is computed from the addition of Task Execution Time TExT, defined
as the amount of time spent to perform the task by any entity (e.g., a human-
based or software component), and sub-WE values mapping to the contents of
this structure (i.e., tasks and internal sub-structures), respectively. In case of a
parallel structure, the sub-WE metric depends on the max execution time value
over the path branches included in this structure.



Fig. 2. BPMN Workflow indicating sub-WE elements

A new sub-WE is defined in three main situations: (a) For the single global/outer
structure of the workflow which is equal to the workflow’s WET (S 1 in Fig.2),
(b) When next step in the workflow is a parallel structure and (c) when next step
in the workflow is a sequential structure. A sub-WE is going to be computed
once it’s component values/measurements are available i.e., the encompassing
sub-WE and TExT metrics.

Figure 2 depicts a nice and slightly complex BPMN workflow model which
can reflect the reality and is mainly used to explicate the computation proce-
dure for workflow metrics. This model includes eight sequential structures, two
parallel structures, and a conditional structure. S symbol represents any kind
of structure in the BPMN diagram. Below we represent the formulation of our
algorithm along with an example following that procedure.

Metrics for the Calculation of the WET Calculation Formulas

Workflow Execution Time(WET) sub-WE1

sub-WEi Sequential Element Case:
TExT1 + + TExTN +
sub-WE2 + + sub-WEK

Parallel Element Case:
max(sub-WE2,...,sub-WEK ,
TExT1,...,TExTN )

Table 1. Formulas for the calculation of WET.

In Table 1, i indicates a number between 1 and K, where K is the number
of sub-structures which maps to sub-WE metrics and N is the number of tasks
which maps to the TExT metrics.

As shown in Table 1, we rely on a procedure which leads to the production
of a simple computation formula. This formula is recursively broken down into
additional components, so as to compute the WET metric of a specific workflow.



To compute each of the sub-WE metrics we have the convention that sub-WE1

represents the execution time spent in structure S1, sub-WE2 represents the ex-
ecution time spent in structure S2 and so on. Spanning workflow tasks, TExT1

represents the execution time spent in Task1, TExT2 represents the execution
time spent in Task2 and so on. Thus, following the above rules and Table 1
formulations, WET equals to sub-WE1, sub-WE1 equals to the addition of sub-
WE2, sub-WE3 and sub-WE10. Sub-WE2 equals to the addition of TExT1 and
TExT2. Sub-WE3 equals to the max(sub-WE4,sub-WE5, sub-WE6). Same cal-
culations are done for the remaining numbers of the substructures in order to
get the right values. The calculation procedure of WTDT and WDT metrics is
similar to WET .

Reliability quality dimension corresponds to the likelihood that a component
(e.g., workflow, task, service) will not malfunction or fail. We have defined the
following workflow metrics:

– Workflow Fidelity (WF): It measures the satisfaction of the workflow in-
stances over the user quality requirements, within a specific time period.
Thus, we can measure WF by applying the values of workflow metric mea-
surements (mapping to the specified period of time) to a utility function
which depends on users requirements.

Additionally we define the following task metrics:

– Task Fidelity (TF): It computes how well tasks instances meet user require-
ments (at the task level) within a specific time period by utilizing similar
functions with respect to the case of WF.

Workflow and Task metrics Calculation Formulas

Workflow Fidelity(WF) fWF (hist, reqs)

fWF (hist, reqs) (sat(meas1,reqs)+...+sat(measA,reqs))
A

sat (measi, reqs) if reqs.lowThreshold ≤ measi.value
∧ measi.value ≤ reqs.upperThreshold
return 1; else return 0;

Task Fidelity(TF) fTF (hist, reqs)

fTF (hist, reqs) (sat(meas1,reqs)+...+sat(measB ,reqs))
B

Table 2. Calculation formulas of Workflow and Task metrics.

In Table 2, we define the Workflow Fidelity formula. This formula maps to the
function fWF (hist, reqs), which takes as input two parameters. The first param-
eter is a set of metrics along with their measured values, mapping to the inter-
ested time interval; while the second parameter represents the user requirements.
A measurement is composed of a metric, a value and a timestamp, whilst each
user requirement represents a threshold being applied over a specific metric. This



function has a body, which computes the mean satisfaction level of user require-
ments over the considered measurements represented by a value in the range [0.0,
1.0]. The satisfaction level for each measurement is computed from the sat func-
tion which initially selects those user requirements which map to the respective
metric of the measurement and then performs the comparison of the measure-
ment value against the user requirement low and upper bound/thresholds. If the
metric measurement is within these thresholds, the output is 1; otherwise, it is
equal to 0. In the case of tasks, we independently calculate their reliability in
the context of a particular workflow, by considering a specific time interval and
similar calculation functions to the workflow fidelity.

3.2 Service Quality Model (SM)

We have defined a SM based on metrics that assesses the quality of the respec-
tive service. Quality of a service maps to the quality that a requester perceives
when using this service based on Service Level Objectives (SLOs) but also to
the internal quality of this service which maps to the capturing of the service
provider view. We can rely on performance metrics, indicating the performance
of a web service; on stability metrics that are related to the service reliability
and availability.

The performance dimension refers to the velocity of a service responding
to any service request. It can be described by metrics that refer to the quality
attribute of Response Time, such as (a) Request Completion Time, which depicts
the time point that all the data mapping to a response arrive at the user, (b)
Execution Time indicating the the time taken for the service to execute a single
request and (c) Delay Time defining the delay time of the software component
in order to start processing the request.

Stability quality dimension indicates the ability to provide reliable, contin-
uous, consistent and recoverable services despite undesired situations like in-
creased load, congestion, system failure and natural disasters. This quality di-
mension has the following quality attributes:

– Availability : We define availability as the ratio of time in which a service
is expected to function properly. We have to stress that we do not consider
networking issues as these are related to service accessibility. Service clients
or third-parties assess the availability of services based on the uptime status
(as conceived by these entities which could also be related to network issues
that cannot be easily detected). Thus, we have defined the metrics of Down
Time which is the total time that the service is not available and the metric
of Availability indicating the external availability of the service as being
viewed by external services. Availability equals to 1 − DownTime

TotalT ime , where
TotalT ime is the total observation time.

– Reliability : The reliability quality attribute measures how reliable is the ser-
vice reffering to the fact of having the least possible number of failures and
the largest possible amount of time between them, according to user con-
straints. Metrics of this attribute are Mean Time To Failure (MTTF), Mean



Time Between Failures (MTBF) and Fidelity as also being defined in WM,
but being adapted for the notion of SM.

By relying on [11], service scalability is defined as the ability of a service to
scale and satisfy the agreed SLOs, when additional workload is received. The
metrics defined for realizing service scalability are the Scaling Utilization metric
which assesses the percentage of time a service exploits more or less resources
than needed and Scaling Precision (%) which computes the percentage of time
where the scaling of a service process was successful and according to the agreed
SLOs, by dividing the number of successful scaling actions by the total number
of scaling actions.

For the QM of Service layer we have defined the elasticity quality dimension
as the degree at which a service system can autonomously scale the amount of
service instances based on workload fluctuations to still conform to the SLOs
agreed. A service’s elasticity can be computed by the metrics of Mean Time
Taken to React (MTTrct) and PerfScaleFactor. Metric of MTTrct is defined
as the mean time of reaction from the moment the need of scaling is detected
until the respective scaling is completed, which is derived from the metric of
Reaction Time indicating the raw time that the reaction takes. In addition,
PerfScaleFactor is the scale factor of the performance between two invocations
of the same service before and after the scaling has been performed; equals to∑N

i=1 perfscalefactori
N , where perfscalefactori is the scale factor of i metric and N

is the number of metrics being considered.

3.3 Infrastructure Quality Model (IM)

At the infrastructure layer we use four quality attributes defined in [4], as de-
picted in Figure 1 and define the corresponding metrics. Mainly Network as a
Service (NaaS), Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) is the reference point of most of the quality metrics defined.

Networking quality attribute characterizes the quality of a data center‘s (DC)
network. In order to assess internally the network performance, we cover the DC
operator and the SaaS provider. Both care about the DC network performance
(e.g., an application execution may involve invoking different components situ-
ated in different DC VMs). We define the respective metrics of (a) Mean Packet
Loss Frequency (lost packets/min) indicating the mean rate of lost packets that
failed to arrive at their destination, (b) Max Connection Error Rate which defines
the maximum rate at which connection errors occurs and (c) Packet Transfer
Time indicating the mean packet transfer time from/to its source/destination
accordingly.

Quality attribute of CPU Utilization depicts the level at which processors are
leveraged within a cloud infrastructure in favour of a client. Thus, we have define
the metrics of (a) Arrival Rate (transactions/ms) indicating the workload that is
arriving at the CPU in certain point of time (b) Shared Physical CPUs indicating
the number of different VMs function on each of the CPUs (c) Network shared
Physical CPUs which is the number of different VMs that the physical CPU is



being used of but between different network clusters (d) Virtual CPUs indicating
the number of virtual CPUs that are being served by each of the physical CPUs
and scheduled by the according hypervisor (e) CPU Average Load (%) which
indicates the average CPU load for a processor, (f) CPU Overall Maximum Load
(%) which indicates the overall maximum CPU Load being monitored which is
further calculated by the metric of (f1) CPU Maximum Load(%) indicating the
peak load of the CPU within a specific period of reference. Similar metrics are
being defined in case of CPU Minimum Load.

PaaS/IaaS Scalability quality attribute is defined [11] as the ability of the
underlying infrastructure to sustain increasing workloads by making use of ad-
ditional resources, that are directly requested, including all the hardware and
virtualization layers. Based on [5], we define Scalability Range (ScR) as the abil-
ity of handling maximum workload that can still be handled by the underlying
infrastructure to still satisfy the corresponding SLOs.

To support the notion of elasticity we are also based on [11], where it is defined
as the degree to which a Cloud infrastructure can adapt on workload changes by
provisioning and deprovisioning resources in an autonomic manner, such that at
each time point the available resources match the user requirements, as much as
possible. In addition, we rely on precision [11] to define elasticity metrics which
is the absolute deviation of the according amount of allocated resources from the
actual resource demand. Based on the aforementioned aspects of elasticity, we
use the metrics of (a) Precision of scaling out/scaling in (PO,PI) and (b) Mean
Time To Quality Repair (MTTQR) from [11] and [5], respectively.

3.4 Cross-Layer Dependency Quality Model

To formalize relationships between quality metrics across the three layer-specific
QMs, we have considered an initial set of cross-layer dependencies in the form
of a dependency quality model. These dependencies indicate (a) that the com-
putation of a metric on layer X can be used on layer X+1 to complete the
computation of a relevant metric and (b) the waxing dependencies that might
exists between different layer metrics. Relevance could map to either both metrics
belonging to the same quality dimension, or being described by similar quality
attributes. Via the cross-layer dependencies (Figure 1), the metric aggregation
formulas and the fact that raw quality metrics with no dependencies can be
calculated by sensors placed by the distributed monitoring system on one of the
respective layers, the measurability of all metrics defined is guaranteed.

We have separated the cross-layer dependencies between the metrics by con-
sidering groups of adjacent layer-specific QMs:

– For the SM and WM group the following dependencies have been captured:
• Task execution time of a service task in a workflow can be computed from

the execution time of the service used to realise this task’s functionality.
• A service task’s fidelity equals the fidelity of the service realising its

functionality, when correspondence between task and service component
is valid.



• Metric of Task Delay Time defined in WM can be used in order to derive
the value of the Delay Time of a service component defined in SM .

– Next group of dependencies derived are from the SM and IM QMs:
• Mean Time to Quality Repair defined in IM has an equality reference

to SM for the MTTrct defined in elasticity dimension. Thus, if we are
referring to the same re-actions due to workload changes, then we can
derive MTTrct of SM by mapping the workload changes to actions that
had an impact on the scalability of the service.

• There is an increasing trend that relates Scaling Utilization defined in
SM and Scaling Range defined in IM . When utilization of scaling is
high it gives us the sign that the underlying infrastructure is capable of
handling scaling actions in high rates, meaning that the scaling range
has also an increasing value making them waxing dependent values.

• Regarding CPU utilization defined in IM we can infer that is a waxing
dependent value with response time defined in SM . CPU utilization is
increased if the overheads associated with context switching are being
minimized and happen infrequently, thus large values of CPU Average
Load for the according process context. This will have as a result the
increase of the execution time for the according services.

4 Architecture of the Cross-Layer Monitoring System

Fig. 3. Physical architecture of the Cross-Layer Monitoring System

As Figure 3 shows, Virtual Machines (VMs) in Public Cloud 1 include mon-
itoring sensors, metric calculation aggregators and database instances. There
is more than one user VMs that compromise the IaaS and SaaS aggregators
with the according sensors being deployed. Information being retrieved from
the aforementioned user VMs is passed on the WF Engine VM through a pub-
lish/subscribe mechanism. The rationale of having only one VM that the WF



Engine is established on, is that a certain Workflow Engine is responsible for the
business processes for each of the public clouds. Thus, by passing information to
the Workflow VM we compute and store values of metrics related to VMs of the
according Cloud. The role of the WF Engine VM is not only to to have a WF
Engine aggregator, but also a Cloud-dependent aggregator that is responsible
for (a) aggregation of metric values based on the cross-layer dependency QM
and (b) the measurement propagation to the user VMs in order to fulfill missing
cross-layer dependencies that might exist on the according user VMs.

The next step is to pass the metric dependency data, through the pub-
lish/subscribe mechanism, on our private infrastructure. Then, we store and
relate metric measurements being published from different public clouds based
on the QMs that we have defined. Thus, by inter-correlating metric measure-
ments and forcing the propagation of them across public clouds we are fully
aware of the functional aspect of the according services.

Monitoring tools which are being used in order to implement and extend [17]
the functionality of the system are the monitoring tools of Prometheus [3] for
SM , Nagios monitoring tool [2] for IM and the monitoring capabilities of Ac-
tiviti [1] in case of WM . The provisioning process of the VMs in each of the
public clouds sectors are out of the scope of this paper, nevertheless having a
major impact on the performance of PaaS in IM .

5 Conclusions and Future Work

In this paper we have demonstrated three metric quality models along with a
fourth one indicating the cross-layer dependencies and relations between quality
metrics of the three QMs of WM , SM and IM . QMs that have been proposed
are being covered by defining quality terms describing each of the layer’s metric
composability. To address that, we have created computation formulas that can
be used to assign values on cross-layer depended-metrics, that could not been
calculated unless dependencies are not defined. As for future work, we are in the
process of extending the distributed monitoring system framework [17] in order
to realize the support for the QMs proposed. Furthermore, we are going to enrich
our QMs and our dependency model, so as to consider additional aspects (like
security) mapping to the consideration of new domain-independent metrics.We
are going to consider metrics in order to: (a) better validate the approach ac-
cording to a specific use case; (b) highlight that the current structuring of the
QMs is appropriate/suitable.

6 Acknowledgments

This work is supported by (a) CloudSocket project1 that has been funded within
the European Commissions H2020 Program under contract number 644690 and
(b) PaaSage2 (FP7-317715) EU project.

1 http://www.cloudsocket.eu
2 http://www.paasage.eu



References

1. Activiti workflow engine. http://activiti.org/.
2. Nagios monitoring tool. https://www.nagios.org/.
3. Promitheus monitoring tool. https://prometheus.io/.
4. Amid Khatibi Bardsiri and Seyyed Mohsen Hashemi. Qos metrics for cloud com-

puting services evaluation. International Journal of Intelligent Systems and Ap-
plications, pages 27–33, 2014.

5. Matthias Becker, Sebastian Lehrig, and Steffen Becker. Systematically deriving
quality metrics for cloud computing systems. In Lizy K. John, Connie U. Smith,
Kai Sachs, and Catalina M. Llad, editors, ICPE, pages 169–174. ACM, 2015.

6. Jorge Cardoso, John Miller, Amit Sheth, and Jonathan Arnold. Modeling quality
of service for workflows and web service processes. October 2002.

7. Jorge Cardoso, Amit Sheth, and John Miller. Workflow Quality Of Service. Tech-
nical report, LSDIS Lab, Computer Science, Universtity of Georgia, Athens GA,
USA, LSDIS Lab, Computer Science, Universtity of Georgia, Athens GA, USA,
March 2002.

8. Marisol Garca-Valls, Iago Rodrguez Lopez, and Laura Fernndez-Villar. iland: An
enhanced middleware for real-time reconfiguration of service oriented distributed
real-time systems. IEEE Trans. Industrial Informatics, 9(1):228–236, 2013.

9. Sam Guinea, Gabor Kecskemeti, Annapaola Marconi, and Branimir Wetzstein.
Multi-layered monitoring and adaptation. In ICSOC, volume 7084 of Lecture Notes
in Computer Science, pages 359–373. Springer, 2011.

10. Jos Manul Gmez-Prez, Esteban Garca-Cuesta, Jun Zhao, Aleix Garrido, and
Jos Enrique Ruiz. How reliable is your workflow: Monitoring decay in scholarly
publications. In Alexander Garca Castro, Christoph Lange, Phillip W. Lord, and
Robert Stevens, editors, SePublica, volume 994 of CEUR Workshop Proceedings,
pages 75–86. CEUR-WS.org, 2013.

11. Nikolas Roman Herbst, Samuel Kounev, and Ralf H. Reussner. Elasticity in cloud
computing: What it is, and what it is not. In Jeffrey O. Kephart, Calton Pu, and
Xiaoyun Zhu, editors, ICAC, pages 23–27. USENIX Association, 2013.

12. K. P. Joshi, A. Joshi, and Y. Yesha. Managing the quality of virtualized services.
In 2011 Annual SRII Global Conference, pages 300–307, March 2011.

13. Raman Kazhamiakin, Marco Pistore, and Asli Zengin. Cross-layer adaptation
and monitoring of service-based applications. volume 6275 of Lecture Notes in
Computer Science, pages 325–334, 2009.

14. Kyriakos Kritikos, Barbara Pernici, Pierluigi Plebani, Cinzia Cappiello, Marco
Comuzzi, Salima Benbernou, Ivona Brandic, Attila Kertsz, Michael Parkin, and
Manuel Carro. A survey on service quality description. ACM Comput. Surv.,
46(1):1, 2013.

15. Kyriakos Kritikos and Dimitris Plexousakis. Requirements for qos-based web ser-
vice description and discovery. IEEE Trans. Services Computing, 2(4):320–337,
2009.

16. N. F. Schneidewind. Methodology for validating software metrics. IEEE Transac-
tions on Software Engineering, 18(5):410–422, 1992.

17. Chrysostomos Zeginis, Kyriakos Kritikos, Panagiotis Garefalakis, Konstantina
Konsolaki, Kostas Magoutis, and Dimitris Plexousakis. Towards cross-layer mon-
itoring of multi-cloud service-based applications. In Service-Oriented and Cloud
Computing - Second European Conference, ESOCC 2013, Málaga, Spain, Septem-
ber 11-13, 2013. Proceedings, pages 188–195, 2013.


