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ABSTRACT

This work seeks to advance quantitative methods for biomolecular design, especially for predicting biomolecular
interactions, via a focused series of community blind prediction challenges. Physical methods for predicting binding
free energies, or “free energy methods”, are poised to dramatically reshape early stage drug discovery, and are
already finding applications in pharmaceutical lead optimization. However, performance is unreliable, the domain
of applicability is limited, and failures in pharmaceutical applications are often hard to understand and fix. On the
other hand, these methods can now typically predict a variety of simple physical properties such as solvation free
energies or relative solubilities, though there is still clear room for improvement in accuracy. In recent years, blind
prediction challenges have played a key role in driving innovations in prediction of physical properties and binding,
especially in the form of the SAMPL series of challenges. Here, we will continue and extend SAMPL prediction
challenges to include new physical properties, more complicated host-guest binding data, and application to
biomolecular systems. Carefully selected systems and novel experimental data will provide challenges of gradually
increasing complexity spanning between systems which are now tractable to those which are marginally out of
reach of today’s methods but still slightly simpler than those covered by the Drug Design Data Resource (D3R)
series of challenges on existing pharmaceutical data. We will work with D3R to run blind challenges on the data
we generate and to ensure it is designed to maximally benefit the field.
In Aim 1, we will collect new measurements on partitioning, distribution, and protonation of drug-like compounds,
in collaboration with partners in the pharmaceutical industry. In Aim 2, we leverage our expertise in host-guest
binding to generate new data on host-guest binding in cucubiturils and deep cavity cavitands. And in Aim 3, we
use high-throughput robotic experiments to generate new protein-ligand binding data of biological relevance. Aim

4 focuses on using this data to run blind SAMPL challenges, motivating the community to test, understand, and
improve these methods. We will also run reference calculations with the latest techniques.
This work will ensure the continued success of SAMPL challenges which have already driven considerable
innovation in the field and been the focus of more than 90 different publications (each typically cited 5-50 times)
since their inception around 2007, and will play a key role in driving the next several generations of improvements in
computational techniques for molecular design. The research proposed here will lead to significant improvements
in the predictive power of physical models for drug discovery, molecular design and the prediction of physical
properties.



SPECIFIC AIMS

While computational techniques are currently widely used in pharmaceutical drug discovery, current generation
technologies (such as docking) are unsuitable for true molecular design. Specifically, these techniques fail to to
predict small molecule binding affinities to target and antitarget biomolecules with sufficient accuracy for the variety
of applications currently of interest. Computational screening techniques can do better than random selection of
compounds, but they lack the accuracy to guide molecular design or optimization. A new generation of physical
techniques, alchemical free energy calculations, are poised to fill this void by providing a quantitative, predictive
tool that can be used in multiple stages of the drug discovery pipeline, including lead optimization to improve
affinity and selectivity or the retention of potency as other physical properties are optimized.
Recent success of alchemical methods in predicting accurate affinities has sparked considerable enthusiasm, but
the domain of applicability of these techniques is currently highly limited; broad application and routine use will
require further evaluation, refinement, and development. There is a vast gulf between targets within the domain of
applicability and those which are outside it. Bridging this gulf to expand the domain will require focused study of
carefully selected systems of intermediate complexity. Without such a bridge, these techniques may encounter the
same problems faced by docking and related techniques: routine failure without clear insights into why, and years
to decades spent making small methodological modifications without dramatic improvements in predictive power.
We propose to collected targeted experimental datasets, use them to conduct blind prediction challenges, and
release curated benchmark sets in a manner designed to drive expansion of the domain of applicability and
improvements to physical modeling techniques. The data we generate will provide a spectrum of difficulty between
systems tractable with current methodologies to the pharmaceutically-relevant drug targets featured in the NIH-
funded D3R effort, which fields blind challenges using protein-ligand datasets from pharma. Our systematic set of
challenges aims to rapidly advance free energy techniques to the point of standard application in drug design.
At the same time, the data we collect will play a long lasting role in the community, going through a life cycle of
collection, curation, blind challenges, and then public dissemination to serve as benchmark sets and standard
reference data, and to drive construction of new and improved models. While our work here focuses primarily on
generating new targeted data for a series of blind SAMPL (“Statistical Assessment of Modeling of Proteins and
Ligands”) challenges and running those challenges, we also plan for subsequent data dissemination. Here, we will:
Aim 1. Collect new physical property datasets to assess accuracy and spur improvements in force fields

and modeling of protonation states and tautomers.

We will develop new solution-phase datasets for druglike small molecules. These data can test critical aspects of
small molecule modeling (including accounting for interactions and treatment of protonation/tautomeric state) and
improve our ability to predict physical properties relevant to drug discovery in new regions of chemical space. We
will initially focus on aqueous/nonpolar distribution coefficients and pKa measurements, advancing to solubilities
and membrane permeabilities, while using these data to drive improvements in the modeling of ligand interactions.
Aim 2. Measure affinities of drug-like compounds in supramolecular hosts to challenge quantitative mod-

els of binding in systems not plagued by major receptor sampling issues.

We will measure new host-guest binding free energies (using cucurbiturils and deep-cavity cavitands as hosts) to
field binding challenges with varying complexity between physical property prediction and protein-ligand binding.
Host guest systems are some of the simplest cases of molecular recognition, and thus these binding data will
drive improvements in modeling of simple binding systems with techniques of relevance to drug discovery.
Aim 3. Develop model protein-ligand systems that isolate specific modeling challenges of drug targets.

We will identify suitable biological protein-ligand model systems that isolate individual modeling challenges (selected
to push the limits of physical techniques) and develop these for blind challenges based on new protein-ligand
affinity measurements. While the initial year will feature fragment binding to human serum albumin, subsequent
challenge systems will be selected using a novel informatics platform to focus on timely modeling issues.
Aim 4. Field community blind challenges to advance quantitative biomolecular design.

The data collected in Aims 1–3 will drive annual SAMPL blind challenges, allowing the field to test the latest
methods and force fields to assess progress, compare them against one another head-to-head, and perform
sensitivity analysis to learn how much different factors (protonation state, tautomer selection, solvent model, force
field, sampling method, etc.) affect predictive power. Results will then feed back into improved treatment of these
factors for subsequent challenges, driving regular cycles of application, learning, and advancement.
Overall, the data generated here and the cycles of tests in SAMPL challenges will guide new innovations in physical
methods for predicting binding and physical properties, providing a foundation for the next several generations of
computational methods for pharmaceutical drug discovery.



SIGNIFICANCE
Physical modeling is poised to transform drug discovery and chemical biology by enabling true molecular
design. While modeling is used extensively in drug discovery, its main role at present is to aid with idea generation
or filter large libraries of compounds for screening. Instead, we imagine using computational techniques extensively
to guide the design process. Consider a medicinal chemist in the not-too-distant future who has just finished
synthesizing several new derivatives of an existing inhibitor, and has obtained binding affinity or potency data
against the desired biomolecular target. Before leaving work, she generates ideas for perhaps 100 new compounds
which could be synthesized next, setting her computer to work overnight. By morning, the idea compounds have
been prioritized based on reliable predictions of their affinity for the desired target, selectivity against antitargets,
solubility, and membrane permeability. The chemist looks through the predicted properties for the top few
compounds, selecting some for synthesis. If synthesizing and testing each compound takes several days, this
workflow compresses roughly a year’s work into a few days.
While this workflow is not yet a reality, significant strides have been made toward accurate binding affinities [97–
104], solubilities [105–107], selectivity and drug resistance [108], and membrane permeability [109, 110]. A
considerable amount of science and engineering still remains to make this vision a reality. Given recent progress,
the question now seems more one of when rather than whether.
Widespread availability of inexpensive graphics processing units (GPUs) provides a 100-fold increase in price-to-
performance ratio over CPUs, while advances in automation [111] and sampling protocols have helped simulation-
based techniques reach the point where they now begin to be genuinely useful in guiding drug discovery for
a limited domain of applicability [100–104, 112, 113]. Specifically, in some situations, free energy calculations
appear to be capable of achieving RMS errors of 1–2 kcal/mol with current force fields, even in prospective
applications, sufficient to drastically reduce the number of molecules that must be synthesized and assayed [114].
As a consequence, pharmaceutical companies are beginning to use these methods in active discovery projects.
Despite progress, current physical modeling methodologies suffer from severe limitations hindering their
widespread use in molecular design. For example, even “small” protein conformational changes not gracefully
handled by current methodologies can yield errors up to 5 kcal/mol in calculated binding free energies [115],
force field limitations still pose major challenges [116], and the inability to treat important chemical effects like
protonation and tautomer equilibria drastically limits the domain of applicability. For many pharmaceutically
relevant systems, the most important sources of error—and modeling challenges—are not yet clear.
Progress on addressing these challenges has been frustratingly slow, hindered by a lack of high-quality data and
community focus. Neither retrospective tests nor prospective application in discovery projects provides
the necessary impetus and data to rapidly overcome remaining barriers to widespread utility. Large-scale
retrospective tests can assess retrospective performance, but they do not provide accurate guidance on utility
for prospective design, nor do they effectively identify the most important sources of error. Retrospective tests
can also easily result in over-fitting, where researchers apply a variety of protocols until apparently significant
results are obtained by chance [117]. In retrospective tests, performance may also not be indicative of expected
performance in applications because even well-meaning researchers can take advantage of prior knowledge. For
example, if the binding mode of a ligand is already known crystallographically, a researcher may use that binding
mode in retrospective tests, whereas prospective or design work would require first selecting among candidate
binding modes, introducing substantial uncertainty unaccounted for in the retrospective statistics [97, 118, 119].
This also means that in retrospective tests, researchers almost invariably try far fewer methods than in prospective
tests, resulting in much less new insight. Prospective tests, in contrast, force researchers to anticipate a multitude
of potential situations rather than only those observed in a known benchmark dataset. Prospective application in
actual discovery projects, while important, also does not provide the necessary impetus, partly because often, the
predicted compounds are in fact never tested [102] or the experimental data necessary to assess the quality of the
predictions is absent—for example, because binding affinities are not measured or no crystallography is available.
To accelerate progress in quantitative predictive physical modeling, we need a series of community blind
prediction challenges focused on pushing the limits of predictive techniques, providing a bridge between
challenging but tractable problems and pharmacologically relevant but currently intractable problems.
These challenges should be designed to have the necessary high quality experimental data, but also be prospective,
predictive tests. While the Drug Design Data Resource (D3R [120], discussed further below) provides an existing
community blind challenge on protein-ligand binding, it focuses on using pre-existing pharmaceutical datasets,
rather than on measuring new data carefully selected maximize community learning [120]. D3R serves well to
assess where we are now—but we need a carefully-designed effort focused on improving modeling.



Physical modeling accuracy advances most rapidly when progress toward a complex goal can be decom-
posed into resolving a series of tractable problems, as revealed by carefully collected and curated data.
To make rapid progress, our field needs an effort which focuses on specific component problems of the overall
problem of interest, collects and curates data that highlights these problems, and drives progress via prospective
challenges. This process allows the entire community to learn from both methodological success and failure.
The model we propose here has been proven to drive dramatic improvements in modeling, as evidenced by our
Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) series of challenges. SAMPL, born
out of frustration with the lack of venues for comparing predictive accuracy on a level playing field, was initiated by
Anthony Nicholls of OpenEye software in 2007/2008 [121], and has run challenges approximately every two years
since then [122–129]. Governance transitioned to an unfunded academic collaboration during SAMPL3 in 2012;
this collaboration ran subsequent challenges as SAMPL4 (2014) and SAMPL5 (2016). The PI of this proposal
(Mobley) was a primary organizer of SAMPL4/5 (2014–2016). Much as unit testing is an indispensible tool for
discovering where bugs in a program are hiding when complex integration tests fail, exercises like SAMPL are
valuable in pinpointing and correcting modeling errors when the overall performance fails to live up to expectations
for complex pharmacological targets. To accomplish this, SAMPL has historically focused on both simple chal-
lenges that attempt to isolate likely sources of modeling errors, such as physical properties of small molecules
(hydration free energies, aqueous tautomer ratios, partition or distribution coefficients between aqueous and
nonpolar phases) as well as small molecule binding to targets of reduced complexity (such as host-guest binding,
and binding of fragments to trypsin and HIV integrase). SAMPL has already been a tremendous community
resource, resulting in nearly 100 publications which are typically cited 5–50 times or more each [1–96].
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Figure 1. SAMPL historical participation [126].
Historical participation in SAMPL host-guest + sol-
vation/distribution challenges has climbed rapidly,
and we expect this trend to continue. The number
of participating groups is shown in blue, and the
number of submissions in green. The inset shows
the diversity of methods employed for the SAMPL4
hydration challenge, which is typical for SAMPL.

Here, we design a new series of SAMPL challenges specifically to
guide the improvement of models. Until now, this has been impos-
sible, because SAMPL has been entirely unfunded; its very existence
has required “donation” of data and time, giving us no ability to gather
datasets tailored to our purpose. Our proposed new challenges bridge
the gap between calculations of simple physical properties that iso-
late forcefield inaccuracies from sampling challenges, like hydration—
which can already be calculated fairly accurately [126]—and the D3R
Grand Challenges on protein-ligand binding, which are a major source
of consternation for the community so far [120, 130–132]. Unless
this gap is bridged, there is the very real possibility that modeling
may simply continue to fall far short of expectations in pharmaceutical
challenges like D3R for reasons which are unclear. Here, we design
challenges to highlight major reasons for failure and drive progress
towards resolving them.
Our major goal is to rapidly advance predictive modeling to
where it can guide biomolecular design, and extension of the
SAMPL challenges will do exactly that. This work will play a vital
role in enhancing the work being done on existing data by D3R, help-
ing prepare methods for application to the more challenging systems
emerging from pharma in D3R’s challenges.
INNOVATION
Blind predictive challenges—and SAMPL in particular—have already led to important new science on method
development, evaluation, robustness, and force field improvements. However, they have not yet produced dramatic
improvements in predictive molecular design, largely because the challenges posed have not been selected and
staged for optimal impact. Indeed, SAMPL challenges to date have had to be opportunistic, making best use of
measurements that contributing experimentalists were carrying out to advance other scientific goals. A central
goal of this proposal, then, is to maximize the impact of future SAMPL exercises by crafting a series of challenges
specifically designed to test and advance computational methods, and gathering the requisite experimental data.
Several historical examples serve to highlight how SAMPL can foster innovation (though far more examples are
available in our SAMPL bibliography below; see also Figure 3). The first several SAMPL challenges on hydration
free energies had rather hit-and-miss performance, highlighting pitfalls of existing methods and force fields which
led to marked improvements in PB models [122, 133, 134], recognition of some limitations of fixed-charge force
fields [135, 136], repair of some of these force field deficiencies via additional polarization or introduction of off-site
charges [135–137], and helped motivate alternate implicit or hybrid solvent models [138–140]. Shifts in protonation



state and tautomer proved particularly important in the recent SAMPL5 log D challenge [128, 141]. This challenge
provided a tractable opportunity to isolate and explore these specific physical effects, which are so important in
protein-ligand binding, while avoiding the full complexity of pharmaceutical binding studies. Host-guest binding
studies have also been particularly important [142], highlighting the importance of salt effects [129, 142, 143]
and in some cases revealing more severe force field limitations than observed in hydration and distribution
challenges [144, 145], pointing the way forward for improving predictive models of molecular interactions [142, 146].
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Figure 2. Timeline for our activities. Activities covered by this grant include data collection and SAMPL challenges on our three major
components (physical properties, host-guest binding, and protein-ligand binding), with each challenge cycle color-coded separately. Data
collection within each Aim is shown by a colored bar indicating what is measured and curated. Data collection/curation is followed by a
submission window for that challenge component, then all results and analysis are returned to participants and posted on the SAMPL
website; this also will nucleate more detailed long-term discussion on the relevant Slack channel. At this point, we will also release the
data to the public as a high quality benchmark. Each component will then wrap up with a virtual meeting focused on lessons learned and
areas which need further exploration; these will be recorded and posted on our website to assist in rapid dissemination of new insights.
Virtual meetings precede the submission window for the next SAMPL challenge, giving the opportunity to incorporate lessons learned for
the next challenge. Submission windows and virtual meetings are staggered across categories so that participants can be involved in all
three major areas without multiple simultaneous deadlines. In-person meetings are co-hosted with D3R and will occur every two years,
supplemented by effort-wide virtual meetings in between. Special issues of JCAMD will have deadlines shortly after the virtual meeting on
the protein-ligand challenge for that year, and a 4-5 month timeline (based on historical experience) from the submission deadline until
the special issue appears (with the first papers appearing online substantially sooner). Rapid dissemination of insights is critical for rapid
progress, so we highly encourage the use of preprints and informal reports to supplement the special issue.

This work is also innovative because of the uniqueness of SAMPL. While there are other predictive challenges in
the area of biomolecular modeling, such as D3R [120], the pKa cooperative [147], CAPRI [148] and CASP [149],
no other blind challenge focuses specifically on data tailored and collected to drive quantitative protein-
ligand modeling. The SAMPL expansion we propose here is unique in its specific design to drive improvements in
modeling accuracy rather than simply serving an evaluative role. SAMPL benefits the whole modeling community—
for example, protein-ligand docking software has improved as a direct result of SAMPL hydration challenges [150],
and commercial software vendors have introduced new features or scientific improvements based on participation
in SAMPL challenges [141, 151]. In effect, SAMPL serves as an engine to spur innovation by soliciting novel
approaches to complex problems from the community and evaluating their success at predictions.
This work also focuses on innovative experimental methods. Specifically, in Aim 3, we develop a new informatics
platform to facilitate the rapid identification and study of particularly informative protein-ligand systems that are both
experimentally tractable for high-throughput biophysical measurements and focus on specific challenges of interest.
We employ a fully automated wetlab to screen potential model systems for expression, carry out high-accuracy
biophysical measurements, and perform automated error analysis to carefully assess experimental uncertainty.
This work is at the forefront of innovation in high-throughput, automated biophysical experiments to
produce high quality data with well-characterized uncertainties. Not only will the data be of prime importance,
but the techniques themselves will help future experiments.



In Aim 4, in addition to running SAMPL challenges, we will also perform reference calculations to test the accuracy
of current state-of-the-art techniques. Both the Mobley and Chodera labs are experts in development of free
energy methods for application to physical properties (e.g., [126, 152, 153] and binding (e.g., [115, 116, 154]),
and these reference calculations will drive innovation as well, serving several key roles: (1) Benchmarking the
latest method developments against current “best practices” methods (by doing calculations via both approaches);
(2) Facilitating learning, allowing others to compare against our results to determine how a change in method or
force field impacts results; (3) Focusing the field on key issues by doing sensitivity analysis to whether conditions
such as ionic strength, protonation state, tautomer choice, etc., impact computed values.
Careful analysis of challenge predictions and results to identify why models fail and what specific problems need
further attention is a critical and powerful aspect of SAMPL that spurs further innovation. Both organizers and
participants play key roles in this; organizers identify global patterns and provide a venue for participants to
explore these issues, while participants probe failure modes of individual methodologies in greater detail. When
methods differ in performance, it is critical to understand whether the differences are statistically significant and
important, and to provide an accurate accounting of the uncertainty in performance measures. Thus, careful and
innovative analysis of challenge outcomes is particularly important in SAMPL [126, 128, 129], in some cases
driving experimentation with new performance metrics [126].
APPROACH

A B

Figure 3. Lessons learned from SAMPL5 log D predictions.
Predictions of log D values for SAMPL5 provided a number of
key lessons. (A) Methods which treated multiple protonation and
tautomeric states in their predictions performed dramatically better
than those which did not; here, red dots move to x symbols when
these effects are treated, improving accuracy in every case [155].
(B) Re-parameterization of a force field to more accurately re-
produce pure solvent dielectric constants resulted in dramatically
better predictions (top) than the original force field (bottom) [137].

Our approach to systematically advancing modeling for
biomolecular design involves collecting carefully targeted
experimental datasets for challenges focusing on physical
property prediction, host-guest binding, and protein-ligand
binding. These datasets, spanning a spectrum of com-
plexity, help isolate individual limitations in quantitative
physical modeling to encourage and evaluate multiple so-
lutions from the community. Aims 1–3 focus on tailoring
and generating this experimental data, while Aim 4 focuses
on fielding annual SAMPL challenges. Each annual chal-
lenge includes one or more components from each of the
Aims. Aims 1–3 bring together multiple laboratories and
both theorists and experimentalists: graduate students
from the Mobley and Chodera laboratories are paired with
well-equipped experimental groups in industry to collect
physical property data (Aim 1); Gibb and Isaacs, leading
experimentalists in supramolecular chemistry, work with
theorist Mobley to perform host-guest affinity measure-
ments (Aim 2); and the Chodera lab applies new auto-
mated approaches to identify suitable protein-ligand sys-
tems and measure binding (Aim 3). The annual SAMPL
challenges organized by the Mobley and Chodera labs
(Aim 4) will leverage the data of Aims 1-3 (Figure 2) and best practices reference calculations to drive progress.
Aim 1: Collect new physical property datasets to assess accuracy and spur improvements in force fields
and modeling of protonation states and tautomers.
Simple physical properties such as solvation, partitioning, and protonation equilibria can be calculated quite
precisely (but not necessarily accurately) with physical methods, allowing quantitative comparison between
calculations and experiment and revealing and isolating deficiencies in our models. These properties allow us to
directly probe force field accuracy and chemical effects like protonation and tautomer handling in the absence of
slow conformational changes and other effects which complicate assessment in protein-ligand systems.
Rationale: We will generate new solution-phase physical property measurements for drug-like molecules to
motivate improvements in force fields and handling of protonation states and tautomers. This builds on our
work on water-cyclohexane distribution coefficients for SAMPL5 (in partnership with Genentech), which revealed
major issues with handling of protonation states and tautomers [128] as well as serious forcefield limitations [137]
(Figure 3). Distribution coefficients give the equilibrium ratio of concentrations of a solute between aqueous
and nonpolar phases, and thus relate to transfer free energies from aqueous to more protein- or membrane-like
environments. Thus, they capture many of the characteristics of transfer of drugs from water into binding sites but
absent challenges with receptor conformational sampling and specific ligand-receptor interactions. In SAMPL5,



distribution coefficients were challenging enough that many methods performed poorly, with even the best methods
having accuracies less than would be expected based on hydration free energies in water [128], yet failures
were informative and the major sources of error were issues which will also plague prediction of ligand-receptor
interactions. In some respects, distribution coefficients posed the ideal SAMPL challenge, hitting the sweet spot in
terms of difficulty—difficult enough that clear failures were frequent, with ample room for improvement, but not
so difficult that the reasons for failure were unclear in general. Still, many models consistently disagreed with
experiment for some compounds [128, 137, 141, 156], revealing the impact that targeted follow-up experiments
(such as those we will conduct here) could have on improving models.
This new experimental data is critical to maximize impact on the modeling community. While the community
has already benefitted considerably from SAMPL, as indicated by the nearly 100 publications on SAMPL (see
attached list), the citation count, and the growing participation (Figure 1), progress will be greatly accelerated by
the proposed initiative. A funded, coordinated effort allows the targeted collection of datasets designed to focus on
the most important problems. With multiple investigators and collaborators, we are poised to respond and adapt to
new challenges and opportunities which emerge in a manner not previously possible. Additionally, we will be able
to continue experimental work until the necessary data is collected rather than terminating it at a specific time
point dictated by industry internships—allowing us to do things like ensure the full dynamic range of log D values is
covered, unlike in SAMPL5 [128, 156]. This will improve our ability to learn from the data—for example, the lack of
dynamic range for SAMPL5 meant that, when calculated values often spanned a larger dynamic range than the
experimental values, it was unclear if this was an artifact of the data set itself, experimental limitations, or force
field problems [128, 137, 141, 156]. With funding to extend the experimental set via follow-up experiments, we will
be able to resolve similar issues, providing further impetus to improve models.
Below, we summarize plans for data collection for the SAMPL6-10 challenges of Aim 4 (see also Figure 2). These
specific data sets were selected based on a desire to help the field resolve the problems encountered in SAMPL5
then progress to accurate estimation of new properties. Data sets will typically consist of at least 96 compounds
for good statistics, though when possible, a much larger amount of data will be collected.

drug features
memantine adamantane; 1:1
saxagliptin adamantane; 1:1
premarin steroid
pancuronium steroid
varenicline 1:1 vs 1:2
valsartan pKa 4.37
omeprazole pKa 4.77
ranolazine pKa 7.17; epitopes
pradaxa pKa 3.87; epitopes
nilotinib epitopes; pKa 6.3
sensipar epitopes; folding
vyvance diamine; epitopes; folding
minocycline tetracyclin; amino aniline

Table 1. Selected drugs whose binding to
CB[n] hosts will be assayed for SAMPL6, 8,
and 10 challenges (SA 2.1). These drugs bind
to the cucubituril-based host systems consid-
ered here, some at high affinity, so measuring
their affinities provides a way to test methods
for predicting binding interactions absent com-
plexities present in protein-ligand systems.

SAMPL6: Cyclohexane/water and octanol/water distribution coeffi-
cients. Building on the success of distribution coefficient measurements
in SAMPL5 and their surprising ability to motivate rapid advances in
physical modeling methodologies [128], we will measure cyclohexane-
water distribution coefficients at pH 7.4 for a new batch of commercially-
available drug- and fragment-like molecules. Given the routine nature
of octanol-water distribution coefficient measurements and indications
that their prediction may be computationally tractable [153, 157] despite
the heterogeneous structure of the wet octanol phase [158], we will also
measure octanol-water distribution coefficients for the same compounds.
Because pKa prediction was difficult but critical for SAMPL5, we will
focus SAMPL6 on forcefields and tautomers by measuring pKa values,
revisiting pKa prediction in SAMPL7 and 8.
SAMPL7: pKa measurements for drug-like molecules. While much
less complex than protein-ligand affinities, distribution coefficient mea-
surements still conflate the challenging issues of protonation state and
tautomer prediction, as well as transfer into different environments which
may contain small but important quantities of co-solvents. Thus, we will
separate these issues and improve our handling of them one at a time. For SAMPL7, then, we will measure pKa

values for an extensive set of drug-like molecules in water which will serve as the focus of the challenge, paving
the way for SAMPL8.
SAMPL8: pKa measurements and distribution coefficients. In the next challenge, we will jointly explore pKa

and transfer issues, measuring distribution coefficients and pKa values for the same set of compounds, with
participants predicting (a) log D; (b) pKa; and (c) log P. Unlike SAMPL6, pKa values will not be provided.
SAMPL9-10: Solubility prediction and membrane permeability. With solubility predictions now becoming
tractable [105–107] (with Schrödinger also working on amorphous solubility prediction), solubility measurements will
be a valuable test for SAMPL9, combining the solvation aspects of SAMPL1-8 with a new solid phase component.
New computational techniques are targeting membrane permeability [109, 110], and this is experimentally
accessible (see support letters from Pfizer and Merck), leading to our interest in permeability for SAMPL10.



Experimental plan: Experimental data will be collected in collaboration with our pharma partners (see support
letters), roughly following the model used for SAMPL5, where Chodera lab student Bas Rustenburg went to
Genentech to conduct cyclohexane-water log D measurements by adapting a Genentech high-throughput mass
spectrometry workflow [156]. To collect this data, the Mobley and Chodera labs will send graduate students on visits
or internships to industry collaborators to collect targeted datasets. Working with industry collaborators (see Letters
of Collaboration from Genentech, Pfizer, and Merck) gives us substantial access to equipment and high-throughput
measurement workflows—such as the Sirius T3 from Sirius Analytical (which can measure partition/distribution
coefficients, pKas, and solubilities for molecules with titratable groups)—automation equipment, and compound
libraries—for the purposes of rapidly collecting targeted datasets. Our previous experience demonstrates this
model will work [156], and our partners see the value of this data and SAMPL to the modeling community.
Overall, Aim 1 extends prior SAMPL challenges via data focused on quantitative prediction of physical properties
of tremendous relevance to accurately predicting biomolecular interactions, paving the way to applications in more
complex systems addressed in Aims 2 and 3.
Aim 2: Measure affinities of drug-like compounds in supramolecular hosts to challenge quantitative
models of binding in systems not plagued by major receptor sampling issues.

Figure 4. The best host-guest binding predic-
tions of SAMPL3 [159] and SAMPL5 [144]. Bind-
ing free energy predictions have shown clear im-
provements from SAMPL3 to SAMPL5 as the major
challenges become understood and are treated bet-
ter by models, though a systematic offset remains
in the best SAMPL5 predictions (yellow). Dashed
lines denote errors of ±1.5 kcal/mol.

Aim 1 focuses on the behavior of small molecules and its environment-
dependence, in the absence of receptors and the associated potential
for slow sampling, strong specific interactions, and other challenges
such as salt effects. Binding in host-guest systems retains many of
the same challenges seen in Aim 1 and introduces strong specific
interactions and other challenges like salt effects [142], while still
avoiding many of the issues with slow sampling (of protein conforma-
tional changes, ions, and ligand binding modes) seen in protein-ligand
interactions. That is, binding in host-guest systems introduces a wider
variety of challenges relevant to biomolecular interactions, but with-
out the full array of challenges seen in protein-ligand interactions, as
reviewed recently [142]. Thus, new data for SAMPL challenges on
host-guest binding is critical to provide challenges of intermediate com-
plexity between those of physical properties and those in biomolecular
binding. We believe that host-guest binding challenges provide a vital
step towards accurately modeling biomolecular interactions, focusing
the field on issues not commonly encountered in physical property
challenges (such as the importance of accurately modeling ionic con-
ditions) that are highly relevant for protein-ligand interactions. Already,
over the past several SAMPL challenges, host-guest systems have
provided key tests for modeling of binding interactions, resulting in new
attention paid to how co-solvents and ions modulate binding (resulting
in errors of up to 5 kcal/mol when these effects are neglected) and the

importance of adequately sampling water rearrangements [127, 129, 142, 160].
This new attention has resulted in clear improvements as participants begin to treat the relevant effects more
accurately (Figure 4). Host-guest binding proves remarkably difficult to model accurately [161], in part due to force
field limitations (resulting in new force field work [146]).
Here, we design a series of SAMPL challenges focused on two classes of host-guest systems—cucurbiturils
and analogs (SA 2.1) and Gibb’s deep-cavity cavitands (GDCCs, SA 2.2)—both of which build on prior SAMPL
challenges. These two sets of systems exhibit different challenges as recently reviewed [142], with the hosts of 2.1
bringing relatively modest co-solvent and ion effects but some receptor sampling problems for the acyclic hosts,
and the GDCCs of 2.2 bringing profound ion and co-solvent effects as well as water sampling challenges. Methods
which perform well on one class may not perform well on the other [142], since the distinct sets of challenges
highlight different limitations. This diversity drives more innovation than would a focus on a single host class.
Subaim 2.1: Cucurbituril-based receptors as model binding systems
Cucurbituril derivatives for host-guest binding. Building on previous success with cucurbit[n]uril (abbreviated
CB[n]) experiments for SAMPL challenges [162–164], we will conduct a series of new experiments on these
receptors for five new challenges, with experimental work conducted by co-investigator Isaacs, an expert on these
systems who provided data for previous SAMPL challenges. CB[n] receptors are particularly well suited to our



Figure 5. SAMPL6-10 host-guest challenges will feature cucubituril hosts and analogs, including Me4CB[8], glycoluril hexamer,
and acyclic CB[n]-type receptors (SA 2.1). These receptors bind a variety of drug-like molecules, some with high affinity.

goals because they exhibit: (1) high binding affinities toward suitable guests in water comparable to protein-ligand
affinities (routinely µM to nM; occasionally pM to fM) [165–171], (2) high selectivities between structurally related
guests which translate into large ��G values [172], (3) low molecular weights (1–2 kDa) permitting high levels of
theory to be used, and (4) highly restricted conformational degrees of freedom, reducing conformational sampling
challenges often seen in protein-ligand binding. For SAMPL6-10, we will resynthesize a series of CB[n]-type
receptors of increasing complexity, measure Ka values, and determine host-guest stoichiometry and geometry
toward pharmaceutically relevant guests (selected drugs) in order to stringently test methods for predicting binding.
Figure 5 shows the chemical structures of three hosts—Me4CB[8] [173], glycoluril hexamer [174], and acyclic
CB[n]-type receptors [175–180] which span a range in terms of level of preorganization and formal charge.
SAMPL6-10 cucurbituril challenges. For SAMPL6, we will measure Ka and �H values, stoichiometry, and
geometry for the interaction of Me4CB[8] (a soluble CB[8] derivative) with 15 guests (selected top drugs, Table 1)
by either direct or competition isothermal titration calorimetry (ITC), UV/Vis or fluorescence indicator displacement
assay, or NMR competition experiments, as previously [164–166, 181]. Our selection of Me4CB[8] binding to top
drugs allows us to modulate the computational complexity by: 1) changing host flexibility (e.g. Me4CB[8] can
exhibit ellipsoidal deformation) [173], 2) allowing the possibility of binary or ternary (e.g. 1:1 and/or 1:2 host:guest)
complexes [182–184], 3) using drugs with several potential binding epitopes or modes to induce sampling issues.
Host:guest stoichiometry and geometry (e.g., which binding epitope is complexed) will be addressed by ITC n
values, Job plots monitored by UV/Vis or NMR [185], and by 1H NMR complexation induced changes in chemical
shifts [186]. All studies will be conducted in phosphate buffered saline (pH 7.4 with physiological salt) which
introduces its own complexities due to salt competition for binding [142, 187]. SAMPL7 will revisit the same host,
but use 15 different guests be selected from commercial sources on the basis of reference calculations (on a larger
set of guests) to ensure that they cover substantial dynamic range and/or exhibit affinities that depend substantially
on the force field or water model, thus effectively testing our force fields and methods. For SAMPL8, we will focus
on binding of the same 15 drugs (Table 1), but to glycoluril hexamer. This host introduces the complication of
increased conformational dynamics, and influences the number and energy of solvating (and unusually coordinated)
water molecules implicated in the high binding constants for CB[n]-guest complexes [171, 188]. The selected
drugs include several with pKa values in the 3.8 to 7.4 range; given that CB[n]-type receptors (like biomolecular
receptors) can induce pKa shifts in their guests of up to 4 pKa units [189–191], this will test how well models can
predict these effects. Additionally, it will couple nicely with the focus on pKa values in Aim 1. SAMPL9 will revisit
glycouril hexamer with the same 15 guests from SAMPL7. SAMPL10 will shift to acyclic CB[n]-type receptors
(e.g. M1C3, M1C0, and M1PC0 that contain anionic solubilizing groups attached via different linker lengths. As in
SAMPL3 [159], these acyclic CB[n]-type receptors introduce conformational complexity, and water interactions
play a key role. Moreover, the presence of 4 anionic groups near the cavity will likely impact the balance between
ion-dipole interactions and solvation of the free host.
Subaim 2.2. Gibb deep cavity cavitands for host-guest studies
History of GDCC SAMPL challenges. During SAMPL4 [192] and SAMPL5 [193] we focused on two specific
GDCC hosts: the octa-acid 1 (R = H) and another octa-acid variant with four methyl groups at the portal of
the binding pocket (1, R = Me). These studies used isothermal titration calorimetry (ITC) to measure the
thermodynamics of (1) host 1 (R = H) binding a range of 9 carboxylate guests, and (2) the binding of 6 carboxylate



Figure 6. Gibb deep cavity cavitands for the SAMPL6-10 datasets (SA 2.2). These hosts bind a variety of carboxylate and trimethy-
lammonium guests in a strongly salt-dependent manner, providing a stringent test of our ability to model salt-dependent binding.

and trimethylammonium guests to both hosts (1, R = H and Me; Figure 6). In both cases 1H-NMR titration was also
used to confirm ITC-derived free energies of binding. As noted above, co-solvent effects and water rearrangements
posed particular challenges for predicting binding in these hosts. SAMPL5 emphasized how differences in the
shape of the hydrophobic pocket of the host can have a profound effect on affinity for some guests [129].
Novel deep cavity hosts probe the effects of binding site charge constellations. For future GDCC datasets,
we will expand on the range of hosts by including 2 and 3 in our ITC studies (Figure 6). Like cavitand 1, host
2 is an octa-acid derivative. However, the four benzoate groups are relocated from the extreme exterior in the
case of 1, to the rim of the binding pocket in 2. We surmise that this will have a direct effect on the binding of
charged guests as well as an indirect effect on guest complexation via changes to the solvation of the empty
host. Octa-trimethylammonuim cavitand (“positand” 3) has the same overall architecture as host 1, but inverts the
charges on the water solubilizing exterior coat. While it is not yet clear if this switch in groups relatively remote
from the pocket will directly affect guest complexation, results from related systems suggest it can (unpublished).
SAMPL6-10 deep cavity cavitand datasets. Data for SAMPL6 will focus on how well the effect of host carboxylate
substituent location can be predicted, and will involve hosts 1 and 2 with a set of five previously uninvestigated
guests. Guests will be selected from commercial sources on the basis of reference calculations in a similar manner
to SAMPL7 in Subaim 2.1, specifically picking guests which have broad dynamic range and, here, have marked
differences in affinities between hosts. SAMPL7 will provide a second iteration of this experiment to test algorithmic
improvements in predictive modeling following SAMPL6 by comparing hosts 1 and 3 with a different set of guests.
We anticipate that because of the relative remoteness of the charged groups in these two hosts, the effects of
switching charges will be subtler than the differences between 1 and 2. SAMPL8 will consider the effect of common
biologically-relevant counterions/salts on guest binding, comparing the effects of NaCl and NaI on the complexation
of five guests to 1. We have previously shown that iodide has a weak affinity for the binding pocket of 1, while
sodium ions have an affinity for the outer carboxylates [194], requiring modeling to capture the differential affinities
of these ions in addition to guest affinities to successfully model the observed affinities. SAMPL9 will follow up
on this by examining the effects of these same two salts on the complexation of five guests to 3, again giving
the modeling community time to incorporate algorithmic improvements following SAMPL8. While we have not
yet quantified salt affinities to host 3, we expect the iodide to have affinity for both the pocket and the positively
charged solubilizing groups. For SAMPL10 we will consider the effects of co-solvents on the binding of five guests
to 1 and 2 to probe the effect of co-solvent competition for the binding site, as well as effects co-solvents may have
in weakening the hydrophobic effect. While the number of guests considered in each challenge is relatively small,
the total number of binding affinities measured is significant across the full family of hosts, meaning that the full
data set will be of considerable value as a benchmark set [142].
Aim 3: Develop model protein-ligand systems that isolate specific modeling challenges of drug targets.
We seek to drive advances in quantitative modeling of protein-ligand interactions. While D3R [120] benchmarks
accuracy for targets of pharmaceutical interest, it does not provide a clear route to improving poor performance
because the large number complexities exhibited by these targets make it difficult to identify clear points of
failure [120, 130–132]. For example, while kinases are targets of great interest to drug discovery, blind challenges
involving kinase targets conflate issues of slow protein conformational dynamics [195], protonation state effects of
both protein [196] and ligand [197, 198], charged ligands, and the modeling of complex divalent salt environments
and phosphorylation state effects along with the standard challenges of conformational sampling and forcefield
accuracy. Thus D3R exercises serve the community well to understand current accuracy, but blind challenges on
complex pharmaceutical targets have limited ability to rapidly advance quantitative predictive modeling.
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Figure 1. (A) Wild type Human Serum Albumin (HSA) is proposed to be the first target of SAMPL6 challenge with its 
selected set of ligands. Ligand set with wide range of affinities will be constructed by screening small molecule fragment 
libraries. By introducing a mutation to one of the binding pockets, we will create a second challenge target. (B) HSA with 
drug molecules superimposed to their positions in crystal structures with HSA (Figure created by Michelle(Lynn(Hall(et(al.(
2013). [m1] HSA has up to 8 binding sites drug molecules were observed to bind. Green and purple colored ligands 
indicate major drug binding sites Site I (Sudlow’s Site I) and Site II (Sudlow’s Site II), respectively. Dansylamide and 
dansylglycine excibit binding-enhanced fluorescence upon binding to HSA, thus a binding curve can be constructed based 
on increase in fluorescence emission at 480 nm. Dansylamide was shown to bind primarily to Site I (Kd ~ 5 μM) and 
dansylglycine was shown to bind primarily to Site II (Kd ~ 2 μM) [m2] with (C) Binding assay of HSA and Naproxen Sodium 
measured by Isothermal Titration Calorimetry (ITC). Lower figure is enthalpy change vs. Naproxen Sodium to HSA molar 
ratio of each injection. (D) Fluorescence  emission of HSA changing depending on Diclofenac concentration. Inset plot 
shows binding curve constructed of percent tryptophan quenching (at 346 nm) vs. Diclofenac concentration. [m3]. 
Diclofenac is a fluorescent ligand reported to bind Site II [m4]. (E) Direct fluorescence binding assay of Dansylamide 
(fluorescent ligand) and HSA. Binding curve can be constructed based on binding-induced fluorescence emission at 480 
nm."
"
[m1] Hall, Michelle Lynn, William L. Jorgensen, and Lewis Whitehead. “Automated Ligand- and Structure-Based Protocol for"
 in Silico Prediction of Human Serum Albumin Binding.” Journal of Chemical Information and Modeling 53, no. 4 "
(April 22, 2013): 907–22. doi:10.1021/ci3006098."
"
[m2] Muller, N., F. Lapicque, E. Drelon, and P. Netter. “Binding Sites of Fluorescent Probes on Human Serum Albumin.” Journal of 
Pharmacy and Pharmacology 46, no. 4 (1994): 300–304."
"
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Human(and(Bovine(Serum(Albumins:(A(Calorimetric(and(Spectroscopic(Study.”(The$Journal$of$Chemical$Thermodynamics(103((December(2016):(299–
309.(doi:10.1016/j.jct.2016.08.020.(
"
[m4] Ràfols,(Clara,(Sílvia(Zarza,(and(Elisabeth(Bosch.(“Molecular(Interac%ons(between(Some(Non>Steroidal(An%>Inflammatory(Drugs((NSAID׳s)(and(
Bovine((BSA)(or(Human((HSA)(Serum(Albumin(Es%mated(by(Means(of(Isothermal(Titra%on(Calorimetry((ITC)(and(Frontal(Analysis(Capillary(
Electrophoresis((FA/CE).”(Talanta(130((December(2014):(241–50.(doi:10.1016/j.talanta.2014.06.060.(
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Figure 7. The SAMPL6/7 protein-ligand challenge focuses on soluble drug fragment binding to human serum albumin (HSA)
(Aim 3). (A) SAMPL6 will study binding of a library of 96 small soluble druglike fragments to recombinant HSA, with an engineered HSA
mutant used for SAMPL7. (B) HSA has at least eight known binding sites, with two major well-characterized sites (green, Sudlow’s Site I;
purple, Site II) that bind a variety of drugs (figure from [199]). Two fluorescent probes—dansylamide and dansylglycine—bind with ⇠µM
affinity and high selectivity to Site I and Site II, respectively; both exhibit binding-enhanced fluorescence at 480 nm, and can be used to
site-specifically probe ligand affinities by competition. (C, D) Binding affinities of soluble molecules can be measured by isothermal titration
calorimetry (ITC); here, we show the (C) differential power and (D) integrated injection heats for the ITC titration of HSA by naproxen
sodium collected using the Chodera lab automation pipeline; (E) HSA tryptophan fluorescence quenching can also be used to measure
ligand binding affinity; here, HSA titration by diclofenac is shown, with the inset plot showing percent quenching at 346 nm [200, 201].
(F) Direct fluorescence binding assay of Dansylamide (fluorescent ligand) and HSA collected on the Chodera lab automation system. The
binding curve can be constructed based on binding-induced fluorescence emission at 480 nm.

We take the alternative approach of identifying and developing specific protein-ligand systems which
isolate individual accuracy-limiting effects in a series of prospective challenges. By developing model

binding systems—real protein-ligand systems that may be of pharmacological interest, but comprised of single-
domain proteins binding to a simple ligand series free of complex phenomena—we can study systems of complexity
intermediate between completely artificial systems (such as the T4 lysozyme L99A system developed by Shoichet
and Matthews [118, 142, 202]) and complex pharmaceutical targets where multiple modeling challenges make
it difficult to learn from failure (Figure 8A). This process focuses the field on identifying and evaluating multiple
solutions to selected accuracy-limiting effects (such as how to deal with ligand and protein protonation-state
issues [203], slow protein conformational dynamics, etc.) while avoiding other complicating factors.
While model systems have had ample success in driving progress in individual research laboratories, community
participation in blind challenges amplifies their power. For example, SAMPL3 featured the binding of small, rigid
charged molecules to bovine trypsin [204], and rapidly focused the field on the deficiencies of current alchemical
free energy methodologies in treating the binding of charged ligands. Within two years, multiple laboratories had
developed practical solutions to effectively handle charged ligand binding [205–207].
SAMPL6-10 model protein-ligand challenges. We will introduce a new model protein-ligand system each year
(revisiting the prior year’s system if this becomes too difficult), with multiple challenges on each system (Figure 2)
to allow iterative improvement and assessment. Our SAMPL6 data will focus on binding of small soluble drug
fragments to one particular protein (below). However, maximizing gains in this area requires adapting subsequent
challenges based on deficiencies identified by previous D3R/SAMPL challenges. Therefore, subsequent model
systems will be rapidly identified and developed using our new informatics platform (below).
SAMPL6: Assessing predictive modeling of binding to multiple weak sites via measuring fragment bind-
ing to human serum albumin (HSA). HSA, the most abundant blood plasma protein, has a remarkable ability
to bind a great variety of small molecule drugs in multiple binding sites (Figure 7B) [208]. As a result, HSA
not only helps isolate the challenge of multiple weak ligands binding to a stable rigid protein, but it is also a
pharmacologically relevant because of how it drastically modulates drug pharmacokinetics [199]. HSA has at least
eight known binding sites, with numerous crystal structures available for drugs binding to two predominant sites
(Site I and II) [199]. Small soluble molecules resembling drug fragments are highly likely to bind to HSA (�90% of
such fragments, as detected by SPR [209]), providing an experimentally-tractable diverse set of ligands spanning
several orders of magnitude in affinity [209]. As current advanced methodologies such as alchemical free energy
calculations currently assume a single well-defined binding site with high affinity [210], this dataset will allow the



isolation of the effect of weak multiple binding from the majority of other confounding factors in protein-ligand
binding. As HSA is relatively rigid, and computational methods already show some promise in computing binding
affinities to HSA [199, 211, 212], this is an optimal model system for SAMPL6.

Figure 4. Mining model protein:ligand systems to focus on individual modeling challenges via a structural and chemical informatics!
platform. SAMPL7-10 will feature the introduction of new model protein:ligand systems designed to focus on individual challenges judged to be 
of critical immediate importance following current D3R/SAMPL blind competitions. (A) Since most protein targets of pharmaceutical interest 
feature a multitude of conflated challenges to quantitative accuracy, our goal is to identify model protein targets that isolate individual effects to 
focus community efforts by fielding new blind challenges. Some example protein:ligand pairs and the conceptual challenge categories they fall 
under are shown in the figure: T4 Lysozyme L99A [m5], HSA [m6], Carbonic anhydrase II (CAII) [m6, m7], Cytochrome C Peroxidase [m8], 
Cytochrome P450 BM3 M11 (CYP450 BM3) [m9], HIV-1 Reverse Transcriptase(HIV-1 RT) [m10, m11], Streptavidin [m10], Tet repressor protein 
(TetR) [m10, m12] (B) In order to rapidly develop new experimentally and computationally-tractable model protein:ligand systems, we have 
developed a structural and chemical informatics system that applies successive filters to the set of all potential protein:ligand systems for which 
structural data is available. Suitable model systems should meet all experimental tractability criteria (green box) and only possess a few of 
challenging properties, ideally only one (blue box).!
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Figure 8. Mining model protein-ligand systems to focus on
individual modeling challenges via a structural and chemical in-
formatics platform (Aim 3). We are developing a structural and
chemical informatics system called TargetExplorer [https://github.
com/choderalab/targetexplorer] that applies successive filters to
all potential protein-ligand systems for which structural data is avail-
able. Suitable model systems should meet all experimental tractability
criteria (green box) and possess only a few challenging properties,
ideally only one (blue box). Tractability of experimental affinity mea-
surements includes properties like known ligands with potentially
fluorescent scaffolds (for fluorescence competition assays), highly
soluble ligands (for ITC), or ligands above a minimal mass (for SPR
or MST). Additional filters annotate experimentally tractable systems
with their potential computational challenges, including charged lig-
ands or potential ligand protonation state or tautomer effects [213]
(deduced from predicted aqueous protonation/tautomer energies);
potential protein protonation state effects (deduced from MCCE2
calculations [214]); protein conformational changes (deduced from
variation in protein conformation or the presence of unresolved loops
in protein-ligand crystal structures); the presence of post-translational
modifications that may affect affinity (deduced from Uniprot anno-
tations); coordinated metals (identified in crystal structures); and
ordered waters (present in multiple crystal structures).

Recombinant HSA will be expressed in E. coli and pu-
rified via refolding from inclusion bodies [215], then
defatted at low pH [216] to ensure the resulting protein
is free of the glycosylation and bound fatty acids found
in plasma-isolated HSA [216]. Recombinant expression
will also allow a mutant form of HSA (engineered via
single-primer mutagenesis) to be fielded for SAMPL7
(Figure 7). We will obtain a diverse library of 96 solu-
ble drug-fragment-like molecules in pre-plated format
as dry compound, and use our automated isothermal
titration calorimetry (ITC) pipeline (Figure 7C,D) to char-
acterize overall binding affinities to HSA. The same lig-
ands pre-plated in DMSO format will be used to conduct
a separate set of fluorescence titration assays (moni-
toring tryptophan fluorescence quenching, Figure 7D)
and competition assays with site-specific fluorescent
probes (Figure 7B) to resolve site-specific affinities to
Sites I and II. We will field several levels of challenges,
including challenges focused on affinities to Sites I and
II, as well as challenges focused on predicting overall
affinity and stoichiometry.
SAMPL7-10: Rapid development of new tailored
model systems using a novel informatics platform.
We are developing a novel informatics platform aimed
at identifying protein targets that can be rapidly devel-
oped into experimentally- and computationally-tractable
model systems focusing on individual challenges (Fig-
ure 8). This tool filters all known protein targets with
structural data available in the PDB, first selecting for
experimental tractability, then annotating experimentally
tractable targets to determine which targets possess (or
are likely to be free of) specific challenges for physical
modeling. This will allow us to select systems which
introduce only specific modeling challenges.
The Chodera lab has developed an automated wetlab to
facilitate the development of such model protein-ligand
systems using bacterial expression (see Equipment
and Facilities). Potential targets matching desired challenge criteria will be screened for bacterial expression
using high-throughput cloning, transformation, and expression testing, with purity and yield assessed by capillary
electrophoresis on a Caliper GXII. Targets will be screened for stability in various buffers using Thermofluor thermal
shift assays [217]. Ligands identified via TargetExplorer as spanning a wide dynamic range of binding affinities will
be purchased as dry powder stocks and prepared for assay by highly accurate gravimetric solution preparation
techniques using a Quantos automated balance. Our lab has access to a wide variety of biophysical techniques
for quantitative measurement of protein-ligand binding affinities, including fluorescence (if fluorescent probe
ligands are available), absorption (e.g. Soret band shifts), automated isothermal titration calorimetry (provided
ligands are sufficiently soluble), surface plasmon resonance, microscale thermophoresis (MST), luminescence,
and alphascreen; all except MST are fully automated.
We take a twofold approach to developing challenge datasets: First, we will purchase and assay small molecules
similar to known ligands, presuming that these molecules are likely to have measurable affinities. Second, using
single-primer quick-change mutagenesis, we will introduce site-directed mutants to modulate the binding affinities
of known ligands. This can be performed and screened for expression in 96-well format. Thus, datasets will consist
of a matrix of protein mutants and ligands, providing opportunity to deeply explore the effects of interest.

https://github.com/choderalab/targetexplorer
https://github.com/choderalab/targetexplorer


Aim 4: Field community blind challenges to advance quantitative biomolecular design. The value of the tar-
geted datasets generated in Aims 1–3 will be amplified enormously by the strategic release of this data through
iterative, coordinated SAMPL blind challenges (Figure 2). These blind challenges are designed to test the state of
the art, provoke new methodological and force field innovations, allow comparative evaluation of methods, and
drive downstream improvements. The new, progressive, targeted nature of the data generated means that SAMPL
challenges will now build on one another, and for success in later challenges, participants must build on lessons
learned from prior challenges. SAMPL challenges and subsequent data release activities will therefore facilitate
rapid cycles of application, learning, and improvement. Each iteration will likely yield its own incremental benefits
(e.g.. as in Figure 3) for molecular design, in addition to contributing to progress towards our larger goals.
SAMPL blind challenges. Challenges will have yearly submission deadlines and involve roughly the same size
data sets as prior challenges. The full timeline for SAMPL challenges (Figure 2) will be made available on the
website [https://drugdesigndata.org/about/sampl] at the outset, allowing participants to plan their work and
select what challenges to be involved in. As experimental data for each component becomes available and
is curated, input files and challenge details will be made available at least six months prior to the challenge
deadline; data not yet available at that time will be held for a subsequent challenge (with the exception of three
months for year 1 due to startup timescales). As in prior SAMPLs, submissions will be handled by a web upload
service on the SAMPL website (which will be migrated to separate hosting if the D3R effort is not renewed) which
validates submissions to ensure that they meet format standards we specify along with the challenge details.
As in SAMPL4 and SAMPL5, analysis will also be conducted by our automated Python framework, and results
returned automatically online. All participant submissions and methodology descriptions will (as before) be made
available publicly on the website, along with participant information (except for participants who specifically request
to remain anonymous prior to submission). Aggregate statistics and historical performance will also be made
available on our website, along with a record linking publications to historical submissions.
Our goal is not just to run blind challenges, but to advance modeling by helping participants identify both
modeling failures and potential solutions. To achieve this, we provide guidance to participants as to what
known modeling issues we expect may be relevant when providing details on each SAMPL component. For a
host-guest system, for example, we might highlight known buffer/salt effects, protonation state challenges, and point
out previous work on sampling challenges, with pointers to the relevant experimental work and to modeling work
from past SAMPL challenges and elsewhere [142]. This helps participants design their approach. Additionally,
we will run reference calculations using current best practices. This serves several purposes: It provides a
test of the current methods and force fields we select; it helps facilitate learning—we announce what calculations
we plan to perform, make input files available in a wide variety of formats [128, 129, 218], and others can repeat
our calculations with a different method but same system and force field to compare methods, or swap force field
but keep the method and system fixed to compare force fields, etc.; and it allows us to conduct sensitivity analysis,
as by varying the conditions of our simulations (protonation state, tautomer, etc., [128]) we can see how much this
impacts calculated values and thereby how important it is, even if participants don’t do these tests. Reference
calculations have, for example, helped us highlight the importance of a small amount of water in cyclohexane for
accurately calculating log D values, show how an incorrect tautomer could affect calculated values by many log
units [128], and discover that small forcefield modifications could significantly improve results on hydration free
energies [126]. To further aid follow-up studies, we will make the input files, results, and simulation workflows used
for our reference calculations—along with the data—available via GitHub and Docker Hub.
Physical methods are only valuable if they can reliably outperform alternate methods, so a new focus of SAMPL6-
10 will be selecting quality null models and running them to provide a point of comparison for participants,
going far beyond previous SAMPL nulls [127, 128, 137]).
Following submission and analysis of each SAMPL challenge, challenge results will be released and discussed,
with SAMPL workshops allowing more formal presentations on and discussion of results in years 1, 3, and 5.
Workshops will run every two years at the request of past participants, and will be co-run and co-hosted with
D3R Grand Challenge workshops (see support letter). During the off years, SAMPL challenges will still run, but
discussion of and dissemination of results will be via asynchronous means (as discussed below) and a “virtual
workshop” consisting of talks and interaction over Google Hangouts or YouTube Live. While coordination with D3R
will mostly be at the level of workshops, we will also ensure that SAMPL challenge submission deadlines are offset
from D3R deadlines to allow maximum community participation in both efforts. If the D3R effort is not renewed
beyond its current funding cycle, we will run SAMPL workshops independently, controlling costs via the model we
use for our Workshops on Free Energy Methods in Drug Design—specifically, most participants will pay their own
way to the workshop, and we will seek pharmaceutical and software industry sponsorships to defray costs.

https://drugdesigndata.org/about/sampl


Dissemination of results and data. Rapid dissemination of results is critical so that new insights can be used in
subsequent challenges. We will continue to publish special issues of the Journal of Computer Aided Molecular

Design (JCAMD) collecting publications related to each year’s SAMPL challenges (see Letter of Support). To ensure
immediate availability of reports, we will strongly encourage prepublication sharing of results and analysis, including
both slides and posters from SAMPL meetings (via F1000 Research) and paper preprints (via bioRxiv). We also
want to ensure that participants learn from one another by rapid exchange of ideas outside of formal workshops
and meetings. While this has happened in the past—for example, when participants using similar methods work
together after the SAMPL meeting to identify the origin of these discrepancies [129, 142, 160, 219, 220]—we
hope to accelerate this kind of collaboration. To facilitate more open communication between the community, we
will use collaboration software—such as Slack, which facilitates scientific communication for the NASA/JPL Mars
Rover teams and NSF antarctic scientific research teams—to build a community discussion platform, facilitating a
process of learning from one another more rapidly than normal publication channels.
Each dataset will have a life cycle of collection, curation, blind challenges, and public dissemination. In
the past, the unfunded nature of SAMPL has forced us to primarily emphasize the blind challenges and pre-
challenge curation aspects, with isolated forays into collection [156, 204]. This work now considers the full life
cycle, with Aims 1–3 dealing primarily with collection and pre-challenge curation. Post-challenge, datasets will
receive additional curation, then be released as standard test or benchmark sets that allow retrospective evaluation
of methodologies on high-quality data [142]. The FreeSolv dataset, for example, includes a large number of
calculated and experimental hydration free energies from SAMPL0–4, and provides a standard benchmark dataset
for hydration free energy calculations [221]. Post-challenge curation will receive new attention here; in the past,
lack of resources has always prevented follow-up experimental work, even when the data clearly indicated it was
warranted (such as the puzzling issues with dynamic range for log D values in SAMPL5 [128, 156]). The requested
budget will allow follow up experiments motivated by computation when warranted. Dissemination is the final stage
in the data life cycle (see Resource Sharing Plan); we will make the data (including primary data, processed data,
and our analysis of challenge submissions) available freely and publicly with permanent, citeable DOIs; ensure
relevant data is deposited in standard community repositories (e.g. BindingDB [222]); and guarantee data longevity
via backup hosting on library archival facilities (such as the UC’s DASH (https://dash.cdlib.org/)).
We will also push for containerization of tools and methods in conjunction with other efforts such as AutoDesk’s
Molecular Design Toolkit and the NSF Molecular Sciences (MolSci) initiative. Our vision is that long-term, instead
of participants submitting a set of predictions, they would also submit the entire workflow they applied via Docker
containers allowing reproducibility and repurposing, ensuring dissemination workflows, not just results.
COLLABORATION MANAGEMENT PLAN
We have a strong previous history of successful collaboration, with Mobley and Chodera having co-authored
roughly a dozen publications and organized several workshops and other initiatives. Mobley, Isaacs, and Gibb have
also worked together to coordinate past SAMPL challenges, and Mobley and Gibb a previous NSF workshop. PI
Mobley will oversee the project, with teams for the other aims (Aim 1: Mobley & Chodera; Aim 2.1: Isaacs; Aim 2.2:
Gibb; Aim 3: Chodera; Aim 4: Mobley & Chodera) involving the other co-investigators as needed. Meetings
will consist of a monthly Google Hangout and a yearly in-person planning meeting. Chodera and Mobley will
communicate more frequently due to the interlinked nature of their work. Publications are expected to be largely
dictated by the overall Timeline, with an experimental publication associated with each challenge component being
prepared for distribution to participants along with their results. Conflict resolution is expected to be straightforward,
but if any serious difficulties arise, Michael Gilson (UCSD) will arbitrate given our close connections with D3R.
OUTLOOK
Physical methods have been slow to achieve their promise in binding prediction, in part because truly significant
innovations are so hard to recognize due to a lack of standard tests and benchmarks, and in part because of
an “applications first” approach which seems to plague our community where we rush to apply our methods to
problems of pharmaceutical relevance without ensuring they can tackle simpler, better-understood problems first.
Here, we propose an innovative extension of the successful series of SAMPL blind challenges, generating novel
experimental data to drive improvement of the methods in our field and help them become pharmaceutically
relevant – beginning with relatively simple physical property prediction and progressing to challenging problems in
biomolecular recognition via a series of carefully designed intermediate steps. SAMPL already has a strong track
record of success, and funding will ensure dramatically increased impact and continued success. The proposed
series of carefully tailored challenges will focus our community on a variety of problems which we can realistically
resolve in the near term, resulting in dramatic improvements in computational molecular design.
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