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Abstract
Density transition (or shock-front) injection is a technique to obtain high quality electron beams
in laser wakefield acceleration. This technique, which requires no additional laser pulse, is easy
to implement and is receiving increasing interest. In addition to its performances, its setup
realized with a blade inserted in a gas jet allows a certain flexibility in controlling the density
transition shape, whose effects on the beam quality have been studied theoretically and
experimentally. We report the results of particle-in-cell simulations where the laser energy is
systematically varied for different shapes of the density transition. Our study shows how the
laser energy affects the injection process, increasing the injected charge and influencing the other
beam characteristics (e.g. energy and duration).
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(Some figures may appear in colour only in the online journal)

1. Introduction

Laser wakefield acceleration (LWFA) [1–3] of electron beams
produced in underdense plasmas represents a novel technol-
ogy for compact sources of high quality electron beams,
whose accelerating gradients exceeded by orders of magni-
tude those of conventional particle accelerators [4–7].
Applications for advanced radiation sources like free electron
lasers (FEL) require high current, low energy spread and low
emittance electron beams [8, 9]. Thus, the strong dependence
of the final electron beam quality on the method used to inject
them in the laser wakefield has motivated the investigation of
injection techniques leading to increasingly higher beam
qualities [3]. Particularly promising are the injection techni-
ques involving tailoring of the plasma density profile [10–14].
In these techniques, the reduction of the wake phase velocity
in a density downramp triggers injection of plasma electrons
which move faster than the plasma wave [10].

In [12, 13], the injection of electrons through a sharp
density transition (often called also shock-front) was reported,
and the simple setup (a blade inserted in a gas jet) used to

manipulate the plasma density profile allowed to change the
transition characteristics and thus the injected beam para-
meters. Such a technique can also be coupled to ionization
injection [15–18], as demonstrated by Thaury et al [19]. The
dependence of the beam parameters on the downramp length
of the density transition and the beam evolution during the
acceleration phase were theoretically studied and described
thoroughly in [20]. The influence of both the density trans-
ition height and length in a shock-front-like profile were
investigated afterwards [21]. A semi-analytical model to
predict the injected beam length and the injection threshold in
arbitrary downramps was then derived [22]. A study on the
influence of the transition downramp steepness on the beam
quality has then been presented in [23]. The studies in
[20–23] employ different laser parameters, thus together they
constitute a coherent but somewhat fragmented study of the
density transition injection technique.

Compared to our previous work [21], where only the
density transition parameters were varied, in this paper we
expand the study, systematically varying both the density
transition parameters, i.e. height and downramp length, as
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well as the laser energy in a series of simulations and discuss
how they change the final electron beam quality. We show
how the laser energy strongly influences the injection and
acceleration processes, thus completing our previous work.

The article is organized as follows. In the second section
we introduce the numerical study. In the third section we
discuss how the laser energy influences the beam character-
istics, for various values of the density transition height and
downramp length. In the fourth section we discuss how the
laser energy changes the initial distribution of the injected
electrons.

2. Parametric numerical study

As an extension of the study presented in [21], the simulation
numerical parameters (briefly reported in the following) are
the same as in that reference. Our simulations have been
performed with the particle-in-cell (PIC) code CALDER-
CIRC [24], which self-consistently evolves the macroparticles
which sample the plasma distribution function in the 6D
phase space and the electromagnetic fields (the laser pulse and
the fields generated in the plasma). The code decomposes the
electromagnetic fields in azimutal modes with respect to the
laser propagation direction. For our simulations we retained
the first two modes, the most relevant for LWFA [24], and
sampled the plasma with 50 macroparticles per mesh cell.
Denoting with w p l= c20 the laser central frequency, we
chose a resolution of D =z 0.2 wc 0 and D =r 0.9 wc 0 in
the longitudinal and radial direction respectively and an
integration timestep D =t 0.18 w-

0
1.

The parameters of the reference laser pulse for our study
are the same as in [21], i.e., based on the Ti:Sa laser system of
Salle Jaune at Laboratoire d’Optique Appliquée (LOA):
wavelength l = 0.8 μm, FWHM duration 28 fs. The Gaus-
sian laser pulse, linearly polarized along the y direction, has a
waist size =w 120 μm at the entrance of an already ionized
plasma, which has a plateau density of = ·n 3 100

18 cm−3.
Given our laser wavelength and plasma density, the critical
power for relativistic self-focusing [25] is equal to

l l= ( )P 17.4c p GW= -10 2 PW. The laser pulse initial peak
normalized potential is a0 = 2.5, corresponding to a ratio
between the total pulse power at waist and the critical power
Pc of 3. The reference total energy of the laser pulse is thus
0.9 J. To investigate the influence of laser energy on the
injection and acceleration, we varied the density profile peak
and downramp length as in [21] and repeated the same
simulations while decreasing and increasing the laser energy
by 25%, varying only a0 accordingly and keeping all the other
laser parameters (waist size, duration) fixed.

The plasma density profile used for our simulations,
depicted in figure 1 (solid surface), has a linear upramp of

=L 100upramp μm, where the plasma density passes from
zero to Kn0. After the density peak at = =z z 105tp μm, a
linear downramp (where injection occurs) of length Ldown
decreases the density down to n0. This density profile is a
simplified model of density transitions obtained through a

blade in a gas jet [12–14, 19]. Following [26], the normalized
phase velocity bp of the wake in the downramp (i.e.

< < +z z z Ltp tp downramp) is:

b =
+ -

( )1

1
1p z ct

n

dn

dz2 e

e

where the density ne in the downramp is given by
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From equation (1) it is clear that in the laser’s wake
( - <z ct 0), the wake phase velocity bp can be lower than 1

in a density downramp <( )0dn

dz
e and allow injection. An

accurate estimate of bp taking into account also the laser
energy can be found in [22]. The simple estimate in
equation (1) is given for the reader’s convenience to compute
quantities of interest as the injection or transit time [22].

The laser is injected from z=0 μm towards the z direction.
Figure 1 also reports the evolution of the laser peak normalized
potential from three simulations with K = 1.7, =L 30down μm
and increasing laser energies, = [ ]E 0.675, 0.9, 1.125 J,
corresponding to a ratio between the total pulse power and the
critical power = [ ]P P 2.25, 3.00, 3.25c . For a given laser
energy, changing K or Ldown does not significantly alter the laser
self-focusing.

Figure 1. Filled surface with transparence: plasma density profile
used in our study. The plasma density ne is normalized by the plateau
density n0. The plasma profile shown corresponds to a density
transition with relative height = =K n n 1.7e peak, 0 , downramp
length =L 30down μm. The laser propagates in the positive z
direction. The density transition peak is located at =z 105tp μm.
Our diagnostic point for the beam quality parameters corresponds to
when the laser pulse reaches z=1 mm. Curves: evolution of laser
maximum vector potential a0 during the propagation in the plasma,
for K = 1.7, =L 30down μm. The values of a0 reported in the legend
are the initial peak vector potential of the laser.
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Although satisfying the matched propagation condition
=k w a2p 0 0 [27] would have guaranteed a more stable

propagation of the laser pulse, the different values of a0 used

in our study would have implied different values for the
plateau density n0 for a stable propagation. Instead, we pre-
ferred to isolate the effects of laser energy and of the

Figure 2. Variation of the beam injected charge with the density transition height K and downramp length Ldown. The reported energy is
evaluated »900 μm after the density transition peak. Each point represents the result of one simulation. The three panels refer to different
values of the initial laser peak vector potential.

Figure 3.Variation of the beam duration (evaluated as twice the rms length in time) with the density transition height K and downramp length
Ldown. The reported duration is evaluated »900 μm after the density transition peak. Each point represents the result of one simulation. The
three panels refer to different values of the initial laser peak vector potential.
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transition parameters. Thus, we kept fixed the plateau density
to a value that does not to trigger self-injection through
relativistic self-focusing for all the considered laser energies.

3. Electron beam quality

The results of the parametric study are reported in the following.
These simulations have as input the combinations of

= [ ]K 1.3, 1.5, 1.7 , = [ ]L 10, 20, 30, 40, 50down μm and
laser energy = [ ]E 0.675, 0.9, 1.125 , corresponding to laser
normalized potentials = [ ]a 2.16, 2.50, 2.790 , with a fixed
duration and waist size. For the sake of comparison, we remind
that the results presented in [21] have been obtained with a0 =
2.5, = [ ]K 1.2, 1.3, 1.5 , = [ ]L 10, 20, 30, 40, 50down μm.
In all the simulations, the diagnostic on the electron beam
parameters has been performed when the laser arrives at
z=1mm. For each electron beam parameter, three panels
corresponding to increasing laser energy are displayed, to
highlight the effects of different values of a0. Each point in the
panels represents one of the performed simulations, with dif-
ferent colors representing different density transition heights:
red curve K = 1.3, green curve K = 1.5, blue curve K = 1.7.
No significant low energy tail was found in the energy spectrum
of the electrons inside the wake bubble at the diagnostic point.
Thus, for all the simulations, the electrons included in the
calculation of the beam statistics are those well separated both
in space and energy from the borders of the plasma bubble at
the diagnostic point. Since the energy of the electrons in the
wake was in general different for all the simulations, our
inclusion criterion does not correspond to a threshold in energy
or boundary in the position kept equal for all the simulations.

Figure 2 reports the total injected charge. As discussed in
[20, 21], lower density transitions and/or longer downramps
yield a lower injected charge. For a0 = 2.16, K = 1.3 and for
longer transitions ( =L 40, 50down μm) no charge is injected;
thus the points corresponding to those two simulations are
absent also in the following figures. As expected, the laser
energy plays a key role in the injection: lower values of a0
yield a lower injected charge. Given a density transition
shape, i.e. given K and Ldown, the injected charge changes
significantly with the laser energy. For example, for K = 1.5
and =L 10down μm, the charge drops by 50% and increases
by 80% if the laser energy is respectively decreased and
increased by 25%. For a given density transition, multiple
effects affect the injected charge if the laser energy is chan-
ged. The wake phase velocity also depends on the laser a0 in
nonlinear regimes [22], thus the change in the wake phase
velocity in the transition which triggers injection is influenced
by the laser energy. Equivalently, the velocity threshold for
the electrons to be injected is lowered when the laser peak
field is increased. This effect, coupled with higher momenta
of the electrons caused by higher accelerating gradients,
increases the number of injected electrons with higher values
of a0. Besides, in nonlinear regimes the wakefield bubble size
increases with a0 [28]. All these variations on the injection
threshold, the electron momenta and the bubble size affect the
injection volume in the downramp (as shown in section 4),
greatly affecting the injected beam charge and duration with
the laser energy.

Analogously, with higher energy the bunch duration
increases and depends less and less on the downramp length,
as can be seen from figure 3. A relation between the beam
charge and its duration can be inferred from figure 4, where
different K values form three monotonous curves in the beam
charge-duration plane: given a value of K, beams with more
charge tend to have a longer duration. We note that the linear
dependence between beam charge and duration hinted in [22]
is approximately valid with our density transition profile only
with some combinations of a0, K and Ldown. In general, given
the density transition parameters, higher laser energies yield
longer bunches, as the injection starts earlier in the downramp
(see section 4).

For FEL amplification seeded by LWFA electron beams,
peak currents of the order of a few kA are required [8, 9].
From figure 5, where the average current of the simulated
beams is reported, the beam currents obtained are fully suf-
ficient for most of the laser and density transition parameters.
It is worth to note that with higher a0 (see right panel), higher
currents are obtained with lower relative peak density K. This
is due to the rate of change of beam duration with injected
charge at high a0 (see figure 4).

The normalized emittances of the beam e =n i,

s s s-i p i p
2 2

,
2

i i
(s s,i pi

are respectively the standard deviation
in transverse position and transverse momentum, si p, i

is the
correlation between transverse position and transverse
momentum) in the planes =i x y, are reported in figure 6.

Figure 4. Variation of the beam duration with the beam charge.
Cross, squares and circles denote different values of the initial laser
peak vector potential, while the different colors represent different
shock heights K. Each point represents the result of one simulation.
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The symmetry between the two transverse planes does not
change with the laser energy, and also with a0 = 2.79 the
values of emittance are lower than 2 mm-mrad. Since our

simulations do not use an electromagnetic solver coping with
numerical Cherenkov radiation (NCR) as the finite difference
scheme presented in [29], our results provide an

Figure 5. Variation of the beam average current (evaluated the charge divided by twice the rms length in time) with the density transition
height K and downramp length Ldown. The reported duration is evaluated»900 μm after the density transition peak. Each point represents the
result of one simulation. The three panels refer to different values of the initial laser peak vector potential.

Figure 6. Variation of the beam normalized emittance with the density transition height K and downramp length Ldown. The reported
emittance is evaluated»900 μm after the density transition peak. Each point represents the result of one simulation. The three panels refer to
different values of the initial laser peak vector potential.
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overestimation of the emittance, which normally is numeri-
cally increased by the NCR. The other beam parameters like
charge and energy are normally not significantly affected by
NCR [29].

Due to the beamloading, the increase in beam charge
with a0 prevents a sensitively higher energy gain. In figure 7

we report the mean beam energy. A higher energy could have
been expected with a higher laser energy (the accelerating
field is expected to scale with a0), but the only effect rising
with the laser energy, keeping fixed K and Ldown, is a pro-
gressive insensitivity to Ldown, shown also by the beam charge
and duration. The higher a0 yields a higher injected charge
that compensates for the higher accelerating gradient with its
field. Figure 8 illustrates the inverse correlation between
injected charge and beam energy given a laser a0, a signature
of beam loading [30]. Figure 8 shows also that for a given
charge a higher energy can be obtained with higher a0.

Figure 9 reports the total rms energy spread of the beam.
The final energy spread after acceleration is an interplay
between various effects. From figure 9, it can be inferred that
the beam energy spread strongly depends on the laser energy:
a higher a0 lowers the threshold for injection in the down-
ramp, thus electrons with higher differences in energy are
injected. In the second place, depending of how optimum is
the deformation of the electric field distribution given by
beam loading, different parts of the bunch could sample a
similar or a sensitively different value of the accelerating field
[31–33], thus maintaining stable or increasing the injected
beam initial energy spread. From figure 4 and figure 9, beams
with increasing duration, especially those from simulations
with higher initial a0, tend to have higher energy spread. This
can be caused by a higher deformation of the electric field
distribution, by a higher charge and by a steeper accelerating

Figure 7. Variation of the beam energy with the density transition height K and downramp length Ldown. The reported energy is evaluated
»900 μm after the density transition peak. Each point represents the result of one simulation. The three panels refer to different values of the
initial laser peak vector potential.

Figure 8. Variation of the beam energy with the beam charge.
Cross, squares and circles denote different values of the initial laser
peak vector potential, while the different colors represent different
density transition heights K. Each point represents the result of one
simulation. Five points are plotted for each couple (a0, K ), corresponding
to the five considered downramp lengths.
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field difference between the head and the tail of the bunch.
We remark that our analysis only considers energy spread
values at»900 μm after the density transition peak. Different
laser and density transition parameters can yield different
evolutions for the beam energy spread during acceleration,
and optimum accelerating distances may in principle be
found [20].

The previously shown parameters are reported in table 1.
To give an intuitive, pictorial impression of the injection

process, in figure 10 is depicted the electron density ne at
different timesteps for three simulations with same density
transition parameters but increasing laser energy. From
figure 10, the mentioned differences in bubble size and beam
duration with different laser energies can be qualitatively
inferred.

4. Laser energy effects on initial distribution of the
injected electrons

Given the density transition parameters K and downramp
length Ldown, the laser energy influences the volume where the
electrons are injected. As hinted in section 3, a higher a0
increases the bubble size and influences the wake phase
velocity change due to the density transition. The effects on
the injection volume can be seen in figure 11 and figure 12
and summarized in table 2. Two example cases with different
K and downramp length Ldown, but similar charge, have been

chosen. Since the density transition parameters are fixed in
each panel, the effects of the laser energy can be appreciated.
In both cases, the injection volume is enlarged longitudinally
and transversely with increasing a0, even more dramatically
in the case of a longer downramp (figures 11, right panel). In
the longitudinal plane, the injection starts earlier with higher
laser energy, as more electrons gain enough momentum to be
injected even at the beginning of the downramp, where the
wake phase velocity decrease is lower [34]. Given the
transition parameters, a longer injection volume due to higher
laser energy increases the beam duration (see figure 3). In the
transverse plane, we note that the difference in the density
transition parameters do not significantly affect the initial
charge distribution, while the laser energy has a more dra-
matic effect, enlarging transversally the injection volume with
increasing a0. We note another transverse effect at higher
energies: with shorter downramps (left panel) a sort of hole
appears in the transverse initial distribution of the electrons.
As shown in [35, 36], in a highly nonlinear regime the
majority of electrons injected by self-injection come from a
certain distance range from the laser propagation axis, which
depends on the bubble radius. The density transition triggers a
bubble enlargement similarly to the one triggering self-
injection [35]. With longer downramps, a wider range of
bubble transverse sizes during the laser propagation yields a
more uniform distribution on the initial transverse position.
Conversely, with a shorter downramp the bubble size value
varies less, and less electrons are injected from near the axis.

Figure 9. Variation of the beam rms energy spread with the density transition height K and downramp length Ldown. The reported energy
spread is evaluated »900 μm after the density transition peak. Each point represents the result of one simulation. The three panels refer to
different values of the initial laser peak vector potential.
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Table 1. Variation of the beam charge Q, duration s c2 z , normalized transverse emittance e -n y x, , energy E, rms energy spread DE and
average current I with laser initial normalized peak potential a0, the density transition height K and downramp length Ldown. The reported
quantities are evaluated »900 μm after the density transition peak.

a0 = 2.16

K Ldown (μm) Q (pC) s c2 z (fs) e -n y x, (mm-mrad) E (MeV) DE (MeV) I (kA)

1.3 10 13.7 3.0 0.7-0.6 122.1 4.1 4.5
20 1.8 2.0 0.3-0.3 134.6 2.0 0.9
30 »0 2.1 0.1-0.07 139.2 3.0 »0
40 0 − − − − −
50 0 − − − − −

1.5 10 100.5 5.7 0.9-0.8 105 6.7 7.7
20 114.7 4.7 0.7-0.7 114 3.6 4.9
30 126.5 3.8 0.5-0.5 124 4.2 2.3
40 137.1 2.8 0.3-0.2 136 5.7 0.9
50 145.7 2.2 0.2-0.1 144 7.8 0.2

1.7 10 86.3 7.8 0.8-0.8 150 6.9 8.6
20 100.6 6.5 0.7-0.7 160 5.1 6.6
30 111.9 5.7 0.6-0.6 169 4.2 4.6
40 122.5 4.8 0.6-0.5 176 6.4 3.2
50 131.0 3.7 0.4-0.5 182 7.0 2.5

a0 = 2.50

K Ldown (μm) Q (pC) s c2 z (fs) e -n y x, (mm-mrad) E (MeV) DE (MeV) I (kA)

1.3 10 48.4 3.9 1.4-1.4 128 10.5 12.3
20 39.0 3.7 1.4-1.4 138 9.1 10.6
30 26.1 3.5 1.2-1.1 150 10.3 7.4
40 16.2 3.2 1.0-1.1 160 12.8 5.1
50 10.6 2.3 0.7-0.6 170 13.8 3.6

1.5 10 79.1 6.8 1.3-1.3 105 13.3 11.6
20 75.5 6.5 1.2-1.2 114 12.4 11.6
30 58.7 6.0 1.2-1.2 124 11.8 9.7
40 46.3 6.8 1.2-1.2 136 14.1 8.0
50 38.0 5.3 1.1-1.1 144 15.1 7.2

1.7 10 124.9 9.4 1.0-1.0 92 15.5 13.2
20 104.9 8.9 1.1-1.0 101 14.5 11.7
30 85.5 8.3 1.1-1.1 111 14.3 10.2
40 71.3 7.8 1.1-1.0 120 15.5 9.1
50 62.4 7.3 1.0-1.0 127 16.4 8.5

a0 = 2.79

K Ldown (μm) Q (pC) s c2 z (fs) e -n y x, (mm-mrad) E (MeV) DE (MeV) I (kA)

1.3 10 96.7 4.5 1.7-1.8 142.1 12.3 21.4
20 87.5 4.4 1.8-1.9 147.7 11.6 20.0
30 78.7 4.4 1.6-1.6 151.6 12.1 17.9
40 70.1 4.4 1.5-1.6 156.4 13.1 15.8
50 64.4 4.5 1.5-1.5 160.9 14.4 14.3

1.5 10 145.7 7.6 1.5-1.4 116.3 16.9 19.0
20 133.4 7.5 1.4-1.4 121.7 16.8 17.6
30 117.9 7.3 1.5-1.4 126.3 17.0 16.2
40 107.5 7.4 1.5-1.3 132.5 18.7 14.5
50 99.7 7.5 1.5-1.4 137.7 19.4 13.3

1.7 10 185.5 10.7 1.4-1.3 102.5 21.4 17.3
20 171.7 10.3 1.3-1.3 106.6 20.8 16.6
30 152.0 10.0 1.3-1.3 111.9 21.6 15.1
40 139.9 10.1 1.4-1.3 119.3 23.0 13.8
50 129.3 9.9 1.3-1.3 124.9 22.8 13.0
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5. Conclusions

In this paper we reported the results of PIC simulations of
density transition (or shock-front) injection, which extend our
previous study [21] where we varied the density transition
parameters. Our investigation gives a wide picture of the
effects of the plasma and laser parameters in this injection
method. In our present study, we varied the laser peak vector
potential a0, to highlight the effects of laser energy. For this

purpose, we computed the beam parameters after »1mm.
Increasing the laser energy increases the injected charge, at
expenses of the final beam quality in terms of energy spread,
duration and normalized emittance. The increase of the laser
energy does not significantly increase the beam final energy at
a given distance, due to the beamloading brought by a higher
injected charge. However, a higher-energy laser is depleted at
longer distances, thus higher given energy may eventually be
obtained in principle.

Figure 10. Injection process with a density transition with relative height K = 1.5, downramp length =L 20down μm, with different values for
the initial laser peak vector potential: a0 = 2.79 (top row panels), a0 = 2.50 (middle row panels), a0 = 2.16 (bottom row panels). The
injection process is shown with snapshots of the electron density at times when the wake bubble tail is approximately at the position of the
density transition peak = =z z 105tp μm (left column panels), approximately at the end of the downramp z=125 μm (central column
panels), at »z 240 μm (right column panels).
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Figure 11. Left panel: charge distribution dQ

dz0
with respect to the initial longitudinal coordinate z0 of the injected electrons in the simulations

corresponding to K = 1.5 and =L 20down μm. Right panel: charge distribution dQ

dz0
with respect to the initial longitudinal coordinate z0 of the

injected electrons in the simulations corresponding to K = 1.7 and =L 40down μm.

Figure 12. Left panel: charge distribution dQ

dx0
with respect to the initial transverse coordinate x0 of the injected electrons in the simulations

corresponding to K = 1.5 and =L 20down μm. Right panel: charge distribution dQ

dx0
with respect to the initial transverse coordinate x0 of the

injected electrons in the simulations corresponding to K = 1.7 and =L 40down μm.
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