Conference paper Open Access

AKSDA-MSVM: A GPU-accelerated Multiclass Learning Framework for Multimedia

Arestis-Chartampilas, Stavros; Gkalelis, Nikolaos; Mezaris,Vasileios


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/162405</identifier>
  <creators>
    <creator>
      <creatorName>Arestis-Chartampilas, Stavros</creatorName>
      <givenName>Stavros</givenName>
      <familyName>Arestis-Chartampilas</familyName>
      <affiliation>CERTH</affiliation>
    </creator>
    <creator>
      <creatorName>Gkalelis, Nikolaos</creatorName>
      <givenName>Nikolaos</givenName>
      <familyName>Gkalelis</familyName>
      <affiliation>CERTH</affiliation>
    </creator>
    <creator>
      <creatorName>Mezaris,Vasileios</creatorName>
      <givenName>Vasileios</givenName>
      <familyName>Mezaris</familyName>
      <affiliation>CERTH</affiliation>
    </creator>
  </creators>
  <titles>
    <title>AKSDA-MSVM: A GPU-accelerated Multiclass Learning Framework for Multimedia</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>Discriminant analysis; GPU; multiclass classification; SVM</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-10-17</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/162405</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/2964284.2967263</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecfunded</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/invid-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In this paper, a combined nonlinear dimensionality reduction and multiclass classification framework is proposed. Specifically, a novel discriminant analysis (DA) technique, called accelerated kernel subclass discriminant analysis (AKSDA), derives a discriminant subspace, and a linear multiclass support vector machine (MSVM) computes a set of separating hyperplanes in the derived subspace. Moreover, within this framework an approach for accelerating the computation of multiple Gram matrices and an associated late fusion scheme are presented. Experimental evaluation in five multimedia datasets, on tasks such as video event detection and news document classification, shows that the proposed framework achieves excellent results in terms of both training time and generalization performance.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/600826/">600826</awardNumber>
      <awardTitle>Concise Preservation by combining Managed Forgetting and Contextualized Remembering</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/687786/">687786</awardNumber>
      <awardTitle>In Video Veritas – Verification of Social Media Video Content for the News Industry</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
56
21
views
downloads
Views 56
Downloads 21
Data volume 13.1 MB
Unique views 54
Unique downloads 21

Share

Cite as