Conference paper Open Access

AKSDA-MSVM: A GPU-accelerated Multiclass Learning Framework for Multimedia

Arestis-Chartampilas, Stavros; Gkalelis, Nikolaos; Mezaris,Vasileios


Citation Style Language JSON Export

{
  "DOI": "10.1145/2964284.2967263", 
  "title": "AKSDA-MSVM: A GPU-accelerated Multiclass Learning Framework for Multimedia", 
  "issued": {
    "date-parts": [
      [
        2016, 
        10, 
        17
      ]
    ]
  }, 
  "abstract": "<p>In this paper, a combined nonlinear dimensionality reduction and multiclass classification framework is proposed. Specifically, a novel discriminant analysis (DA) technique, called accelerated kernel subclass discriminant analysis (AKSDA), derives a discriminant subspace, and a linear multiclass support vector machine (MSVM) computes a set of separating hyperplanes in the derived subspace. Moreover, within this framework an approach for accelerating the computation of multiple Gram matrices and an associated late fusion scheme are presented. Experimental evaluation in five multimedia datasets, on tasks such as video event detection and news document classification, shows that the proposed framework achieves excellent results in terms of both training time and generalization performance.</p>", 
  "author": [
    {
      "family": "Arestis-Chartampilas, Stavros"
    }, 
    {
      "family": "Gkalelis, Nikolaos"
    }, 
    {
      "family": "Mezaris,Vasileios"
    }
  ], 
  "id": "162405", 
  "event-place": "Amsterdam", 
  "type": "paper-conference", 
  "event": "ACM Multimedia"
}
170
98
views
downloads
Views 170
Downloads 98
Data volume 61.3 MB
Unique views 155
Unique downloads 98

Share

Cite as