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Abstract - Plants attacked by herbivores employ different strategies to fend off their enemies. 1 

Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual 2 

or chemical cues. In some plant species the volatile methyl salicylate (MeSA) was shown to 3 

repel gravid insects but whether it plays the same role in the model species Arabidopsis 4 

thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer 5 

eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with 6 

constitutively high MeSA emission than on control plants. Surprisingly, the MeSA 7 

biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when 8 

compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by 9 

egg extract treatment but was induced by herbivory. Altogether, these results provide 10 

evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA 11 

emission in Arabidopsis and that MeSA might rather serve as a deterrent in plants challenged 12 

by feeding larvae. 13 

 14 
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INTRODUCTION 1 

Plant volatiles play a preponderant role in plant ecology where they serve, among other roles, 2 

to inform the surrounding organisms of the plant’s physiological status. In response to 3 

herbivory, plants trigger complex direct and indirect defenses to ward off their enemies 4 

(Howe and Jander 2008; Wu and Baldwin 2010; Mithöfer and Boland 2012). As indirect 5 

defenses, attacked plants emit a blend of volatiles that attract parasitoid wasps and insect 6 

predators (Dicke and Baldwin 2010). Oviposition by phytophagous insects is known to be 7 

tightly dependent on the chemistry of the host plant (Renwick and Chew 1994; Hilker and 8 

Meiners 2011). For instance, plant volatiles are used by gravid insects to detect suitable 9 

substrate for oviposition (Rothschild and Schoonhoven 1977). On the opposite, the presence 10 

of eggs deters butterflies from further oviposition. This behavior is linked to visual and 11 

chemical cues from either eggs or plants (Rothschild and Schoonhoven 1977; Schoonhoven et 12 

al. 1981; Bergström et al. 1994; Renwick and Chew 1994; Blaakmeer et al. 1994a; de Vos et 13 

al. 2008). 14 

 We recently discovered that Arabidopsis thaliana reacts to Pieris brassicae 15 

oviposition by accumulating salicylic acid (SA), a signal molecule that is essential for defense 16 

against fungal and bacterial pathogens (Bruessow et al. 2010). Early detection of egg-17 

associated elicitors triggers a response similar to basal innate immunity, with the production 18 

of reactive oxygen species, callose deposition, local cell death, and activation of the SA 19 

pathway, leading to the expression of defense genes (Little et al. 2007; Gouhier-Darimont et 20 

al. 2013; Reymond 2013). This finding was unexpected since feeding larvae are known to 21 

activate the jasmonic acid (JA) pathway, which is essential for an efficient defense against 22 

herbivory (Reymond et al. 2004; Howe and Jander 2008). Accordingly, the transcriptome of 23 

oviposited Arabidopsis plants was strikingly different from plants challenged with feeding 24 

larvae (Little et al. 2007).  25 
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 Interestingly, MeSA is a common volatile derived from SA through methylation by 1 

the enzyme BSMT1 and was shown to repel aphids, moths and thrips in soybean, Brassica 2 

napus, and cucumber, respectively (Koschier et al. 2007; Ulland et al. 2008; Mallinger et al. 3 

2011). This volatile is released after herbivory in Arabidopsis and tomato (Van Poecke et al. 4 

2001; Chen et al. 2003; Ament et al. 2005; Snoeren et al. 2010a) but its role in response to 5 

oviposition has never been assessed. In addition, BSMT1 was shown to metabolize other 6 

substrates, including benzoic acid, m-hydroxybenzoic acid, and anthranilic acid (Chen et al. 7 

2003). 8 

 Because P. brassicae oviposition on Arabidopsis induces the accumulation of SA, we 9 

reasoned that MeSA could be produced and deter future oviposition by butterflies. As eggs 10 

are inert and represent a non-immediate threat to the plant, this could represent an early 11 

response to avoid further increase in egg load. 12 

 13 

METHODS AND MATERIALS 14 

Plant and Insects Growth Conditions. All experiments were carried out in Arabidopsis 15 

thaliana Columbia ecotype (Col-0) background. Plants were grown in soil in growth 16 

chambers in short day conditions (8 h light, 20° C, 65 % relative humidity, 100 µmol m-2 s-1). 17 

The soil consisted of 65% humus, 10% sand, 15% perlite and 10% silt and was not 18 

complemented with fertilizer. The bsmt1-1 mutant (SALK_140496) was kindly provided by 19 

Jürgen Zeier (University of Duesseldorf), and OsS6 was obtained from Yang Do Choi (Seoul 20 

National University). Individuals of Pieris brassicae were reared on Brassica oleracea var 21 

gemmifera in a greenhouse (Reymond et al. 2000). 22 

 23 

Oviposition Dual Choice Assays with P. brassicae Butterflies. Four- to five-week-old plants 24 

were used for choice assays. All experiments were performed in a greenhouse under constant 25 
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light. Three females and two males butterflies were placed in insect tents (60x60x60 cm, 1 

Bugdorm, Taiwan) with four plants of each treatment. During the experiment, butterflies were 2 

allowed to mate and drink sugary water. The number of eggs laid was assessed after 12 h. 3 

Methyl salicylate (Sigma-Aldrich, purity >99 %) was diluted in hexane to a final 4 

concentration of 0.15 mg/µl, and 5 µl was applied to a volatile dispenser consisting of half 5 

cotton swabs disposed at the center of the pot. Hexane was applied to the cotton swabs of 6 

control plants. The solvent was allowed to evaporate before beginning of the experiment. The 7 

amount of MeSA used in the experiment was shown to repel Mamestra brassicae moths and 8 

corresponds to a release rate of 50-100 ng/h (Ulland et al. 2008). 9 

 P. brassicae eggs laid on cabbage leaves were crushed with a pestle in Eppendorf 10 

tubes. After centrifugation (15'000 g, 3 min), the supernatant ("egg extract") was stored at -11 

20°C. For egg-extract treatment, 2 x 2 µl of egg extract were applied to the abaxial surface of 12 

two leaves per plant for three days. 13 

 Each comparison was performed several times in parallel and replicated on different 14 

days. Data were analyzed comparing the number of eggs laid on each genotype/treatment 15 

using a Generalized Linear Model (GLM) controlling for tent and temporal effects. 16 

 17 

Quantitative Real-Time PCR (QPCR). Egg-extract treatment was performed by applying 2 x 2 18 

µl of P. brassicae egg extract on two leaves per plant for five days. For herbivory treatment, 19 

two P. brassicae neonates were placed on each of four Arabidopsis plants and allowed to feed 20 

for two days. Tissue samples from local leaves treated with egg-extract were ground in liquid 21 

nitrogen. Total RNA was extracted using RNeasy Plant Mini kit and treated with DNaseI 22 

according to the manufacturer’s instructions (Qiagen). cDNA was synthesized from 500 ng of 23 

total RNA using M-MLV reverse transcriptase (Invitrogen) and diluted eightfold with water. 24 

Quantitative real-time PCR reactions were performed using Brilliant III Fast SYBR-Green 25 
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QPCR Master Mix on a Mx3000P real-time PCR instrument (Agilent) with the following 1 

program: 95 °C for 3 min, then 40 cycles of 10 s at 95 °C, 20 s at 60 °C. Values were 2 

normalized to the housekeeping gene EIF4A1 (At3g13920). The expression level of a target 3 

gene (TG) was normalized to the reference gene (RG) and calculated as normalized relative 4 

quantity (NRQ) as follows: NRQ = ECtRG/ECtTG. Primer efficiencies (E) were evaluated by 5 

five-step dilution regression. For each experiment, three biological replicates were analyzed. 6 

Different genes analyzed were amplified using the following primers: BSMT1 (AT3G11480) 7 

fwd 5’-CATTCAACATGCCGTTTTATG–3’ and rev 5’-CATTGGTTCACTAACAGCTC-8 

3’; PR-1 (AT2G14610) fwd 5’-GTGGGTTAGCGAGAAGGCTA-3’ and rev 5’- 9 

ACTTTGGCACATCCGAGTCT-3’; EIF4A1 (At3g13920) fwd 5’-10 

CCAGAAGGCACACAGTTTGA-3’ and rev 5’-GACTGAGCCTGTTGAATCAC-3’. 11 

 12 

Dynamic Headspace Collection and MeSA Analysis. To verify MeSA emission by 13 

Arabidopsis with and without P. brassicae oviposition, headspace volatiles of individual 14 

plants enclosed in glass bottles were collected in a volatile collection system (ARS, 15 

Gainesville, FL, USA). Airflow was regulated to 1.0 L/min and volatiles were trapped using 16 

SuperQ adsorbent polymer (Alltech Associates Inc., Deerfield, IL, USA). Volatiles were 17 

collected for eight plants during 24 h from 48 to 72 h after P. brassicae oviposition. Twelve 18 

plants without oviposition were used as controls. Headspace collection and analysis were 19 

done as described previously (Peñaflor et al. 2011), with the following modifications: after 20 

injection, the column temperature was maintained at 40 °C for 3 min and then increased to 21 

100 °C at 8 °C/min and subsequently to 220 °C at 5 °C/min followed by a postrun of 3 min at 22 

250 °C. MeSA was identified by comparing its mass spectra and retention time with MeSA 23 

pure standard (Sigma-Aldrich, St. Louis, MO, USA) and with that of the NIST05 library. 24 

 25 
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Statistical Analyses. All statistical analyses were carried out with R software version 3.0.1 1 

(http://www.R-project.org).  2 

 3 

RESULTS 4 

Egg Extract Treatment and MeSA Repel P. brassicae Butterflies. The number of eggs laid on 5 

plants pretreated with P. brassicae egg extract, which mimics natural oviposition (Little et al. 6 

2007), was significantly lower than on intact plants (Fig. 1a). When applied on a volatile 7 

dispenser placed next to Arabidopsis plants, MeSA decreased the total number of eggs laid 8 

compared to dispensers treated with solvent alone (Fig. 1b). Similarly, butterflies were 9 

repelled by Arabidopsis OsS6 mutant plants overexpressing a BSMT1 homolog from rice 10 

(Oryza sativa) (Fig. 1c). OsS6 plants have been shown to emit MeSA constitutively, even in 11 

the absence of stimulus (Koo et al. 2007). Given the repelling role of MeSA and previous 12 

observations that oviposited plants accumulate SA (Bruessow et al. 2010), which could be 13 

transformed to MeSA by BSMT1, we then tested whether MeSA accumulates after 14 

oviposition in Arabidopsis. However, we could not detect MeSA in plant volatiles collected 15 

between 48 and 72 h after oviposition, with a detection limit < 1 ng (Online resource 1).  16 

 To further evaluate the involvement of MeSA we used the Arabidopsis bsmt1-1 17 

mutant that has no detectable MeSA emission (Attaran et al. 2009). Surprisingly, bsmt1-1 18 

plants treated with egg extract still repelled P. brassicae butterflies, as there were 19 

significantly more eggs laid on untreated than on treated bsmt1-1 plants (Fig. 1d). Thus, our 20 

results indicate that MeSA emission is able to inhibit oviposition but that this volatile is not 21 

responsible for egg extract-induced deterrence of ovipositing butterflies in Arabidopsis. 22 

However, when butterflies were given the choice between egg extract-treated Col-0 and egg 23 

extract-treated bsmt1-1, they significantly laid more eggs on Col-0 (Fig. 1e). Finally, 24 
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butterflies also preferred non-treated Col-0 over non-treated bsmt1-1, suggesting that BSMT1 1 

plays a role in attracting P. brassicae (Fig. 1f). 2 

 3 

Expression of BSMT1 in Response to Herbivory. To further explore whether MeSA emission 4 

was linked to oviposition, we analyzed the expression of BSMT1 and PR-1 in plants treated 5 

with egg extract or challenged with Pieris brassicae larvae. PR-1 is a marker gene for the SA 6 

pathway and is induced by P. brassicae egg extract treatment (Little et al. 2007; Gouhier-7 

Darimont et al. 2013). PR-1 expression increased after egg extract treatment but not after 8 

herbivory, which is consistent with previous studies (Reymond et al. 2004; Bruessow et al. 9 

2010) (Fig. 2a). On the contrary, BSMT1 expression was not induced after five days of egg 10 

extract treatment but was strongly induced after herbivory by P. brassicae (Fig. 2). In support 11 

of this finding, BMST1 was strongly upregulated by Pieris rapae feeding in Arabidopsis 12 

(Snoeren et al. 2010a). Moreover, egg extract treatment did not induce BSMT1 after 24 h, 48 13 

h, and 72 h (data not shown).  14 

 15 

DISCUSSION 16 

P. brassicae oviposition on plants pretreated with egg extract was lower than on untreated 17 

plants, confirming earlier observations with other plant species that butterflies can detect 18 

oviposited plants and avoid overloading (Rothschild and Schoonhoven 1977; Shapiro 1981; 19 

Blaakmeer et al. 1994a). Although egg extract was applied on leaves facing the soil to avoid 20 

visual recognition by butterflies, this set-up did not prevent detection of egg-derived cues, 21 

suggesting that a chemical response was involved. Interestingly, our results using artificial 22 

dispensers and overexpressing lines clearly show that MeSA emission deters oviposition. 23 

Previous studies reported a similar effect for the moth M. brassicae, the thrips Frankliniella 24 

occidentalis, and the hemipteran pest Lygus Hesperus (Koschier et al. 2007; Ulland et al. 25 
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2008; Williams et al. 2010). However, bsmt1-1 plants lacking MeSA were still able to repel 1 

butterflies when treated with egg extract, strongly suggesting that the deterring activity of 2 

eggs on gravid butterflies is independent of MeSA emission. In support of this finding, 3 

expression of BSMT1, which was reported to reflect MeSA emission in Arabidopsis (Snoeren 4 

et al. 2010a), was not induced by egg extract treatment. Moreover, we could not detect MeSA 5 

from the volatile blend of oviposited Arabidopsis plants. By comparison, OsS6 plants emit 6 6 

± 2 ng/g FW/ 24 h (Koo et al. 2007) and Arabidopsis infected with Pseudomonas syringae pv. 7 

maculicola emit between 15 to 45 ng/g FW/ h (Attaran et al. 2009), values that are well above 8 

the ca. 1 ng detection limit of our instrument. Furthermore, oviposition of P. brassicae even 9 

reduced MeSA emission in Brassica oleracea (Bergström et al. 1994). Finally, it was also 10 

reported that plants treated with SA do not release MeSA (Koo et al. 2007). Collectively, 11 

these data provide strong evidence that MeSA is not involved in repelling butterflies after 12 

oviposition or treatment with egg extract. 13 

 Interestingly, we found that bsmt1-1 plants received fewer eggs than wild-type plants 14 

in dual-choice experiments, irrespective of egg extract pre-treatment. This suggests that 15 

BSMT1 might have a positive role by producing a compound that attracts female butterflies. 16 

BSMT1 belongs to the SABATH family of methyl transferases and in vitro analyses have 17 

shown that, besides SA, this enzyme catalyzes the methylation of benzoic acid, anthranilic 18 

acid, and m-hydrohybenzoic acid, with the highest activity towards benzoic acid (Chen et al. 19 

2003). In addition, we noticed that bsmt1-1 plants have longer petioles than Col-0 and display 20 

leaf epinasty (Online resource 2). Thus, whether any of the methylated metabolites and/or 21 

bsmt1-1 leaf phenotype influence butterflies for their choice of an oviposition site will need 22 

further investigations. 23 

 Evidence for the absence of a role for MeSA in response to oviposition and the 24 

observation that egg extract-treatment repelled butterflies implies that other factor(s) may 25 
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render plants less acceptable for females. First, although egg extracts were applied underneath 1 

Arabidopsis leaves, we cannot formally exclude that visual factors informed butterflies about 2 

prior occupancy. Indeed, eggs or egg extract treatment cause chlorosis at the site of deposition 3 

in Arabidopsis Col-0 (Bruessow et al. 2010; Reymond 2013). An elegant experiment recently 4 

demonstrated that P. rapae butterflies could discriminate green Arabidopsis leaves from 5 

variegated green-whitish leaves, obtained after silencing a phytoene desaturase gene (Zheng 6 

et al. 2010). Alternatively, infochemicals from either the egg extract or the plant could be 7 

detected by gravid females. Avenanthramide alkaloids have been identified in eggs of P. 8 

brassicae and P. rapae and were shown to inhibit oviposition when sprayed on cabbage 9 

leaves (Blaakmeer et al. 1994b). However, since cabbage leaves were still repulsive after 10 

removal of P. brassicae eggs and avenanthramides were no longer detectable, other plant 11 

chemicals were postulated to deter oviposition although their nature has not been determined 12 

(Blaakmeer et al. 1994a). Glucosinolates (GS) are well-described defense compounds of the 13 

Brassicaceae (Halkier and Gershenzon 2006). Many crucifer specialists use GS as signals for 14 

oviposition, as larvae are able to detoxify them and thus feed unharmed on the plants (Huang 15 

and Renwick 1994; Renwick and Chew 1994; Hopkins et al. 2009). Induction of GS 16 

biosynthesis genes and GS accumulation are triggered by herbivory and are regulated by the 17 

JA pathway in Arabidopsis (Schweizer et al. 2013). Since P. brassicae eggs were shown to 18 

suppress the expression of JA-dependent defense genes in Arabidopsis, including GS-related 19 

genes (Bruessow et al. 2010), an intriguing hypothesis is that GS content might be reduced 20 

after oviposition and therefore this would lower the attractiveness of Arabidopsis plants for 21 

further egg laying. In order to test these hypotheses, future studies should aim at measuring 22 

leaf chemical changes or emission of volatiles that follow oviposition in Arabidopsis and use 23 

biosynthesis mutants to identify deterring molecules. 24 
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 Previous microarray experiments on plants oviposited or damaged by herbivory 1 

reported that BSMT1 was induced by P. rapae and S. littoralis feeding but not by eggs 2 

(Reymond et al. 2004; Little et al. 2007). We showed here by QPCR that BMST1 is indeed 3 

not upregulated by egg extract treatment whereas it is strongly induced by herbivory. MeSA 4 

emission was reported to occur after herbivory in several plant species including Arabidopsis, 5 

(Van Poecke et al. 2001; Snoeren et al. 2010a,b), wild tobacco (Kessler and Baldwin 2001), 6 

maize (Turlings et al. 1998), rice (Zhao et al. 2010), cotton (Rodriguez-Saona et al. 2001), 7 

cucumber (Agrawal et al. 2002), and potato (Bolter et al. 1997). In support of these findings, 8 

BSMT1 transcript levels were induced after methyl jasmonate (MeJA) application and 9 

herbivory in Arabidopsis (Snoeren et al. 2010a; Chen et al. 2003), indicating that MeSA 10 

emission is under the control of the JA-pathway.  11 

 Interestingly, the production/emission of MeSA as well as the expression of BSMT1 12 

were also found to be induced after infection with the bacterial pathogen P. syringae in 13 

Arabidopsis. This effect was due to the presence of coronatine (COR), a bacterial effector that 14 

mimics JA-Ile, which is the bioactive JA (Attaran et al. 2009; Zheng et al. 2012). It would be 15 

interesting to carry out oviposition test with plants inoculated with P. syringae to test whether 16 

butterflies avoid infected plants to maximize the survival of their progeny. Use of COR- 17 

strains could confirm the role of this effector in oviposition responses. 18 

 In conclusion, our results suggest that MeSA emission is not responsible for reduced 19 

oviposition by P. brassicae on egg-treated Arabidopsis plants but that it may rather play a role 20 

during larval feeding to block further oviposition. Whether this is a strategy developed by the 21 

plant to prevent an excess of attackers or by the insect to control food availability for 22 

developing larvae will deserve future studies. A recent meta-analysis offered clear support for 23 

the preference-performance hypothesis which states that female insects evolved to oviposit 24 

more eggs on plants on which their offspring performs best (Gripenberg et al. 2010). This 25 
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indicates that the avoidance of MeSA-emitting plants by females could be linked to a poorer 1 

performance on such plants. 2 

 3 
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FIGURE LEGENDS 16 

Fig. 1 Dual-choice oviposition tests with P. brassicae. Three females and two males P. 17 

brassicae butterflies were placed in a tent containing two groups of four Arabidopsis plants. 18 

The number of eggs laid was assessed after 12 h of continuous light. Plants used were wild-19 

type (Col-0) unless otherwise specified. Boxplots represent values from six to twenty-five 20 

biological replicates. a Number of eggs laid on untreated plants or plants pretreated with P. 21 

brassicae egg extract (EE) for three days. b Number of eggs laid on control plants or plants 22 

placed next to a MeSA dispenser. MeSA (0.15 mg/µl in hexane) was applied to a volatile 23 

dispenser disposed at the center of the pot. Control plants were placed next to a hexane 24 

dispenser. c Number of eggs laid on wild-type or Arabidopsis OsS6 line that overexpresses 25 

the rice BSMT1 gene. d Number of eggs laid on untreated or EE-treated bsmt1-1 plants. e 26 

Number of eggs laid on EE-treated Col-0 or bsmt1-1 plants. f Number of eggs laid on 27 

untreated Col-0 or bsmt1-1 plants. Oviposition data were analyzed with a Generalized Linear 28 

Model. Stars indicate a significant difference compared to the control (*** P < 0.001). 29 
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 1 

Fig. 2 Expression of PR-1 a and BSMT1 b after treatment with P. brassicae egg extract (EE) 2 

for five days or feeding by P. brassicae (P. b.) for two days. Expression levels were measured 3 

by QPCR and are relative to the housekeeping gene EIF4A1. Values are mean relative 4 

expression ± SE of three technical replicates. Similar results were obtained in two 5 

independent experiments. Different letters indicate significant differences at P < 0.05 6 

(Tukey's honest significant difference test). 7 

 8 

SUPPLEMENTARY MATERIAL 9 

Online resource 1. MeSA analysis of Arabidopsis plants with or without P. brassicae 10 

oviposition. 11 

Online resource 2. Phenotype of Col-0 and bsmt1-1 plants 12 
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Online resource 2. Phenotype of 5-week-old Col-0 and bsmt1-1 plants. 
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