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Abstract 

The neural correspondence between the systems responsible for the execution and 

recognition of actions has been suggested both in humans and non-human primates. Apart from 

being a key region of this visuo-motor observation-execution matching (OEM) system, the 

human inferior frontal gyrus (IFG) is also important for speech production. The functional 

overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a 

motor area, has led to the idea that speech function has evolved from pre-existing motor systems 

and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor 

OEM and speech OEM have never been compared directly. We used electrocorticography to 

analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal 

cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks 

(verbally describing an action using the first or third person pronoun). The results show that 

neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal 

regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor 

OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more 

focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech 

OEM properties independent of orolingual speech-unrelated movements. Building on the 

methodological advantages in human invasive electrocorticography, the present findings provide 

highly precise spatial and temporal information to support the existence of a modality-

independent action representation system in the human brain that is shared between systems for 

performing, interpreting and describing actions.  

 

 

Keywords: movement, sensory, intracranial, mirror neuron system, imagery 

 

Highlights 

- Human electrocorticography of action-speech correspondence in inferior frontal gyrus  

- Extensive neural networks show selective mirror-like properties for action and speech 

- Multimodal representations of action and speech in fronto-temporo-parietal regions 
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Introduction 

A neural population in the ventral premotor cortex of the macaque brain (area F5) labeled as 

“mirror neurons”, has important motor-visual-auditory properties, being characterized by similar 

firing patterns during the execution and observation of the same action (Di Pellegrino, Fadiga, 

Fogassi, Gallese, & Rizzolatti, 1992; Rizzolatti, Fadiga, Fogassi, & Gallese, 1996), as well as by 

listening to sounds of actions (Kohler, et al., 2002). Since the original description of the mirror 

system, the direct (even though partial) correspondence between the neural systems responsible 

for the recognition and execution of actions has been repeatedly supported by animal research 

(Coude, et al., 2014; Ferrari, Gallese, Rizzolatti, & Fogassi, 2003; Rozzi, Ferrari, Bonini, 

Rizzolatti, & Fogassi, 2008). A similar observation-execution matching (OEM) system has been 

hypothesized also in humans (Blakemore & Decety, 2001), suggesting the existence of abstract 

and modality-independent action representations. Accordingly, electrocorticographic data 

showed the involvement of focally localized regions responding to observation and execution of 

action with comparable suppressions in the alpha band (Fecteau, et al., 2004; Tremblay, et al., 

2004), encompassing the mu-rhythm as a sign of sensorimotor processing (Pineda, 2005). 

Conversely, a widespread set of cortical regions has been involved in visuo-motor mirror-like 

activity for observation and execution of actions in humans by behavioral (Brass, Bekkering, 

Wohlschlager, & Prinz, 2000; Craighero, Bello, Fadiga, & Rizzolatti, 2002), functional magnetic 

resonance imaging (Buccino, Lui, Canessa, Patteri, & Lagravinese, 2004; Decety, et al., 1997; 

Iacoboni, et al., 1999), scalp electroencephalography (Lepage & Theoret, 2006), single-cell 

recording (Mukamel, Ekstrom, Kaplan, Iacoboni, & Fried, 2010), transcranial magnetic 

stimulation (Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995; Strafella & Paus, 2000), and clinical 

studies (Frenkel-Toledo, Bentin, Perry, Liebermann, & Soroker, 2014; Mitra, Nizamie, Goyal, & 

Tikka, 2014; Nishitani, Avikainen, & Hari, 2004). The regions belonging to such a broad 

network for abstract representation of actions include the dorsal and ventral premotor cortex 

(Calvo-Merino, Glaser, Grezes, Passingham, & Haggard, 2005; Tai, Scherfler, Brooks, 

Sawamoto, & Castiello, 2004; Wade & Hammond, 2015), superior and inferior parietal lobule 

(Buccino, et al., 2001; Gardner, Goulden, & Cross, 2015), angular gyrus (Davey, et al., 2015; 

Farrer, et al., 2008; Lui, et al., 2008), supramarginal gyrus (Abreu, et al., 2012; Pokorny, et al., 

2015), and superior temporal sulcus (Alaerts, et al., 2015; see also Cattaneo & Rizzolatti, 2009). 

Based on this evidence, we hypothesized to find a widespread set of regions showing mu-rhythm 
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suppression during both observation and execution of actions, including temporal, parietal and 

frontal areas.  

Yet, within the set of regions hypothesized to have mirror-like function, a particular focus 

has been posed on the inferior frontal gyrus (IFG) based on its activity during action observation 

and execution (Binkofski & Buccino, 2004; Binkofski, et al., 1999; Ehrsson, et al., 2000), and its 

supposedly cytoarchitectonically correspondence to area F5 in monkeys (Amunts, et al., 1999; 

Petrides & Pandya, 1999, 2002; Rizzolatti & Arbib, 1998), an area known for being involved in 

arm control but also in mouth and larynx movements (Corballis, 2003; Petrides, Cadoret, & 

Mackey, 2005). Along this line, classic and modern human intracranial electrophysiology 

(Gastaut & Bert, 1954; Tremblay, et al., 2004) and surface electroencephalography (Cebolla, 

Palmero-Soler, Dan, & Cheron, 2014; Cochin, Barthelemy, Lejeune, Roux, & Martineau, 1998; 

Cochin, Barthelemy, Roux, & Martineau, 1999; Pfurtscheller, Neuper, Andrew, & Edlinger, 

1997; Pineda, 2005) showed that observation and execution of simple movements lead to a 

comparable activation (mu-rhythm suppression; 8-12 Hz) in IFG. Furthermore, beyond its well 

known role in speech production, the (left) IFG has been found to be involved also in a wide 

range of language-related activities including sign language production (Willems, Ozyurek, & 

Hagoort, 2007), lexical selection and retrieval (Krieger-Redwood & Jefferies, 2014), and word 

complexity categorization (Wright, Randall, Marslen-Wilson, & Tyler, 2011), as well as in 

language-unrelated activities such as semantic knowledge (Zhu, et al., 2012), motor planning 

(Marangolo, et al., 2011), and response inhibition (van Rooij, et al., 2015). This body of 

evidence supports that IFG contributes to build multimodal representations of object semantics, 

conveyed in various modality-independent forms of communication. On this basis, the human 

IFG may harbor not only an OEM system for actions (Johnson-Frey, et al., 2003), but also an 

OEM system for spoken speech. Here we provide evidence of comparable mu-rhythm 

suppression over IFG during execution, observation, and verbal description of the same action.  

 

Methods 

We recorded intracranial local field potentials (LFPs) in two patients (L and R) suffering 

from pharmacoresistant epilepsy who underwent presurgical evaluation by implanted subdural 

electrode grids. The placement of the electrodes was determined clinically and covered the left 

frontal, parietal, and temporal cortex in patient L (64 electrodes; Figure 1A) and the right frontal, 
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parietal, and temporal cortex in patient R (48 electrodes; Figure 1C). Stimulation mapping was 

carried out as described previously (Blanke, Landis, & Seeck, 2000; Blanke, Perrig, Thut, 

Landis, & Seeck, 2000; Blanke, Spinelli, et al., 2000) and allowed us to localize the hand, mouth, 

and lip regions in both patients (Figure 1A and 1C), plus Broca’s area in patient L.  

 

Figure 1 

 

 

LFP acquisition and analysis 

We recorded LFPs from all implanted electrodes and analyzed mu-rhythm suppression 

separately for the high (15-22 Hz) and low (8-12.5 Hz) frequency bands with respect to spectral 

power and anatomo-functional distribution (Figure 1B and 1D). LFPs were recorded at 1024 Hz 

sampling rate from 64 subdural grid electrodes in patient L and at 512 Hz from 48 electrodes in 



Published – Neuropsychologia 2015 

6 

 

patient R. LFPs were recorded relative to a reference electrode located on the apex of the scalp. 

Each experimental 60s block was divided in 2s epochs with a 1s overlap. The power spectral 

density was calculated for each epoch using the Fast Fourier Transform (Matlab) with a 

frequency resolution of 0.5 Hz (1024 points). To minimize edge effects, the linear trend was 

removed and a Hann window was applied before performing the Fourier transform. For each 

channel, power spectra were normalized to the average power of all frequency bins between 4 

and 40 Hz. The low and high mu rhythms were easily identifiable by visual inspection of the 

recordings as peaks in the power spectrum at ~10.5 Hz and ~18 Hz for patient L, and ~9.5 Hz 

and ~18 Hz for patient R (see Figure 1B and 1D), especially in electrodes over sensorimotor 

cortex. In both patients approximately half of the electrodes showed at least one of the two 

peaks. We used the peak frequencies to define two frequency bands that we used for further 

analysis: 8.5-12.5 Hz (low mu) and 15-22 Hz (high mu) for patient L, and 8-11 Hz (low mu) and 

16-20 Hz (high mu) for patient R. Task-related modulation of band power was tested for 

significance (p<0.05, Bonferroni corrected) with two-tailed t-tests, with each epoch being one 

sample. We used logarithmic values for the statistical tests, since the sample distribution of the 

band powers was approximately lognormal. In patient L, abnormal interictal epileptic activity 

was recorded in electrodes E1, E2, F1, F2, G1, G2, G3, G4, H1, H2, H3, and H4. Therefore these 

electrodes were excluded from further analysis. In patient R, abnormal interictal epileptic activity 

was recorded in electrodes E1, E2, F1, F2, G1, G2, H1, and H2. Also these electrodes were 

excluded from further analysis.  

 

Conditions 

We studied the OEM system and its role in action and speech by using the following 

conditions (compared to baseline): in the “action” conditions, patients were asked to observe 

(“action observation”) and perform (“action execution”) a goal-directed hand movements. In the 

“action execution” condition patients were asked to periodically reach, grasp and lift an orange 

positioned in front of them. In the “action observation” condition patients were asked to observe 

the experimenter performing the same action. The actions were performed by both the patients 

and the experimenter with either the left or the right hand in separated blocks. The total number 

of full action sequences was the same across all action conditions. In the “speech” conditions, 

patients were asked to speak out loudly and say that the patient himself (“executive speech”) or 
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another person (“observational speech”) were to carry out the same goal-directed hand action (as 

carried out physically in the action execution tasks). Thus, in the “executive speech” condition 

patients were asked to say: “I take the orange with my left (right) hand”. In the “observational 

speech” condition patients were asked to say: “He takes the orange with his left (right) hand”. In 

the speech conditions, “execution” and “observation” were thus only present in syntactical terms 

(subject and verb) for the spoken text and patients were asked to repeat the sentence at a pace 

that approximated the number of full action sequences carried out during the action sequence. To 

further control for the motor component of speech production we carried out the additional 

“orolingual movement control” condition, in which patients were asked to repeatedly execute 

mouth and tongue movements to mimic speech production but without purpose and content. All 

the conditions lasted for 60s and were separated by 20s of rest (fixation of the empty table). 

During a baseline condition (see LFP analysis) we asked the patient to look at the empty table for 

60s without performing any manual or verbal action. 

 

Results 

Visuo-motor OEM system 

In patient L during the observation of grasping there was a significant suppression of the low 

mu-rhythm in 22 electrodes (42%) and of the high mu-rhythm in 43 electrodes (83%) with 

respect to the baseline (all p<0.001). During the execution of grasping there was a significant 

suppression of the low mu-rhythm in 27 electrodes (52%) and of the high mu-rhythm in 35 

electrodes (67%) with respect to the baseline (all p<0.001). In addition, 22 (42%) and 32 (62%) 

electrodes showed significant suppression in the low (high) mu-rhythm relative to baseline 

during both action execution and observation. Compatible with the OEM hypothesis, this 

restricted subset of electrodes did not show significant differences when directly compared (all 

p>0.05; Figure 2A).  

In patient R during the observation of grasping there was a significant suppression of the 

low mu-rhythm in 25 electrodes (63%) and of the high mu-rhythm in 12 electrodes (30%), with 

respect to the baseline (all p<0.001). During the execution of grasping there was the significant 

suppression of the low mu-rhythm in 23 electrodes (58%) and of the high mu-rhythm in 9 

electrodes (23%), with respect to the baseline (all p<0.001). In addition, 17 (43%) and 8 (20%) 

electrodes showed suppression in the low mu-rhythm and in the high mu-rhythm, respectively, 
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relative to the baseline in both “action execution” and “action observation” conditions. 

Compatible with the OEM hypothesis, this restricted subset of electrodes did not show 

differential activation when compared directly (all p>0.05; Figure 2B). 

 

Figure 2 

 

 

Speech OEM system 

In patient L we observed low (high) mu-rhythm suppression during the “executive speech” 

condition at 19 (30) electrode sites, relative to baseline (all p<0.001). In the “observational 

speech” condition we observed low (high) mu-rhythm suppression at 20 (27) electrode sites, 

relative to baseline (all p<0.001). In addition, 18 (25) of these electrode sites were found during 

both executive and observational speech. Compatible with the OEM hypothesis, this restricted 

subset of electrodes did not show differential activation when compared directly (all p>0.05; 

Figure 3A).  
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In patient R we observed low (high) mu-rhythm suppression during the “executive speech” 

condition at 11 (12) electrode sites relative to baseline (all p<0.001). In the “observational 

speech” condition we observed low (high) mu-rhythm suppression at 13 (11) electrodes sites, 

relative to baseline (all p<0.001). In addition, 7 (8) of these electrode sites were found during 

both executive and observational speech. Compatible with the OEM hypothesis for speech, this 

restricted subset of electrodes did not show differential activation when compared directly (all 

p>0.05; Figure 3B).  

 

Figure 3 

 

 

Visuo-motor OEM properties of speech OEM sites 

In patient L 9 (19) speech OEM sites showed also visuo-motor OEM properties for low 

(high) mu-rhythm, i.e. similar suppression during executive and observational speech as in 

execution and observation of an action. However, 9 (6) electrode sites showed specific speech-
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OEM properties for low (high) mu-rhythm suppression, i.e. did not show action-OEM properties 

(Figure 4A and 4B). In patient R 6 (4) speech-OEM sites showed action-OEM properties for low 

(high) mu-rhythm, i.e. similar suppression during executive and observational speech as in 

execution and observation of an action. 1 (4) electrode site(s) showed specific speech OEM 

properties for low (high) mu-rhythm suppression, i.e. did not show visuo-motor OEM properties 

(Figure 4C and 4D).  

 

Figure 4 

 

 

Localization and function of the overlapping visuo-motor and speech OEM systems 

In patient L, within the speech OEM system, 9 (5) electrode sites showed significant low 

(high) mu-rhythm suppressions during both “executive speech” and “observational speech” 

conditions with respect to the “orolingual movement control” conditions. For the low mu-rhythm 

these electrode sites comprised: A6, A7, A8, B6, B7, B8, C7, C8 and D8. For the high mu-
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rhythm these electrode sites comprised: A7, A8, B7, B8, and C8. Within these sites, only 3 

adjacent electrodes (A7, A8, and B7) showed an anatomical overlap between visuo-motor OEM 

and speech OEM controlled for orolingual movements (Figure 4B). These three electrode sites 

were located in the left IFG. Electrical stimulation of electrode site A7 interfered with speech 

production (speech arrest) providing evidence that it was located over Broca’s area as defined in 

stimulation mapping. Electrical stimulation of the other two sites did not reveal any overt 

response (Figure 1A).  

 

In patient R, within the speech OEM system, 1 (2) electrode sites showed a significant low 

(high) mu-rhythm suppression during both “executive speech” and “observational speech” with 

respect to the “orolingual movement control”. These electrode sites comprised E5 (for the low 

mu-rhythm) and E5 and H5 (for the high mu-rhythm). In other words, E5 and H5 showed an 

anatomical overlap between visuo-motor OEM and speech OEM controlled for orolingual 

movements. Electrode sites E5 and H5 showed the overlap in both the low and high mu-rhythm, 

while the overlap in electrode H5 was specific to the high mu-rhythm (Figure 4C and 4D). All 

these electrode sites were located in the right IFG, with E5 in the pars triangularis and H5 in the 

pars orbitalis. Electrical stimulation of these sites did not reveal any overt response nor speech 

interference (Figure 1). 

 

Specific sites for visuo-motor OEM 

In patient L 12 (13) electrode sites showed specific visuo-motor OEM properties for low 

(high) mu-rhythm suppression, i.e. did not show speech OEM properties. In patient R 11 (4) 

electrode site(s) showed specific visuo-motor OEM properties for low (high) mu-rhythm 

suppression, i.e. did not show speech OEM properties.  

 

Discussion 

Overlap between visuo-motor and speech OEM systems for actions 

Using the suppression of mu-rhythm signals from intracranially recorded LFPs as an 

indicator of cortical activity (Laufs, et al., 2003; Poulet & Petersen, 2008), we here report the 

presence of a speech OEM system that is partially overlapping (functionally and anatomically) 

with the visuo-motor OEM system. Visuo-motor and speech OEM systems were found 
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predominantly in the IFG bilaterally, but also in left superior temporal gyrus. In particular, we 

found that execution, observation, and the verbal description of the same hand action, but not 

orolingual movements that were not related to speech, were associated with enhanced activation 

in these areas. We further note that in patient R, the electrode E5 covered the pars triangularis 

within the IFG. It has been suggested that this region inhibits body-specific motor execution 

during movement observation (Molnar-Szakacs, Iacoboni, Koski, & Mazziotta, 2005) as well as 

during silent reading (Bookheimer, Zeffiro, Blaxton, Gaillard, & Theodore, 1995). Extending 

these previous studies, we directly compared brain activity associated with visuo-motor and 

speech-related accounts of action representations, showing that OEM systems for both speech 

and action in several bilateral frontal regions exhibit activity patterns similar to those of the 

mirror neuron system (i.e. comparable cortical responsiveness to the same action in different 

modalities). In this vein, our data support the notion of abstract and multimodal sensory-motor 

representations of actions (Ionta, Sforza, Funato, & Blanke, 2013), including not only visual, 

auditory, and motor domains (Aglioti & Pazzaglia, 2011; Glenberg & Kaschak, 2002; Keysers, 

et al., 2003; Kohler, et al., 2002), but also speech processes (Cerri, et al., 2015; Rizzolatti & 

Arbib, 1998). The stronger brain activity in the action-related speech conditions with respect to 

the conditions in which a speech component was absent (“meaningless” orolingual movement 

control condition), provides evidence that this activation pattern cannot be explained by the mere 

motor activation due to the movements of mouth and tongue. We suggest that the activity in the 

sites included in the speech OEM system (different from the ones involved in the movements of 

mouth and tongue) may originate from the activation of the motor representation of the verbally 

described action. In other words, the resulting activity in common between executive and 

observational speech can be ascribed to the activation of abstract and modality-independent 

action representations. We further note that On the basis of the present results, further 

investigations may clarify open questions such as the potential effect of using/observing different 

effectors, or the interaction with different objects and different objects’ affordances. 

Supporting an anatomo-functional correspondence between visuo-motor and speech OEM 

systems, we found overlapping sites for speech OEM and visuo-motor OEM (in at least one 

frequency band) in bilateral inferior frontal cortex and the left superior temporal cortex (for 

discussion of the other regions see below). Within these sites the electrical stimulation of the 

electrodes positioned on the left hemisphere determined speech arrest, while the stimulation of 
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the ones positioned on the right hemisphere did not elicit an overt behavioral response. The 

comparable LFP activity shown on the left and right hemisphere in the present data supports a 

bilateral involvement in action and speech matching. It might be argued that the classical left-

lateralization of speech-related processes is not compatible with the present involvement of the 

right inferior frontal gyrus in speech OEM. However, despite the dominance of the left 

hemisphere for speech, also the right hemisphere can be involved in many language tasks such as 

reading (Hauk, Johnsrude, & Pulvermuller, 2004), processing prosody (Gorelick & Ross, 1987; 

Mitchell & Crow, 2005; Sollmann, et al., 2014; Wildgruber, Ackermann, Klose, Kardatzki, & 

Grodd, 1996), speech automatization (Speedie, Wertman, Ta'ir, & Heilman, 1993), and meaning 

attribution (Taylor & Regard, 2003). Moreover, Brodmann’s subdivision of Broca’s area into 

area 44 and 45 can offer better understanding of its involvement in speech. Unlike area 44, which 

is usually larger on the left side, area 45 (Amunts, et al., 1999; Galaburda, 1980) and the monkey 

homologue area F5 (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996) appear to be more symmetric. 

Indeed in patients not able to produce covertly generated verbs, the right (and not left) inferior 

frontal gyrus is underactivated (Liegeois, et al., 2003). Likewise, in patients suffering from motor 

neuron disease (Bak, O'Donovan, Xuereb, Boniface, & Hodges, 2001), pathological changes in 

areas 44 and 45 bilaterally are associated with a selective impairment in processing action verbs 

(Bak, et al., 2006). On this basis, the present data support the involvement of the right 

hemisphere in different speech processes (Bottini, et al., 1994; Nishitani, Schurmann, Amunts, & 

Hari, 2005), with a particular role in matching agent-independent and multimodal representations 

of actions.  

 

Extensive distribution of the visuo-motor and speech OEM systems 

Within the visuo-motor OEM system, we observed an anatomically and functionally very 

widespread “mirror” type set of regions characterized by similar activity during action 

observation and execution. This activation pattern was found in brain regions with diverse 

functions (as revealed by stimulation mapping) such as hand, tongue, face, mouth, eye 

movements, as well as motor inhibition, speech, and somatosensory function. The involved areas 

comprised the inferior frontal and precentral gyri (bilaterally), the postcentral, superior temporal, 

and superior parietal regions (on the left hemisphere), and the (right) middle frontal gyrus. 

Further investigations reported also the involvement of occipito-temporal regions in mirror-like 
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activity (Kable & Chatterjee, 2006; Romaiguere, Nazarian, Roth, Anton, & Felician, 2014). In 

line with the present data, previous work showed widespread activity during action imitation 

(Heiser, Iacoboni, Maeda, Marcus, & Mazziotta, 2003), simulation (Ionta, Ferretti, Merla, 

Tartaro, & Romani, 2010), and observation/execution (Mukamel, et al., 2010). Accordingly, our 

data confirm mirror type mu-rhythm behavior are extremely common and distributed on both 

hemispheres. 

Also the OEM for speech recruited a widespread set of regions with a “mirror” type activity 

during the pronunciation of action-related sentences both in first-person and in a third-person 

perspective, hinting at an abstract and modality-independent representation of actions. The direct 

electrical stimulation of these regions (one at a time) also determined a large panel of different 

functions, including speech arrest and hand, thumb, eye, lips, and mouth movements. The 

involved areas comprised the inferior frontal, precentral, and superior temporal gyri (bilaterally), 

the postcentral and superior parietal regions (on the left hemisphere), and the middle frontal and 

prefrontal gyrus (on the right hemisphere). Previous studies highlighted the commonalities 

between self and other processing and consistently reported the involvement of superior 

temporal, temporo-parietal, and prefrontal regions in a wide range of self-other human abilities, 

including emotion sharing (Singer, et al., 2004), mentalizing (Frith & Frith, 2003), interpreting 

gaze direction (Pelphrey, Viola, & McCarthy, 2004), and perspective taking  (Aichhorn, et al., 

2009; Ionta, et al., 2011), probably due to their importance in representing the body in the space 

(Ionta, Martuzzi, Salomon, & Blanke, 2014). In particular, Samson et al. (2005) reported that a 

patient presenting widespread lesions affecting the middle and inferior frontal gyrus, as well as 

the superior temporal gyrus, showed  impairments in tasks requiring strong inhibition of self-

beliefs, but not in weak self-inhibition tasks. One possible interpretation of these findings is that 

when IFG (and middle frontal and superior temporal gyri) are affected, self-representations take 

over other-representations, producing a bias towards self-beliefs. The absence of deficits in low-

demanding self-inhibition tasks suggests that the relative weight of self- and other-

representations changes as a function of contextual factors, and further supports the importance 

of IFG (and middle frontal and superior temporal gyri) in the modulation of the signals relative 

to these two frames of reference. In addition we note that the patient showed perspective taking 

impairments in different modalities, i.e. visual and social. This additional finding is in line with 

our data on the modality-independent representation of actions. The present data extend the role 
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of this widespread brain network centered on superior temporal and inferior frontal regions in 

processing the commonalities between self and other in terms of verbal description of actions, 

supporting the multimodal semantics of action representations. 

 

Integrative and Multimodal Representations of Movements 

Building on the first ground-breaking electrophysiological findings that movement 

observation, simulation, and execution determine proportional autonomic responses  (Farrand, 

1897; Lay, 1898; Stetson, 1896), muscular activity (Jacobson, 1930, 1932), and brain responses 

(Gastaut & Bert, 1954), the present data support the idea that conceptual knowledge encoded by 

the sensory-motor system can recruit a supra- or multi-modal representation of movements 

which may further be used as reference frame for understanding, producing, and communicating 

an action. Compatible with this proposal, it has been shown that properties of objects referring to 

actions (e.g. tools) are encoded in the motor system (Chao & Martin, 2000), and that words 

addressing action-related meanings activate motor areas (Aziz-Zadeh, Sheng, Liew, & Damasio, 

2012; Pulvermuller, 2005). Along this line, the discovery of mirror neurons in the monkey brain 

area F5, active during both movement observation and execution and the supposed homology 

between F5 and Broca’s area in the human brain (Petrides, et al., 2005), support the link between 

action and speech (Rizzolatti & Arbib, 1998) and inspired the “embodied cognition theory” 

suggesting that speech could be conceptualized as a mental simulation of the meaning content 

(Gallese & Lakoff, 2005; Wilson, 2013). Indeed there have been many reports about (i) the 

activation of sensory-motor areas during speech processes (Aziz-Zadeh, Wilson, Rizzolatti, & 

Iacoboni, 2006; Boulenger, et al., 2008; Hauk, et al., 2004; Pulvermuller, 2005; Tettamanti, et 

al., 2005), (ii) the influence of speech processing on motor performance (Emmorey, 2013; 

Fischer & Zwaan, 2008; Nazir, Jeannerod, & Hauk, 2008), and (iii) the specific impairment in 

action-related words in patients suffering from diseases affecting the motor system (Bak, et al., 

2001; Boulenger, et al., 2008). Based on these data it has been speculated that the human ability 

for speech may have evolved from pre-existing mechanisms dedicated to visuo-motor OEM for 

actions (Arbib, 2005; Cerri, et al., 2015; Corballis, 2003), proposing that multimodal action 

representations provide a simulation mechanism that may have evolved into representations of 

action goals, intentions, and language (D'Ausilio, Bartoli, & Maffongelli, 2015; Glenberg & 

Kaschak, 2002; Pulvermuller, 2005).  
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Based on the advantages of intracranial recording with respect to e.g. functional magnetic 

resonance imaging and electroencephalography in terms of temporal resolution and spatial 

precision, respectively, the present data demonstrate that the correspondence between sensory-

based representations of movements performed by others and motor-based representation of self-

performed movements is not limited only to e.g. visuo-motor (Mukamel, et al., 2010) and audio-

motor domains (Pazzaglia, Pizzamiglio, Pes, & Aglioti, 2008) but it includes also more abstract 

representations, i.e. verbal description. With potential application in the development of 

rehabilitation technology (Pisotta, Perruchoud, & Ionta, 2015), the present findings support the 

existence of multimodal representations of other-performed movements and the continuous 

comparison with internal motor representations of self-performed movements. 
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FIGURE LEGENDS 

 

Figure 1 - Stimulation and Recording - Electrodes’ location and electrically induced 

responses for patient L (panel A) and patient R (panel C). Letters indicate columns of the 

electrodes grid. Numbers indicate rows. Dots represent electrodes. Colored dots indicate the 

electrically evoked responses. Red/white striped dots indicate epileptic foci. Local field 

potential power spectra from electrode A7 in patient L (panel B) and from electrode D5 in 

patient R (panel D), showing the suppression of the low and high mu-rhythm during: action 

observation and execution (1); “executive speech” and “observational speech” with respect to 

baseline (2); “executive speech” and “observational speech” controlled for orolingual 

movements (3). 

 

Figure 2 - Visuo-Motor Observation-Execution Matching. Low and high mu-rhythm 

suppression in patient L (A) and R (B). Yellow dots indicate electrode sites where the 

suppression occurred during the “action observation” condition. Red dots indicate electrode sites 

where the suppression occurred during the “action execution” condition. For red/yellow dots 

suppression occurred in both conditions. 

 

Figure 3. Speech Observation-Execution Matching. Low and high mu-rhythm suppression in 

patient L (A) and R (B). Dark blue dots indicate electrode sites where the suppression occurred 

during the “observational speech” condition. Light blue dots indicate electrode sites where the 

suppression occurred during the “executive speech” condition. For dark/light blue dots 

suppression occurred in both conditions. 

 

Figure 4. Specificity of speech observation-execution matching. Low and high mu-rhythm 

suppression in patient L (A and B) and R (C and D). White dots indicate electrode sites within 

the speech OEM showing activity only during the speech tasks. White/Black striped dots indicate 

electrode sites within the speech OEM also showing visuo-motor OEM. Red-highlighted regions 

indicate the overlap between visuo-motor OEM and speech OEM controlled for orolingual 

movements. 
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