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ABSTRACT 

 

Introduction 

Lack of electroencephalography (EEG) background reactivity during therapeutic hypothermia 

(TH) has been associated with poor outcome in post-anoxic comatose patients. However, 

decision on intensive care withdrawal is based on normothermic (NT) evaluations. This study 

aims at exploring whether patients showing recovery of EEG reactivity in NT after a non-

reactive EEG in TH differ from those remaining non-reactive. 

Methods 

Patients with non-reactive EEG during TH were identified from our prospective registry of 

consecutive comatose adults admitted after successful resuscitation from CA between April 2009 

and June 2014. Variables including neurological examination, serum neuron-specific enolase 

(NSE), procalcitonin and EEG features were compared regarding impact on functional outcome 

at three months.  

Results 

Seventy-two of 197 patients (37%) had a non-reactive EEG background during TH with thirteen 

(18%) evolving towards reactivity in NT. Compared to those remaining non-reactive (n=59), 

they showed significantly better recovery of brainstem reflexes (p<0.001), better motor 

responses (p<0.001), transitory consciousness improvement (p=0.008), and a tendency toward 

lower NSE (p=0.067). One patient recovering EEG reactivity survived with good functional 

outcome at 3 months.  

Conclusions 

Recovery of EEG reactivity from TH to NT seems to distinguish two patients’ subgroups 

regarding early neurological assessment and transitory consciousness improvement, 

corroborating the role of EEG in providing information about cerebral functions. Understanding 

these dynamic changes encourages maintenance of intensive support in selected patients even 

after a non-reactive EEG background in TH, as some may indeed recover with good functional 

outcome. 
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INTRODUCTION 

 

Coma after cardiac arrest (CA) represents a severe condition with very uncertain outcome. In 

order to assist the clinician to perform early prediction on chances of survival and help in the 

decision of maintaining intensive life support, multimodal evaluations including brainstem 

reflexes (pupillary, corneal, oculo-cephalic), motor response to painful stimuli, early myoclonus, 

electroencephalography (EEG), somatosensory evoked potentials (SSEP), and serum biomarkers 

(especially neuron-specific enolase (NSE)) are part of current recommendations 1–5. Furthermore, 

serum procalcitonin (PCT) has been recently described as a marker of post-resuscitation illness 

correlating with final outcome 6. 

In the last decade, therapeutic hypothermia (TH) has been increasingly used in this clinical 

setting 7–9, although the exact parameters of temperature management have been recently 

challenged 10. While it is important to try to predict as soon as possible the patient’s outcome, 

TH itself and sedation has been shown to impact on the prognostic assessment 11,12. Current 

guidelines taking into account TH treatment recommend to assess prognosis multimodally at 

more than 72h after CA onset, once the patient is back in normothermia (NT) and off sedation 
13,14.  

Although clinical evaluation may be delayed with TH treatment, EEG is widely available, non-

invasive, and seems to represent a relatively robust predictor, especially if recorded after at least 

9-12h following CA, particularly in terms of background reactivity 15–17. Recently, we showed 

that despite a reactive EEG in TH, a discontinuous EEG and high NSE (but not serum 

procalcitonin (PCT)) correlate with mortality18. 

In order to further explore the dynamic role of EEG as a biological and prognostic marker in this 

clinical setting, we assessed the evolution of EEG features and clinical outcome in patients 

lacking background reactivity in TH. We hypothesized that return of EEG reactivity over time 

would define a subgroup of patients with a different clinical profile. 

 

 

METHODS 

 

Patients and Procedures 
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We considered all patients from our prospective registry of consecutive comatose adults admitted 

between April 2009 and June 2014 to the Department of Intensive Care Medicine after 

successful resuscitation from CA. We included patients with both EEG recordings during TH 

and NT, selecting only those with a non-reactive EEG background in TH. All subjects were 

treated using a standardized protocol in agreement with current guidelines 9,15 with mild TH to 

33°C maintained for 24 h; midazolam (0.1 mg/kg/h) and fentanyl (1.5 µg/kg/h) were given for 

sedation-analgesia, and vecuronium (0.1 mg/kg boluses) to control shivering. All data were 

collected prospectively. This study received full approval from the Ethic Commission of our 

hospital. 

 

Clinical and laboratory variables  

Neurological examination testing brainstem reflexes (pupillary, oculocephalic, corneal; all 

present vs. one or more absent), motor response to painful stimuli (flexion posturing or better vs. 

extension or no response) and myoclonus occurrence was performed repetitively after rewarming 

and up to 72h after CA; the best evaluation was considered for this analysis. Serum NSE at 24h 

and/or 48h after CA was analyzed with an automated immunofluorescent assay (Thermo 

Scientific Brahms NSE Kryptor Immunoassay); the highest value was selected for this analysis. 

Serum PCT was sampled during TH using the ELFA method (Vidas Brahms PCT assay, 

bioMerieux Inc., Geneva, Switzerland; see 6). Response to median-nerve SSEP was recorded 24h 

to 72h after CA, after rewarming 15. 

 

EEG recordings 

Video-EEGs (Viasys Neurocare, Madison, WI, USA) were recorded for 20-30 minutes using a 

21-electrodes montage according to the international 10–20 system. For each patient, two EEG 

recordings were performed, the first time early after coma onset, during TH (range: 2-36 hours 

after CA; temperature at 33-34°C), the second time after rewarming over 35°C and most often 

after sedation weaning (range: 24-72h after CA). EEG activity was visually interpreted, before 

knowing the clinical outcome, by two EEG-certified neurologists on three dimensions (see 18 for 

details): 1) background reactivity, categorized as present if clear and reproducible change in 

amplitude or frequency in the background occurred in reaction to stimulations, excluding muscle 

artefacts or stimulus-induced rhythmic, periodic, or ictal discharges) (SIRPIDs); 2) spontaneous 
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discontinuous pattern, defined as an interruption of the EEG background by flat periods during > 

10% of the recording 19; 3) epileptiform activity. 

 

Decisions on intensive care withdrawal and outcome assessment 

Intensive care withdrawal was discussed interdisciplinary within seven days of CA, and based on 

the occurrence of two or more of: 1) unreactive EEG background in normothermia, 2) 

incomplete recovery of brainstem reflexes, 3) early myoclonus resistant to treatment, 4) bilateral 

absence of N20 cortical potential in SSEP tested in normothermia 20. Importantly, EEG 

evaluation in hypothermia, NSE and PCT values were not considered for this decision. Outcome 

was assessed at 3 months by a semi-structured phone interview and categorized according to the 

Cerebral Performance Categories (CPC; 21). 

 

Statistical Analysis 

Two-sided Fisher and Wilcoxon tests were used to explore relationships between patients 

recovering EEG reactivity after return to NT versus those remaining without reactivity. 

Significance was set at p < 0.05, without correction for multiple comparisons, given the 

exploratory character of this study. Calculations were performed with Stata software, version 12 

(College Station, TX). 

 

 

RESULTS 

 

During the study period, 246 patients were admitted for CA and treated with TH but 49 were 

excluded for lack of EEG evaluation during TH (Figure 1). Among the resulting 197 patients, 72 

(37%) had a non-reactive EEG in TH, with 59 (82% of them) remaining non-reactive during NT 

and 13 (18%) turning to be reactive in NT. Overall, outcome was poor, as 71/72 patients died 

(CPC 5). Demographic and clinical variables are summarized in Table 1. Groups did not differ 

according to age, sex, aetiology, and latency to the first EEG in TH. Significant differences 

between groups with non-reactive EEG (NTnrEEG) vs. reactive EEG (NTrEEG) in NT were 

found on the proportion of patients having absent brainstem reflexes (p < .001) and absent motor 

response (p < .001) (see Table 1). Although not significant, there was a strong tendency 
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concerning lower NSE values in the NTrEEG group. The proportion of patients recovering 

partial consciousness (reaching at least vegetative state) at least transiently was significantly 

higher in the NTrEEG group compared to the NTnrEEG group (p < .01). 

Latency between cardiac arrest and death was longer in the NTrEEG group (p < .001), but the 

proportion of patients having residual pharmacological sedation during EEG recording in NT 

was not significantly different between both groups. 

The only survivor of this cohort without a reactive EEG in TH belonged to the NTrEEG group. 

This 80 year old man had CA caused by ventricular fibrillation of a cardiac aetiology, and 25 

minutes to a return of spontaneous circulation (ROSC); his EEG in TH was non-reactive, 

discontinuous, without epileptiform transients, and became reactive but still discontinuous in 

NT; brainstem reflexes were all present, motor response was obtained and no myoclonus was 

observed; NSE peak value was 17.3 µg/l and PCT 0.06 µg/l. At three months, this man was 

considered having a good functional outcome (CPC 2: moderate disability). 

 

 

CONCLUSIONS 

 

This prospective study shows that patients with a reactive EEG in normothermia after a non-

reactive hypothermic EEG tend to recover brainstem reflexes and better motor reactions to pain, 

than those remaining with a non-reactive recording. Outcome did not differ significantly in term 

of survival between the two groups; however, those with a reactive EEG background in NT had a 

greater chance to reach at least transiently a vegetative state, and one patient even awoke and 

survived at three months with good functional outcome. 

 

Our results suggest that recovery of EEG background reactivity in NT parallels at least partial 

clinical recovery of cerebral functions. On the one side, motor response reflects the integrated 

function of brainstem and higher cerebral structures; in fact, the cut-off in the motor GCS scoring 

is extension posturing or worse, defining at best a decerebrate state 22,23, while, on the other side,  

pupillary, oculocephalic and corneal reflexes reveal activity of brainstem function. Since EEG 

signals arise from the cerebral cortex, and are more sensitive to cortico-cortical connections than 

SSEP 24, EEG reactivity may reflect the dynamic integration of the cortex with the underlying 
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structures. Despite this, however, clinical improvement was limited and transitory in most cases, 

pointing to the fact that EEG reactivity during TH and under relatively standard conditions, 

including sedation, may inform more accurately than in NT on the general “tuning” resulting 

from neuronal injury 25.  

 

Serum NSE values tended to be lower in the group becoming reactive in NT, suggesting that the 

extent of neuronal damage is somewhat lower in this group of patients 25,26. However, overall, 

the median values were higher as compared to the previous study focusing on patients with an 

initial reactive EEG background in TH 18, and clearly above the threshold of 33 µg/l 4, 

corroborating the hypothesis that the presently studied cohort (having a non-reactive EEG in TH) 

had a more severe brain damage from the beginning. PCT correlates with systemic post-

resuscitation illness 6, but was not different here; again, it does not seem that EEG, at least in this 

clinical setting, reflects the extent of systemic illness. SSEP, reflecting the integrity of 

thalamocortical projections using the N20 response, is an indicator of poor outcome24; however 

knowing that its sensitivity is very low, the absence of difference in our setting is not surprising.  

 

This study has some limitations: first, the number of patients included is relatively limited and 

only few belonged to the group with reactive EEG background in NT; however, these numbers 

reflect the analysis of a large cohort of 197 patients recorded consecutively over more than 5 

years. Second, some few data were missing concerning PCT, NSE and SSEP, but this reflects a 

common problem in observational studies related to availability of selected investigations during 

weekends and holidays. Third, this study was carried out in one single centre, possibly limiting 

generalization of our results; however, we believe that this allows a better internal validity. 

Conversely, the prospective nature of data ascertainment and the multimodal approach, including 

not only clinical and electrophysiological parameters but also biological markers, as well as the 

assessment of functional outcome at three months, strengthen in our view the results. Finally, 

self-fulfilling prophecy is always a risk in this type of studies, and as decision of intensive care 

withdrawal was based especially on reactive EEG background during NT, it seems logical that 

longer death latencies were found in the group converting to a reactive EEG background; this, 

however, should not put into question the validity of the other results, especially outcome at 3 

months, as patients with improving EEG were obviously offered more time to recover. 
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To our knowledge, this study represents the first attempt to better characterize the clinical profile 

of post-anoxic comatose patients having an initial poor electrophysiological assessment (non-

reactive EEG in hypothermia). We show that although the initial clinical presentation of these 

patients seems homogenous, the evolution of EEG background reactivity in NT distinguishes 

two subgroups with different clinical profiles. By outlining differences between these two groups 

concerning both early clinical variables and outcome, our results encourage the maintenance of 

intensive life support in case of EEG background reactivity recovery in NT even after a non-

reactive EEG background in TH, as some few patients may indeed recover. 

 

 

 

Table 1: Clinical and electrophysiological data of 72 patients with non-reactive EEG during 

therapeutic hypothermia, stratified for EEG reactivity in normothermia. 

 

Figure 1: Distribution of patients admitted after successful resuscitation from CA according to 

EEG background reactivity. 
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