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ABSTRACT 

Miscanthus is an emerging crop with high potential for bioenergy production. Its effective 

sustainability depends greatly on the spatial location of this crop, although few modelling 

approaches have been based on real maps. To fill this gap, we propose a spatially explicit 

method based on real location data. We mapped all of the miscanthus fields in the supply area 

of a transformation plant located in east-central France. Then, we used a boosted regression 

tree, machine learning method, to model miscanthus presence/absence at the level of the 

farmer’s block as mapped in the French land parcel identification system. Each of these 

modelling spatial units was characterised on agronomical, morphological and contextual 

variables selected from in-depth spatially explicit farm surveys. The model fostered a two-

fold aim: to assess the farmers’ decision criteria and predict miscanthus location probability. 

In addition, we evaluated the consequence of possible legislative constraints, which could 

prevent the miscanthus to be planted in protected areas or in place of grasslands. The small 

and complex-shaped farmer’ blocks that were predicted by our model to be planted with 

miscanthus were also characterised by their great distance from the farm and the roads. This 

kind of result could provide a different perspective on the definition of “marginal land” by 

integrating also the farm management criteria. In conclusion, our approach elicited real 

farmers’ criteria regarding miscanthus location to capture local specificities and explore 

different miscanthus location probabilities at the farm and landscape levels.  
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1. INTRODUCTION  

Biomass feedstock is the first source of renewable energy worldwide and its availability 

for bioenergy production will be a major issue for the future decades. The bioenergy 

contribution to the primary energy supply in 2008 – valued at 492 exajoules (EJ) – has been 

estimated at 10.2% compared to 12.9% of the total renewable energy contribution [1]. The 

use of biomass for bioenergy is expected to increase further as we will face the energetic 

transition that fosters replacing fossil fuels by renewable resources [2,3]. The technical 

potential of biomass energy crops for 2050 is estimated in approximately 96 EJ/yr [4] with 

expert-based potential deployment levels being assessed in the range of 100 to 300 EJ/yr [5]. 

Bioenergy can be produced from a variety of biomass residues, short-rotation forest 

plantations, energy crops and organic wastes. Although agricultural and forestry co-products 

can provide the major share of the biomass feedstock supply [6], a substantial portion of the 

demand is expected to be met by cultivating dedicated energy crops [7]. In particular, 

perennial energy crops have been shown to be good candidates for bioenergy production [8–

10] and to have a relatively low environmental pressure compared to annual crops [11,12]. 

These crops could contribute to the sustainable intensification of farming systems and 

landscape structure that can provide multiple ecosystem services [5,13–17]. Moreover, 

perennial crops can reduce cultivation costs because they have no need for annual planting 

and have reduced tillage requirements [18]. Additionally, these contributions are also key 

advantages to meet the sustainability requirements defined by the European Union Renewable 

Energy Directive (2009/28/EC).  

Cultivating dedicated energy crops raises, however, concerns about the use of limited land 

resources [10,19], particularly in the context of high commodity prices and a continuously 

growing population [11,20]. Such concerns may further orient policy makers to invest in the 

promotion of lignocellulosic biomass, as it can decrease the pressure on prime cropland, if 

targeted to ‘surplus’ land [3,5,21]. However, the long cropping cycle of these crops might 

compete with future food and feed production needs [22]. Knowing which energy crops and 

where they are likely to be grown is then crucial for a reliable assessment of the biomass 

supply suitability and of the sustainability of global bioenergy production [23,24]. Indeed, 

policy estimations frequently assume that enough farmers will choose to grow energy crops if 

adequately supported with incentives during the start-up phase [25]. This assumption seems, 

however, to be questioned by a relatively low adoption – approximately 100,000 ha in Europe 

[7] – compared to their very high technical potential [e.g., 26]. It is therefore important to 

pursue an up-to-date understanding of farmers’ attitudes, behaviours and preferences towards 

the adoption of perennial energy crops [19,27,28], particularly in the context of farming 

system innovation [17,29]. Nonetheless, behaviours can vary between farmers and change 

over time through experience [30–32], eventually becoming harder to predict when facing the 

choice to plant a perennial species. In fact, this pattern requires researchers to enhance 

accurate, spatially explicit approaches in order to capture locally-relevant factors, such as soil, 

climate and logistic factors [33,34,see also 35,36]. However, this enhancement makes a 

theoretical optimal solution difficult and demanding in terms of computational costs [37]. 
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In brief, despite the clear policy orientation, the economic subsidies and the strong market 

potential, the actual extent of dedicated bioenergy crops is rather limited [38,39]. Moreover, 

very few data regarding their actual location are currently available [10]. On the one hand, 

most of the studies dealing with this type of feedstock tended to assess its production potential 

based on deterministic approaches and conservative assumptions regarding land use technical 

potential [5,11]. Examples are constraining the area dedicated to energy crops either (i) to a 

percentage of the total agricultural area [40,41], (ii) to marginal lands [42–45] or (iii) to the 

refereeing of “food – feed – nature” or more complex paradigms [22,46–48]. On the other 

hand, real data shortcomings led research so far to prefer computer simulations to evaluate the 

potential spatial distribution of energy crops, mostly adapting available process-based 

modelling [e.g., 49–53]. Nevertheless, where real data are available, empirical models 

perform better [54] and have even been required to improve the assessment of biomass 

resource potential at the landscape level [5,14].  

To handle real data on energy crop location, recent literature has explored the use of the 

methods that were originally developed for modelling wild species distribution [e.g., 55,56]. 

These models commonly use associations between environmental variables and either 

presence-only or presence-absence data [57]. Presence-only methods have the advantage of 

relying on very limited datasets, even though they cannot properly handle the role of farming 

practices in overcoming the environmental constraints to species diffusion [54]. In this work, 

we used a gradient boosting machine because it is a promising technique used to model 

species distribution [58]. Also known as boosted regression trees (BRT), this method is an 

extension of the classification and regression models (also known as CART). A practical 

advantage of BRT as a tree-based method is that it can handle complex data (i.e., skewed 

distributions, non-linearity and continuous and categorical data), with no need for variable 

pre-selection because non-informative predictors are ignored [59].  

We restricted our modelling to miscanthus (Miscanthus x giganteus Greef et Deuter), 

which is often considered a promising crop for energy production [7,53,60] and expected to 

have very high potential yield increase in future decades by breeding for minimal input and 

improved management [5]. Miscanthus presents high yield potential, requiring low input 

levels [61–64] and high carbon sequestration capacity [65]; thus, it is likely that it will 

beneficially reduce greenhouse gas emissions [8]. Furthermore, this crop has advantages over 

short rotation coppices or other perennial energy crops because it requires very little 

adaptation of farm equipment [25]. Nevertheless, the effective suitability of the use of 

miscanthus for energy production depends greatly on the location of this crop and the land use 

changes that are induced by its adoption [17,66–68].  

The aim of our study was to identify realistic prospective locations for miscanthus based 

on real spatial distribution data. The BRT model of miscanthus spatial location used the crop 

presence-absence occurrence as a response variable and explanatory variables derived from 

real farmers’ criteria. This approach allowed us to achieve a model that, starting from detailed 

interviews with miscanthus growers of an existing supply area, was then used to predict 

miscanthus locations at a regional scale. The results were evaluated under alternative 

scenarios and distribution constraints.  
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2. MATERIAL AND METHODS 

The general methodology of our approach for modelling and predicting the miscanthus 

spatial location is illustrated in the graphical abstract. We elaborated a training dataset from 

the real miscanthus fields that were composing the supply area of the local transformation 

plant using the farmer’s block as the modelling spatial unit. The resulting model was then 

used to characterise the miscanthus locations and to predict its probable distribution in the 

study region. Finally, we analysed some probable legislative constraints that were identified 

in three scenarios. 

[FIGURE 1 about here] 

 

2.1. Map of miscanthus presence/absence for the supply area  

Miscanthus was established in France only recently, yet it steady increased from the 

approximately 200 hectares and 87 farmers in 2006 [69] to 2,000 hectares in 2009 [70] and 

was estimated to occupy a maximum of 3,000 hectares in 2011 [71]. We mapped the real 

location of miscanthus fields in the supply area of a miscanthus transformation plant – the 

Bourgogne Pellets cooperative – located in Burgundy, east-central France (Fig. 1). Our focus 

was on the fields that were planted between 2008 (beginning of the cooperative activities) and 

2011. Finally, we covered 386 hectares of miscanthus corresponding to 197 fields managed in 

total by 75 farmers (Tab. 1).  

Then, the real miscanthus fields were associated to the farmer’s block as mapped in the 

French land parcel identification system (LPIS), which is the spatial component of the 

integrated administration and control system (IACS [72]). We chose the LPIS (reference year 

2009, scale 1:5,000) of the French Agency for Service and Payments of the EU Common 

agricultural Policy subsidies [73] because it provided the highest resolution land use map. It is 

worth noticing that the spatial relation established in the LPIS between the real agricultural 

field – a continuous area of land on which a single crop group is cultivated by a single farmer 

– and the reference parcel – the target for subsidies’ payment – is interpreted differently by 

the Member States [74]. In France, the reference parcel is the “farmer’s block”, which is 

defined by the aggregation of neighbouring agricultural fields cultivated by the same farmer 

(Fig. 2). Each farmer’s block is described by the non-localised surface of its land use(s) and a 

code allowing for the aggregation of the blocks belonging to the same farmland [73]. Of note, 

miscanthus is not included among the land use classes declared by famers.  

The ratio between each real miscanthus field and the related farmer’s block was measured 

and then labelled as “miscanthus presence” the farmer’s blocks where miscanthus had a 

surface greater than 85%. This threshold allowed us to select blocks that can be approximated 

to miscanthus fields, taking into account the possible geometric mismatch between the real 

field and the LPIS block. Indeed, in our case study we found that with lower thresholds also 

mixed farmer’s blocks would have been labelled as miscanthus field (cf. Fig. 2b,c), thus 
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introducing a bias in the learning method. Taken together, we obtained 118 farmer’s blocks 

labelled “miscanthus presence” (Tab. 1). The upscaling from field to farm level, to map the 

miscanthus absence, was realised by mapping the farmland of each farmer who owned at least 

one farmer’s block labelled as “miscanthus presence”. This was possible because in the LPIS 

dataset the farmer’s blocks belonging to the same farmland are identified by a unique identity 

code. We labelled “miscanthus absence” all of the parcels that had none or less than 85% of 

miscanthus surface. The underpinning hypothesis was to model the farmer’s spatial 

management regarding miscanthus in the context of the overall farm level management to 

consider his/her main land management units [29]. Finally, the whole dataset was composed 

of 1939 farmer’s blocks.  

 

[FIGURE 2 about here] ; [TABLE 1 about here] 

 

2.2. Explanatory variables composing the training dataset 

Martin et al. [75] retrieved a list of the farmers’ most relevant criteria through 

comprehensive interviews. Hereby, we further analysed the results concerning 9 farmers. To 

date, 7 of these farmers deliver miscanthus to the local transformation plant: their land 

represents approximately 14% of the total miscanthus surface included in the supply area, 

which is managed by a total of 75 farmers (Tab. 1). Our focus was on the farmers’ criteria at 

the farmer’s block and farm levels for miscanthus that was planted during the 2008-2011 

period. We ranked the criteria for their relevance (Tab. 2) according to the frequency in which 

they occurred in the farmers’ decision making processes and then regrouped them as 

agronomic characteristics, morphological criteria and contextual criteria. The land cover and 

the inclusion into protected areas were not used in the model, as explained below (section 

4.2). The farmers’ criteria were then translated to a set of explanatory variables that were used 

to compose the training dataset (Tab. 2) for the machine learning method. All of the geodata 

processing was performed in ArcGIS 10 (ESRI; Redlands, CA, USA) with specific tools 

detailed in the following paragraphs.  

2.2.1. Agronomic characteristics  

Soil-related properties express the local land suitability and the field accessibility for 

harvest. The only data available covering the entire area came from the European soil 

database v.2 (scale scale 1:1,000,000 [76]). The farmer’s blocks were intersected with the soil 

map to retrieve the predominant values for topsoil water capacity and soil texture for each 

modelling unit. The distance to rivers was used as a proxy of waterlogging – especially in 

terms of floodability and soil draining capacity – and was calculated with a spatial join 

between LPIS and BD Carthage
®
 (1:50,000, IGN). Actually, miscanthus performs the better 

in moist lowland habitats [cf. 77,78] even though exceeding soil water, such in the case of 

regularly flooded fields, can seriously hamper this rhizomatous crop.  
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2.2.2. Morphological criteria  

The size and shape of a field influence its accessibility to machinery, thus impacting its 

management. Complex-shaped and/or small fields can be associated with low labour time 

efficiency [79–81], which is eventually considered disadvantageous for cash crops in farm 

management. Accordingly, miscanthus was considered by farmers as a relevant alternative 

because it is a low-intensity labour crop whose work requirement is generally limited to 

harvesting once the crop is fully established. First, we measured the farmer’s block surface.  

In addition, we evaluated the farmer’s block geometry through the classic perimeter/area ratio 

(proxy of the narrowness) and the shape index (proxy of shape complexity) using Patch 

Analyst [82]. The shape index was computed by dividing the perimeter by the square root of 

the polygon area, then adjusting for the circular standard. Hence, it is equal to 1 for polygons 

close to the shape of a circle, and it increases with increasing shape irregularity. Finally, the 

local topography was captured as maximum values of elevation and slope for each famer’s 

block, calculated from the BD Alti
®
 (raster resolution of 25 m, IGN) and resumed with 

Geospatial Modelling Environment [83].  

2.2.3. Contextual criteria  

Remoteness and accessibility, two complementary features characterising the famer’s 

block within the overall farmland, were approximated as Euclidean distances. We measured 

how far the farmer’s block centroid (computed with XTools v9.1 [84]) was from the 

transformation plant, the farmland centroid and the three types of roads used by agricultural 

machinery: single roadway, gravel road and pathway (BD TOPO
®
, IGN). Notably, the 

farmland centroid was selected as the best proxy of the farmstead – whose location is 

unknown due to privacy protection – and was calculated for the multipart feature resulting 

from the aggregation of all of the parcels sharing the same farmer identity code.  

The close proximity of the field boundary to woods can facilitate the presence of wild 

animals (mainly wild boars) in the cultivated fields, potentially increasing damages to 

agricultural production [85–87], especially for maize and other cereals [88]. Miscanthus was 

considered by some farmers as a turnaround to this issue because it is less prone to costly 

damages than food crops; thus, parcels surrounded by woods are more likely to be targeted for 

planting miscanthus. Therefore, we measured the boundary that the farmer’s block shared 

with woods as the linear length of the parcel boundaries shared with the neighbouring woods. 

Only woods larger than 25 ha – located using the Corine Land Cover map year 2006, land 

cover code 31 [89] – were retained for the analysis. We added a buffer of 30 m to account for 

shading, for the disruption of machinery circulation due to tree branches and for the 

consequent reduction of the practicable surface of the farmer’s block. In conclusion, we 

measured the length per farmer’s block of the buffered woodland linear boundary using the 

Geospatial Modelling Environment [83]. Lastly, we defined the closeness to built-up areas as 

a binary variable (yes/no). The build-up contours were derived from the BD Parcellaire
®

 

(IGN) and a buffer of 10 m was added to account for possible geometric errors and nearby 

roads.  
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[TABLE 2 about here] 

 

2.3. BRT model set-up and analysis of the results 

The presence/absence of miscanthus at the farmer’s block level was modelled on a training 

dataset composed of 1939 farmer’s blocks that were characterised using 13 response variables 

out of the 15 total explanatory variables (Tab.2). We applied BRT that had been implemented 

for the R statistical environment [90] by the set of functions included in the ‘gbm’ [91] and 

‘dismo’ [92] packages. The optimal BRT parameterisation was identified by testing different 

values for the tree complexity (tc) and the learning rate (lr). The tc expresses the interaction 

depth, where 1 implies an additive model with only a main effect, 2 implies a model with up 

to 2-way interactions and so forth [58]. The lr expresses the contribution of each tree to the 

growing model. The greater the tc, the smaller the lr should be kept because it shrinks the 

contribution of each tree, finally improving the model estimation reliability [93]. The best 

predictive performances were those that allowed for maximising the area under the receiver 

operating characteristic (AUC-ROC) that was calculated from a 10-fold cross-validation 

procedure. Finally, the best trade-off between performances and computation time was 

achieved with tc = 3, lr =0.001 and 5050 trees. The model yielded a miscanthus location 

probability ranging between 0 and 1 for each farmer’s block. 

The first goal of our model was to provide an insight into the variables’ role to explain the 

miscanthus location. Although BRT models, likewise other linear combinations of multiple 

regression trees, are sometimes argued to be less interpretable than simple two-dimensional 

binary trees [93,94], they can be effectively summarised in different ways. First, they evaluate 

the role of explanatory variables by ranking their relative influence [91]. The rank derives 

from the number of times a variable is selected for splitting, weighted by the squared 

improvement to the model and averaged over all of the trees. Second, partial dependence plots 

can be obtained to provide a low-dimensional representation of the dependence of the model 

approximation on the explanatory variables. In fact, these plots show the effect of each 

predictor on the presence/absence of miscanthus accounting for the average effects of all other 

variables in the model. Notably, they provide a reliable representation of the effects of each 

variable, except the case of variables with strong interactions [58].  

 

2.4. Using BRT model to predict miscanthus location in the study region 

Understanding the features that could explain the farmers’ decision to plant miscanthus in 

a field is important, but is this knowledge applicable to wider areas? To answer this question, 

we used the selected best BRT model to predict the miscanthus location probability in the 

region where the supply area is placed. We ran the model on four out the five departments 

(NUTS-3 level in the European classification) in the current supply area. The Jura department 

was excluded because the LPIS data for the year 2009 described only a small portion of the 
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local agricultural area. In the study region (29,017 km
2
; 46°10′ to 48°40′N and 3°38′ to 

6°49′E) agricultural land covers approximately 17,834 km
2
 (Corine Land Cover data [89]), of 

which 41.2% is managed as arable land and 43.1% as grassland. The remainder consists of 

permanent crops (1.5%), such as vineyards that produce high quality wine, and heterogeneous 

areas (14.2%). The great majority of arable lands and grasslands is included also in the LPIS. 

2.4.1. Characterising miscanthus predicted location on two thresholds 

The characteristics of the farmer’s blocks were then compared with two arbitrary 

thresholds for the predicted miscanthus presence:  

(i) 0.1 was chosen according the probability distribution to investigate a possible upper 

limit for the adoption of miscanthus in the study area, albeit not in greater than 5.24% of the 

study region agricultural area (cf. section 3.3);  

(ii) 0.7, to focus only on the specific (i.e., most probable) miscanthus location.  

First the variance homogeneity was assessed for each variable using the Bartlett test and R 

software. A one-way ANOVA test was performed, and then, the explanatory variable mean 

values were compared using Tukey’s significant difference mean test (P<0.05 [95]). 

2.4.2. Investigating legislative land use scenarios  

We modelled the miscanthus location and predicted its probable location claiming the 

central role of the farmers’ criteria. Nevertheless, the farmers’ entrepreneurial choices could 

be constrained by future evolution both in sectorial policies and regulations. Currently, 

dedicated energy crops are specifically targeted by environmental regulations to foster 

sustainability and limit environmental impacts (e.g., Renewable Energy Directive 

2009/28/EC) with stricter legislations than those regarding food crops. As mentioned above, 

bioenergy crop location is an important issue regarding the competition between food, non-

food and natural areas at the world scale [e.g., 51]. To address adverse land use change effects 

that are induced by energy crop expansion, policy makers could consider avoiding the 

conversion of protected natural areas and of grassland [5,22]. To investigate related possible 

land use scenarios, we compared three different subsets of the miscanthus predicted location, 

each representing a different level of potential legislative constraints:  

 Business as usual – the unconstrained baseline BRT model where miscanthus is 

located exclusively depending on the farmer’s management criteria.  

 Protected areas constraint – provides information on the exclusion of protected areas 

from the baseline scenario. Hence, we dropped off the farmer’s blocks that were 

included in the most relevant local, regional and national protected areas (Tab. S1 

[96]).  

 Grassland constraint – accounts for the possible prohibition of replacing grasslands 

with miscanthus. Such a land use change is debated because it could increase CO2 
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emissions and reduce biodiversity [97]. Grassland conversion to other agricultural 

land is already very limited under European law [98], thus increasing the relevancy of 

this constraint. Accordingly, for this scenario, we removed the farmer’s blocks for 

which “grassland” was declared as the predominant land use in the LPIS data (Tab. 

S2) from the baseline scenario results. 

Finally, we compared the potential miscanthus area included in the two scenarios and their 

combination to the baseline scenario. In this way we assessed the effects of high probable 

land use change constraint on the miscanthus surface of the study area, further detailed for 

increasing (i.e., 0.1 step) predicted probabilities. 

 

 

3. RESULTS 

The best selected model yielded a value of 0.793 for the AUC-ROC, indicating good 

predictive performances.  

3.1. Important explanatory variables for the supply area 

The farmer’s block surface is the most important variable for explaining the miscanthus 

spatial location. In addition, three contextual variables played an important role: the woodland 

boundary length, the distance to the transformation plant and the distance to the farmland 

centroid. Altogether, these four variables contributed 73.4% of the model structure (Fig. 3a). 

The farmer’s block elevation showed some influence too, although it was slightly smaller than 

expected due to chance (i.e., smaller than 7.7%) compared to the remaining variables that 

were largely above this threshold.  

[FIGURE 3 about here] 

The partial responses for the presence/absence of miscanthus (Fig. 3b-f) indicate that this 

crop is more likely to be located in small famer’s blocks (but not the smallest ones), with a 

probability that drastically declines with the increasing of the surface up to 10 hectares (Fig. 

3b). In a symmetric way, the probability of miscanthus presence is directly proportional with 

the increase in length of woodland boundary, although stable for any length greater than 

approximately 200 meters (Fig. 3c). In addition, the model indicated that miscanthus is more 

likely to be located immediately around the transformation plant, with a constant increase for 

any distance greater than 10 km, and a peak at approximately 30 km from it (Fig. 3d). A 

possible explanation could be that the transformation plant was originally a sugar refinery, 

thus the surrounding area was more suited for the high demanding sugar beet than for 

miscanthus. Finally, miscanthus is preferably located, according to the training dataset we 

used, in land parcels extremely close to the farmland centroid (i.e., less than approximately 

200 m) and with an increasing probability within a radius of 2-5 km. In summary, the model 
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indicates that small farmer’s blocks with a relatively significant presence of woodland 

boundary and distance from the farmland centroid are more likely to be considered by farmers 

for planting miscanthus, especially those blocks located within a radius of 10-30 km from the 

transformation plant and in plains (elevation smaller than 200 m). 

 

3.2. Characteristics of the predicted miscanthus location in the study region  

In the study area, the median surface of a farmer’s block is 2.9 hectares and is bigger for 

arable land (3.8 ha) and smaller for grassland (2.6 ha) and set-aside (0.9 ha) or other land uses 

(0.4 ha) (see Tab. S2 for details). To evaluate the possible distinctive features of the predicted 

miscanthus location, we compared the farmer’s block properties for two probability 

thresholds (Tab. 3). The miscanthus presence for the more general threshold (>0.1) was 

predicted for parcels that were significantly smaller, narrower and had a more complex shape 

than the remainder of the agricultural area. These parcels are also closer to rivers and have an 

“easier” morphology (lower slope and altitude), in addition of being farther both from the 

farmland centroid and from the road. Unexpectedly, the farmer’s blocks with a miscanthus 

location probability greater than 0.1 also had a smaller length of woodland boundary 

compared to the remaining parcels.  

Similarly, the miscanthus presence for the more specific threshold (>0.7) was predicted for 

parcels smaller and with a more complex shape than the remainders, as well as more distant 

from rivers and remarkably farther from the farmland centroid and from the road (Tab. 3). No 

differences emerged instead regarding the narrowness (i.e., perimeter/area ratio) or the slope, 

whereas the elevation differences were not evaluable using Tukey’s test. Noticeably, the 

miscanthus presence for the higher probability threshold (>0.7) yielded a significantly greater 

length of woodland boundary. It can be concluded that in our study area, miscanthus would be 

more likely to be located in somewhat “residual” parcels characterised both by small surfaces 

and complex shapes that are rather isolated from the farmland centroid and distant from the 

road although close to the rivers.  

Raising the probability threshold – from 0.1 to 0.7, to intercept the more specific pieces of 

land where farmers might grow miscanthus – reduced the prominence of the morphology but 

increased the role of the extended woodland boundary. In summary, it seems that the small 

complex farmer’s blocks are weighted for their morphology when considered in general terms 

for locating miscanthus, whereas the closeness to woodland becomes important when famers 

might specifically evaluate the miscanthus location. This importance can be due to the greater 

weight of woodland boundary in reducing the exploitable surface for shadowing, impacting 

on small land parcels more than the big ones.  

 

[TABLE 3 about here] 
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3.3. Comparison of the three scenarios  

Considering the criteria of the farmers who currently grow miscanthus in the study area, 

approximately 21% of the farmer’s blocks, corresponding roughly to 5% of the total 

agricultural area, showed a miscanthus location probability greater than 0.1. Only 0.26%, 

representing 0.06% of the total agricultural area, received a probability greater than 0.7 (Tab. 

4). In contrast, the probability that miscanthus might cover a substantial part of the 

agricultural area (approximately 95%) is quite low (less than 0.1) considering the current 

criteria of the miscanthus growers.  

[TABLE 4 about here] ; [FIGURE 4 about here] 

The evaluation of possible legislative scenarios further reduced these results (Fig. 4). A 

total of 40.3% of the farmer’s block surface is included in protected areas (i.e., 604,248 ha) 

and 51.1% has grassland as the major land use (i.e., 767,387 ha) (Tab. S2). Of note, 

approximately the 48% of the grassland declared in the LPIS for the study area is in protected 

areas (i.e., 365,045 ha). Hence, as expected, the exclusion of farmer’s blocks in protected 

areas reduced the total agricultural area by 40%. For the probability thresholds greater than 

0.1, the impact was even larger: the potential miscanthus surface was reduced by 

approximately two-thirds compared to the baseline scenario (Tab. 4). The impact of a possible 

grassland constraint (i.e., dropping off farmer’s blocks with grassland as the major land use) 

was generally larger than the protected area constraint, with a reduction ranging from 51% 

and 60% of the baseline scenario.  

Noticeably, combining the two constraints and thus avoiding locating miscanthus in 

protected areas and replacing grassland induced a reduction from 67% to 88% (for increasing 

probability thresholds), which was much larger than expected. In fact, the farmer’s blocks that 

are currently used for grassland inside protected areas represent only 24.3% of the total 

agricultural area. 

4. DISCUSSION  

4.1. The input data and the method  

The farmer’s block, as mapped in the LPIS, was identified as the spatial modelling unit 

because it was the best proxy of the real field targeted by farmers to locate miscanthus. This 

spatially disaggregated agricultural land use map is available, with some differences, all over 

Europe [74] and supported some recent applications to evaluate the potential for energy crops 

[34,36]. The main drawback of LPIS, at least in the French and German versions, is that 

miscanthus is not explicitly recorded. Therefore, additional sources are needed to make the 

presence-absence modelling of miscanthus (or other bioenergy crops) applicable in different 

study regions. 
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Reliable data on (novel) bioenergy crop location and of farmers’ criteria that are used to 

decide their adoption are quite unique, even though they are crucial to assess the accuracy and 

uncertainty of process-based modelling results for policymakers [10,99]. To date, resource-

focused (bottom-up) approaches such as ours have been preferably developed using agent-

based methods, which allow for accounting and simulating the farmers’ planting decision 

[10,33] or by using artificial neural networks [35]. We tested the relevance of a novel method, 

BRT, to provide salient results about real miscanthus location modelling. BRT combines the 

strengths of decision trees (i.e., delivering a clear support for decision making) and of 

boosting, which key idea is that the combination of many weak models can provide a better 

performance than a single strong model because more robust against over-fitting probabilities 

[58]. Recent applications of BRT models include, for example, investigation on land use 

changes [100,101] and the spatially explicit assessment of forest harvesting [102] and of 

forest co-products biomass availability [103].  

4.2. Thematic considerations on the findings  

Studies investigating the potential of lignocellulosic biomass plantations, especially those 

based on biophysical potential and economic assessments, may introduce land use constraints 

(like the “food first”) to reduce adverse effects of prospected large-scale biomass cultivation 

[21,22,49]. However, real-world figures show an uptake that is fairly lower than even more 

prudent scenarios [7,39,104]. The small-sized farmer’s block that was predicted by our model 

to be relevant for locating miscanthus (Fig. 3b and Tab. 3) seems to provide a possible 

explanation, at least in our study area. One can presume that the parcels that are adjacent to a 

farmer’s block where miscanthus is likely to be located are equally suitable. However, the 

farmer’s decision criteria – especially those related to the spatial configuration and 

characteristics of the fields – may drastically reduce the surface that is likely to be grown with 

this crop (see also [36]). Briefly, during this early stage of the miscanthus adoption, our 

results indicate that even favourable farmers, who passed the first barrier of the adoption of 

this new crop, may show their aversion to investing in wide surfaces.  

The small and complex-shaped farmer’s blocks that were expected to be grown with 

miscanthus in the study region are also characterised by their great distance from the farm and 

the roads (Tab. 3). Compared to the general features of the local agricultural area (Tab. 2), 

these characteristics could provide a different perspective on the definition of “marginal land” 

thus enhancing the current literature that appears to be mainly focused on the temporary or 

permanent decline of the productive capacity [5]. Marginal land is frequently defined in an 

absolute way (e.g., small fields, complex landscape context, inclusion in abandoned areas, 

etc.), whereas the FAO highlights altogether the presence of “limitations which (…) are 

severe for sustained application of a given use” [105]. In line with this we deem more relevant 

to identify the marginal land in a relative way including also the local farmland 

characteristics, such as the field shape complexity and the distance from the road and from the 

farmstead (or the collection point). These types of results may complete the research of 

Harvolk et al. [34], who investigated the ecological potential of miscanthus in marginal lands 

assuming a random choice of fields. We went further stressing out the attributes of a land 
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parcel that could make it marginal in the farmers’ point of view. We extended on this point 

the considerations by Shortall [106] who analyzed the main definitions of “marginal land”, 

classified either as normative (i.e., “unsuitable for food production” or of “ambiguous low 

quality”) or as predictive (i.e., economical marginality). Whether the former appears to be 

centered on inherent characteristics of the land evaluated against a specific purpose (mainly 

food production), the latter makes explicit the possibility that the “marginal” condition might 

evolve under a different set of price conditions for inputs and the product [106 p. 23]. Our 

study could add a third point because it deals with the marginality as seen by farmers of a 

given region linking the field, the farm and the landscape levels. Finally, by tackling together 

the natural features of the land (agronomic characteristics), its morphological characteristics 

and the farming contextual aspects (Tab. 2) we addressed the location of miscanthus in 

marginal lands with a landscape agronomy approach [107]. 

More in general, in our study area farmers pointed-out the relevant role of current land use 

in their decision making regarding the field to be planted with miscanthus (Tab. 2). Indeed, 

the interviews [75] also highlighted that the land use could mask other criteria, thus 

overlapping with some of the aforementioned explanatory variables. For these reasons, we did 

not take the land use into account in our model, arguing that its actual role would be 

expressed by the combination of the other explanatory variables (see Fig. S1 and S2 about the 

variable interactions). Moreover, farmers claimed interest in the option to plant miscanthus in 

parcels in protected areas. Miscanthus is actually a low-input crop [64] that could therefore 

easily meet the protected area rules, yet provide a (greater) income than opting for set-aside or 

even grassland land use [75]. As the national and European legislation is not yet settled on 

this matter, we preferred not to consider this variable, as it could express location practices 

that will be forbidden in the future.  

Other variables, such as proximity to built-up, however, can be rather ambivalent in the 

farmers’ decision making regarding miscanthus location. While such a feature raises concerns 

regarding the possible visual impacts and landscape closing [108,109], some farmers consider 

proximity to buildings (and settlements) as persuasive because miscanthus is a low/no-input 

crop, thus conveying a good image of agriculture. 

Finally, nothing can be concluded about the preferences for field soil characteristics. Due 

to a lack of higher resolution data covering the whole area, we used the European soil 

database that allowed a simplified identification of soil texture and water available content.  

 

4.3. Perspectives for further application 

Bioenergy production has complex interactions with other social and environmental 

systems [1]. In fact, bioenergy policies need to consider regional conditions along with the 

crop, livestock and forestry sectors [5,22]. However, the impacts and performances of 

bioenergy production are region- and site-specific, and the effective integration of economic 

models with a fine-scale land use model still remain a research challenge [23,35].  
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For example, the distance to the transformation plant has a relevant influence on the 

adoption of miscanthus because it is a low energy density crop [39]. We addressed this issue 

by calculating the Euclidian distance from each farmer’s block to the plant, even though the 

real transporting distance should consider the actual road network. Nonetheless, a precise 

estimation can be difficult because farmers and contractors usually use small local roads (not 

ever mapped in the available data) and try to avoid crossing villages to prevent nuisances, 

eventually resulting in non-linear routes. In addition, farmers may use intermediate collection 

sites (whose location is not easily retrievable) in the farmland, thus splitting the total distance 

into two or more segments.  

A more detailed estimation or a direct survey of distances from the farmer’s blocks to the 

transformation plant, either considering or not considering the intermediate collection sites, 

could be relevant for improving the actual transportation logistic. This type of model 

improvement could be used in the predicting step to assess the optimal location of new 

transformation plants in the study region. Indeed, further scenarios could be developed 

coupling the predicted miscanthus location probability with an appropriate spatially explicit 

model to also evaluate the potential yields. However, more work is needed to understand the 

dynamics between miscanthus supply distribution and the potential location of plants 

[39,110].  

 

5. CONCLUSION  

We proposed a spatially explicit method based on real miscanthus locations to improve the 

understanding of farmers’ criteria and to predict the location of miscanthus for different 

probability thresholds at a landscape level. Publicly available data were preferred when 

available to make the model easily replicable. Altogether, the main strength and novelty of the 

model and the prediction we proposed are to stick with such complex reality from the 

farmers’ perspectives with a very fine-scale resolution, finally spanning from the field to the 

landscape level. This proposition is advantageous because it allows for to grasp all of the 

complexity of the farmers’ styles while avoiding the flattening required by some modelling 

approaches on few farmers’ types (to avoid complex models and restrain the working 

hypotheses). More accurate modelling approaches would require shifting to case-based 

reasoning methods [111], which are in the early phase of development concerning the 

treatment of spatially explicit problems [112–114]. In contrast, the validity domain of our 

work could be somewhat dependent on the characteristics of the study region. Therefore, we 

look forward to replicating the model in different contexts (e.g., in terms of regional 

topography and field pattern structure) to better understand its sensitivity to the study region 

characteristics.  

Our results provide a snapshot of a static economic context, namely characterised by low 

prices for miscanthus, which can be considered as a baseline potential. Alternative scenarios 

could address variations in the list and the weight of location decision criteria or foster higher 
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miscanthus adoption to meet policy expectations. Nevertheless, we maintain that the direct 

involvement of farmers is required to ensure that the model properly grasps the complexity of 

the local farming systems and provides reliable salient results for policy making. 
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APPENDIX A. SUPPLEMENTARY DATA 

 

Table S1. Characteristics of the protected areas considered for the scenarios. 

 

Table S2. Characteristics of the farmer’s blocks according to the major land uses in the study 

area. 

 

Figure S1. Diagram of the most important pairwise interactions for the complete (all the 

variables listed in Tab. 4) and the partial models (the variables used for the final model). 

 

Figure S2 Three-dimensional partial dependence plots for the strongest pairwise interactions 

in the selected model. 
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FIGURE CAPTIONS 

 

Fig. 1 Location of the supply area within the study region and topography of the agricultural 

area (source: land parcel identification system, year 2009 and IGN data).  
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Fig. 2 Diagram comparing the agricultural field and the farmer’s block as mapped in the 

French land parcel identification system. Fig. 2a: simple field (i.e., one land use) coincident 

with a farmer’s block. Fig. 2b: farmer’s block composed of several fields (i.e., different land 

uses) one of which is miscanthus extending for less the 85% (i.e., under the threshold of 

“miscanthus presence”). Fig. 2c: farmer’s block composed of several fields one of which is 

miscanthus extending for more than 85% of the surface (i.e., above the threshold of 

“miscanthus presence”). 
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Fig. 3 Main results of the miscanthus location model for the supply area. Fig. 3a: relative 

importance of miscanthus location explanatory variables; values are in percentage, normalised 

to sum to 100 and longer bars represent greater relative influence of the explanatory variable. 

The red dotted line marks the threshold beyond which the relative influence is greater than 

expected to chance. Fig. 3b-f: marginal effects of the first five explanatory variables on the 

probability (expressed as logit(p)) of presence-absence of miscanthus. The partial dependence 

plots illustrate the change in the logit of the probability (log-odds on the y-axis) along a given 

explanatory variable (x-asis), holding all other constant: higher median values correspond to a 

higher likelihood of famer’s block selection for locating miscanthus. Percentage values 

express the variable relative importance for the overall model. Solid black lines show the 

smoothed fitted function, dashed red lines show the original value. Rug plots at the inside 

bottom of plots show distribution of parcels across that variable, in deciles. 
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Fig. 4 Probability of miscanthus spatial location predicted with the BRT model for the study 

region and constraints used in the prospective scenarios.  
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Miscanthus spatial location as seen by farmers: a machine 

learning approach to model real criteria  

 

Rizzo, Martin, Wohlfahrt – INRA SAD-ASTER,  

corresponding author: ridavide@gmail.com (Rizzo Davide) 

 

TABLES  

 

Table 1 Distribution  of  the  real  miscanthus  data  for  the  2008-2011  period.  Source:  

statistics on real miscanthus field map. 

  2008 2009 2010 2011 Total 

Surface of real fields (ha) 

Total 3.5 100.7 204.3 76.9 385.4 

Range 1.0-2.5 0.2-4.0 0.3-14.3 0.2-15.2 0.2-15.2 

Mean (s.d.) - 1.5 (0.9) 2.3 (2.1) 2.0 (2.7) 1.96 (1.95) 

Number of new farmers/year   2 35 28 10 75 

Number of fields  2 69 88 38 197 

Number of farmer’s blocks
1
 

(miscanthus “presence” only) 
 1 46 48 23 118 

1 Farmer’s blocks in the land parcel identification system correspondent to the real fields 
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Table 2 Explanatory variables adapted from farmers’ criteria described by Martin et al. [75], and response variables (N=13) used to model 

miscanthus spatial location; (*) indicates categorical variables. For each variable essential statistics allow to compare the training dataset and the 

study area dataset used to model miscanthus location. 

Explanatory variables 

(Farmers’ decision criteria) 

Relevance Response 

variables 

(N=13) 

Description for the farmer’s 

block 

values Learning dataset 

(N = 1939) 

 Study area 

(N=263630) 

range mean 

(s.d.) 

median  range mean 

(s.d.)  

median 

Agronomic characteristics            

Soil water availability •••• AWC* Available water content in the 

topsoil  

medium (100-140 mm/m), 

high (140 -190 mm/m), 

very high (>190 mm/m), 

missing data 

- - high  - - high 

Waterlogging •• RivDist Distance to river as proxy of 

floodability and/or draining soils 

meters 0-3245 456 

(466) 

333  0-7009 550.62 

(719.38) 

324 

Soil mechanical properties • Text* Soil texture coarse (1) to fine (4) - - 2  - - 3 

Morphological criteria            

Size •••• PHa Surface hectares 0.02-

77.90 

5  

(6.2) 

2.98  0-

383.43 

5.69  

(8.46) 

2.86 

Geometry •••• PSI Shape complexity adjusted for 

circular standard (1 if close to 

the circle shape, greater 

otherwise 

- 1.01-

4.47 

1.51  

(0.4) 

1.39  1-9.41 1.5  

(0.39) 

1.39 

PPAR Perimeter/area ratio (the greater 

is the value, the narrower is the 

farmer’s block) 

meters/hectares 54.3-

3599.7 

412.7 

(355.7) 

306.20  31-

16669.2 

415.15 

(369.94) 

310.10 

Slope • PSlope Maximum slope percentage 0.0-

43.1 

3.6  

(3.5) 

2.20  0-111.5 10.7 

(8.3) 

8.30 

Topography • PAlt Maximum elevation meters 175-

438 

206  

(28) 

200  115-

1215 

312 

(99) 

301 

Contextual criteria            

Remoteness ••• PlantDist Distance from the farmer’s block 

centroid to transformation plant 

meters 479-

62729 

17899 

(11825) 

15803  390-

169308 

75522 

(33993) 

74037 
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Explanatory variables 

(Farmers’ decision criteria) 

Relevance Response 

variables 

(N=13) 

Description for the farmer’s 

block 

values Learning dataset 

(N = 1939) 

 Study area 

(N=263630) 

range mean 

(s.d.) 

median  range mean 

(s.d.)  

median 

FarmDist Distance from the farmer’s block 

centroid to farmland centroid 

(see text for detail) 

meters 68-

29140 

3245 

(3228) 

2165  0-

191615 

3015 

(4562) 

1732 

Accessibility ••• RoadDist Distance to the closest road meters 0-221 5.4 

(17.7) 

2  0-584 7.1 

(25.2) 

2 

Proximity to wood ••• PWbm Linear length of the farmer’s 

block boundaries shared with the 

neighbour wood (with a 30m 

buffer) 

meters 0-1217 53 (141) 0  0-5863 93 

(242) 

0 

Proximity to build-up •• PUrb* Contact with built-up area (with 

a 10m buffer) 

yes, no - - no  - - no 

Other criteria            

Land cover ••• - Prevalent land use type (e.g., 

grassland or arable) 

Cf. table S2        

Inclusion in protected areas •• - Whether the land block is inside 

in a local or regional level 

protected area 

Cf. table S1        

Response variable     

Miscanthus presence-absence  MisPoP* “Presence” if miscanthus surface 

>85% of the farmer’s block. 

“Absence” for block belonging 

to a farmland with >1 

miscanthus presence 

0 (absence), 

1 (presence) 

- - no     
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Table 3 Comparison of the explanatory variable mean values. Two thresholds of miscanthus location probability are considered: general 

(threshold 0.1) and specific (threshold 0.7). For each probability threshold, values in the same row with different letters (a, b) are significantly 

different (P<0.05) 

Miscanthus location probability 
General Specific 

≤ 0.1 > 0.1 ≤ 0.7 > 0.7 

Number of farmer’s blocks 
absence presence absence presence 

207520 56110 262968 662 

Farmer’s block surface (ha) 6.8 
a 

1.4
 b
 5.7

 a
 1.4

 b
 

Perimeter/area ratio (m/ha) 402.3
 a
 462.8

 b
 415.1

 a
 417.5

 a
 

Shape index (unitless) 1.49
 a
 1.55

 b
 1.50

 a
 1.57

 b
 

Woodland boundary (m) 100
 a
 70

 b
 93

 a
 203

 b
 

Distance to river (m) 572
 a
 472

 b
 551

 a
 356

 b
 

Slope (%) 10.9
 a
 9.9

 b
 10.7

 a
 11.1

 a
 

Elevation (m) 316
 a
 294

 b
 312

 *
 272

 *
 

Distance to the farmland centroid (m) 2913
 a
 3391

 b
 3003

 a
 7628

 b
 

Distance to the road (m) 5
 a
 14

 b
 7

 a
 28

 b
 

* test non-applicable due to variance heterogeneity 
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Table 4 Proportion of agricultural area predicted for planting miscanthus. Decreasing location probability (columns) and the three different 

scenarios are illustrated. (   ) Grey columns highlight the lower limit of the two thresholds identified for comparing location probability (see Tab. 

3 and the text for details) 

 Miscanthus location probability >0.9 >0.8-0.9 >0.7-0.8 >0.6-0.7 >0.5-0.6 >0.4-0.5 >0.3-0.4 >0.2-0.3 >0.1-0.2 0-0.1 

Baseline scenario Number of farmer’s blocks 43 202 417 759 1472 2667 5066 10945 34539 207520 

% on total farmer’s blocks  0.02 0.08 0.16 0.29 0.56 1.00 1.92 4.15 13.10 78.72 

Area (ha) 56.1 2879.8 570.4 1,049.1 1,956.9 3,412.1 6,583.8 14,338.9 50,433.6 1,422,147.0 

% on total agricultural area  0.004 0.02 0.04 0.07 0.13 0.23 0.44 0.95 3.36 94.76 

(Cumulated) (0.004) (0.02) (0.06) (0.13) (0.26) (0.49) (0.93) (1.88) (5.24) (100.00) 

Outside protected areas Area (ha) 17.4 117.4 299.6 553.8 920.9 1640.3 3183.0 7178.3 27115.7 855552.6 

% of baseline reduction 69 58 47 47 53 52 52 50 46 40 

Land use different from 

grassland 
Area (ha) 22.2 122.5 258.3 448.1 824.6 1491.7 2908.0 6150.9 20565.1 700649.0 

% of baseline reduction 60 56 55 57 58 56 56 57 59 51 

Outside protected areas 

with a land use different 

from grassland 

Area (ha) 6.7 53.3 151.6 275.1 444.4 790.7 1536.4 3386.8 12021.5 475570.5 

% of baseline reduction 88 81 73 74 77 77 77 76 76 67 
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Table S1 Characteristics of the protected areas considered for the scenarios. Source: Muséum 

national d’Histoire naturelle, 2013: National inventory of natural heritage. 

 Name Definition 

Included in the scenario "Arrêté de protection des 

biotopes" 

Departmental-level protected area defined by-law to 

protect local habitat or endangered species  

“Réserves biologiques” Natural reserve fostering the protection of 

woodlands and related habitats 

"Conservatoire des espaces 

naturels” 

Local associations, managing natural site also 

through land consolidation and knowledge 

dissemination 

National Park  

“Réserves naturelles 

régionales" 

Regionally defined long term protection of 

outstanding natural areas 

RAMSAR sites Site protected under the Convention on Wetlands of 

International Importance, especially as Waterfowl 

Habitat 

Biosphere reserves Part of the Man and Biosphere Reserve Programme 

IBA (in French: ZICO) Important Bird Area, recognized as being globally 

important habitat for the conservation of bird 

populations 

ZNIEFF 1 et 2 Natural Zone of Ecological interest for flora and 

fauna 

SCI (in French: SIC) Natura 2000 - Site of Community Importance as 

defined in the European Commission Habitats 

Directive (92/43/EEC) 

SPA (in French: ZPS) Natura 2000 - Special Protection Area designated 

under the European Union Directive on the 

Conservation of Wild Birds (79/409/CEE) 

Not included in the 

scenario 

Zone de conservation 

chasse et faune sauvage 

Protected areas for hunting activities and wildlife 

conservation 

Réserves maritimes Marine reserves 

Conservatoire du littoral Public organisation created in 1975 to ensure the 

protection of outstanding natural areas on the coast, 

banks of lakes and stretches of water of 10 square 

kilometres or more 

Regional Park   
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Table S2 Characteristics of the farmer’s blocks according to the major land uses in the study 

area. Values are expressed in hectares. Source: statistics and adaptation from the land parcel 

identification system, year 2009*. 

 composition 
Mean size 

(s.d.) 

Median 

size 

surface 

(inside or on 

the edge of 

parks) 

ratio on 

total  

Arable 

N= 104128 

Wheat, maize, barley and other winter 

cereals;  

rapeseed, sunflower and other oilseed 

and industrial crops, fibre plants;  

rice, grain legumes, fodder crops 

6.8 

(9.5) 
3.8 

707929 

(32%) 
 47.2% 

Set-aside 

N=8557 

Set-aside, either with no production, 

for industrial crop only or of other type 

1.9 

(3.3) 
0.9 

15901 

(41%) 
1.1% 

Grassland 

N=142688 

Permanent and temporary pastures,  

summer pastures and moorland 

5.4 

(7.9) 
2.6 

767387 

(48%) 
51.1%  

Other 

N=8257 

Seed crops, fruit groves and orchards, 

vineyards, nut-trees, olive groves, 

vegetables and flowers, sugarcane, 

other crops 

1.2 

(2.7) 
0.4 

9610 

(51%) 
0.6% 

Total 

N=263630 

total Land Parcel Identification System 

(LPIS) area 

5.7 

(8.5) 
2.9 

1500827 

(40%) 
- 

 

*ASP (2009) Agence de Service et de Paiement [Agency for Service and Payment]. Registre 

parcellaire graphique anonyme [French Anonymous Land Parcel Identification System]. 
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Figure S1 Diagram of the most important pairwise interactions for the complete (all the 

variables listed in Tab. 4: see article for details) and the partial models (the variables used for 

the final model). Circle diameter is proportional to the variable relative importance. 

Connector width is proportional to the relative strength of the interaction, whose value is 

indicated by the number on the connection.   

 

 

Figure S2 Three-dimensional partial dependence plots for the strongest pairwise interactions 

in the selected model.  
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