Journal article Open Access

Sensitivity analysis of Repast Computational Ecology models with R/Repast

Antonio Prestes García; Alfonso Rodríguez-Patón

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Individual-Based Modeling, Sensitivity analysis, Repast, Computational Ecology, Systems Biology</subfield>
  <controlfield tag="005">20200120153809.0</controlfield>
  <controlfield tag="001">160954</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid</subfield>
    <subfield code="a">Alfonso Rodríguez-Patón</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">584760</subfield>
    <subfield code="z">md5:de1d3ccb40e398aebab673d703b177f9</subfield>
    <subfield code="u"> - EE(RRepast).pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-10-15</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ecfunded</subfield>
    <subfield code="p">user-zenodo</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid</subfield>
    <subfield code="a">Antonio Prestes García</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Sensitivity analysis of Repast Computational Ecology models with R/Repast</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecfunded</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-zenodo</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">612146</subfield>
    <subfield code="a">Engineering multicellular biocircuits: programming cell-cell communication using plasmids as wires</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and simulation methods for studying ecological systems.  Among the existing modeling formalisms, the individual-based modeling is particularly well suited for capturing the complex temporal and spatial dynamics as well as the nonlinearities arising in ecosystems, communities or populations due to individual variability. In addition, being a bottom up approach, it is useful for providing new insights on the local mechanisms which are generating some observed global dynamics. Of course no conclusions about model results could be taken seriously if they are based on a single model execution and they are not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing the effect of input uncertainty in the simulation output which should be incorporated compulsorily to every work based on in silico experimental setup. In this paper we present R/Repast a GNU R package for running and analyzing Repast Simphony models accompanied by two worked examples on how to perform global sensitivity analysis and how to interpret the results.&lt;br&gt;
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.160954</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
All versions This version
Views 5757
Downloads 5656
Data volume 32.7 MB32.7 MB
Unique views 5757
Unique downloads 5555


Cite as