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Abstract 

Endocrine disruptor compounds (EDCs) are environment chemicals that cause harmful 

effect through multiple mechanisms, interfering with hormone system resulting in 

alteration of homeostasis, reproduction and developmental effect. Many of these EDCs 

have concurrent exposure with crosstalk and common mechanisms which may leads to 

dynamic interactions. To carry out risk assessment of EDCs’ mixture, it is important to 

know the detailed toxic pathway, crosstalk of receptor and other factors like critical 

window of exposure. In this review, we summarise the major mechanism of actions of 

EDCs with the different/same target organs interfering with same/different class of 

hormone by altering their synthesis, metabolism, binding and cellular action. To show 

the impact of EDCs on life stage development, a case study on female fertility affecting 

germ cell is illustrated. Based on this summarised discussion, major groups of EDCs are 

classified based on their target organ, mode of action and potential risk. Finally, a 

conceptual model of pharmacodynamics interaction is proposed to integrate the 

crosstalk and common mechanism that modulates estrogen into the predictive mixture 

dosimetry model with dynamic interaction of mixture. This review will provide new 

insight for EDCs’ risk assessment and can be used to develop next generation PBPK/PD 

models for EDCs’ mixture analysis. 

Keywords: Endocrine disruptor compounds (EDCs); toxicity mechanism; mixture 

interaction; common mechanism; crosstalk; PBPK/PD models.  

List of Abbreviations  
 

3MC: 3-methylcholanthrene 

5α-R: 5- alpha reductase 

ACTH: adrenocorticotropic 

hormone 

Ahr: aryl hydrocarbon receptor 

Ahrr: aryl hydrocarbon receptor 

repressor 

AKT: serine/threonine kinase 

AMH: anti-mullerian hormone 

AMPO: ammonium Perflurooctane 

ARC: arucate cell 

Arnt: aryl nuclear translocator 

AVPV: anteroventral periventricular 

nucleus 

BAX: BCL2 associated protein 

BCL2: apoptosis regulator 

BMP: bone morphogenetic protein 

BPA: bisphenol A 

CAR: constitutive androstane 

receptor 

CREB: cAMP response-element–

binding protein 

Cx43: connexin X 43 

CYP1A1: cytochrome enzyme A 

CYP1B1: cytochrome enzyme B 
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CYP19A: aromatase enzyme 

CYP450scc: cytochrome p450 side 

chain cleavage 

DBT: dibutylin 

DEHP: diethylhexyl phthalate 

DTCs: dithioarbamate chemicals 

ERE: estrogen response element 

E2: estrogen 

FAK: focal adhesion kinase 

Fas- membrane protein 

FasL: fas ligand 

Figla: factor in the germline alpha 

FOXO3: forkhead box proteins 

FSH: follicle stimulating hormone 

GATA4: transcription factor 

GDF: growth differentiation factor 

GH: growth hormone 

GJ: gap junction 

GJA1: gap junction alpha protein 

GnRH: gonadotropin releasing 

hormone 

GVBD: germinal vesicle migration 

and breakdown 

HAT: histone acetyl-transferase 

HPA- hypothalamus pituitary 

adrenal axis 

HDAC: histone deacetylases 

HMT: histone methyl transferase 

HPOA: hypothalamus preoptic 

nucleus 

HSDs: hydroxysteroid 

dehydrogenases 

HSP90: heat shock protein 90 

IGF-1: insulin growth factor 

IGFR: insulin growth factor recptor 

Igf2r: insulin like growth factor 2 

INH: inhibin 

IP3-DAG: inositol triphosphate- 

diacyglycerol 

LH: luteinizing hormone 

LHR: luteinizing hormone receptor 

LHX8: LIM homeobox 8 

LXR: liver X receptor 

LXR: liver X receptor 

MAPK: mitogen activated protein 

kinase 

MEHP: mono (2-ethylhexyl) 

phthalate 

MMP2: metalloproteinase 2 

NCoA: nuclear coactivator 

NCoR: nuclear corepressor 

NF-kB: nuclear factor k B 

NOBOX: newborn ovary homeobox 

NR: notch receptor 

p160/SRC:  steroid receptor 

coactivator 

P23:  protein 23 
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P4: progesterone 

PR: progesterone receptor 

PBPK/PD : Physiological based 

Pharmacokinetics/Pharmacodynami

cs modeling  

PBR: peripheral type 

Benzodiazepine receptor 

PCBs: polychlorinated biphenyl 

PCDDs: polychlorinated 

dibenzodioxins 

Peg3: paternal express gene 3 

PEPCK: phosphoenolpyruvate 

carboxykinase 

PFASs: poly-fluorinated alkyl 

substances  

PI3: phosphatidylinositol 3-kinase 

PMG: primordial germ cell 

PPARs: peroxisome proliferator 

activated receptors 

PTEN: phosphatase and tensin 

homolog 

PXR: pregnane X receptor 

RIP140: receptor interacting protein 

ROS: reactive oxygen species 

RXR: retinoid X receptor 

SDM: sexual dimorphism 

SF:1-steroidogenesis factor 1 

SHBG: steroid hormone binding 

globulin 

SMRT: silencing mediator for 

retinoid or thyroid-hormone 

receptors 

Sohlh2: spermatogenesis and 

oogenesis helix-loop-helix 2 

SREBP 2: sterol Response Element 

Binding Protein 2 

SREBP1c : sterol Response Element 

Binding Protein 1c 

StAR: steroid acute regulatory 

protein 

SUG 1: suppressor for gal 1 

SULTs:  sulphotransferase enzyme 

TAT: tyrosine aminotransferase 

TBG: thyroid binding globulin 

TBT: tributyltin 

TCDD: 2,3,7,8-tetrachlorodibenzo-

p-dioxin 

TCPOBOP : 1, 4-bis- [2-(3, 5,-

dichloropyridyloxy)] benzene 

TH: thyroid hormone  

TJ: tight junction 

TNF α : tumor necrosis factor α 

TPT: triphenyltin 

TRAIL: TNF:related 

apoptosis:inducing ligand 

TRs: thyroid receptor 

TSPO: translocator protein 

UDPGT1A1: uridine diphosphate 

glucuronic transferase enzyme 

https://en.wikipedia.org/wiki/Phosphatidylinositol_3-kinase


5 
 

VCL: vocal adhesion molecule 

vinculin 

VEGF: vascular endothelial growth 

factor 

VTG: vitellogenin 

XAP2: X-associated protein 2 

ZO-1: zonula occludens-1 



 

1. Introduction 

U.S. EPA define endocrine disruptor compounds (EDCs) as exogenous agents that 

interfere with synthesis, secretion, transport, metabolism, binding action, or elimination 

of natural blood-borne hormones that are present in the body and are responsible for 

homeostasis, reproduction, and developmental process (Kavlock et al., 1996). The 

WHO extended this definition linking EDCs to adverse health outcomes in an intact 

organism, or its progeny or subpopulation (WHO, 2002). The Endocrine Society 

describe  EDCs as chemicals that interferes with any aspect of hormone action (Gore et 

al., 2014). EDCs can be found in daily uses products such as detergents, food cans, 

plastic bottles, children toys, flame retardants, cosmetics, and processed food (Clarkson, 

1995; Rudel and Perovich, 2010). The EDCs interfere with hormone kinetics and its 

dynamic causing alteration in hormone level or expression of hormone responsive 

element (Crisp et al., 1998).  

The aim of hormones is to execute its specific task on specific time with specific 

amount. There are many studies which link hormone alteration to different diseases 

outcomes. For example, low testosterone and SHBG level are the early biomarker for 

the risk of metabolic syndrome (Kupelian et al., 2006); alteration of  E2, ERα , PR and 

the aromatase enzyme are strongly linked with endometriosis and infertility (Kitawaki 

et al., 2002); alteration in FSH, LH, inhibin B, and testosterone level  is associated with 

decrease sperm quality (Meeker et al., 2006). Earlier assumption that EDCs and 

hormones would yield the same responses in different cell lines or tissues was found 

wrong. Now it is well known that EDCs have cell and tissues-specific responses 

(Lackey et al., 2001).  Even at very low concentration, EDCs can produce significant 

endocrine disruptive action (Vom Saal and Hughs., 2005; Vandenberg et al., 2012) 

which challenges classical dose response curve at significantly high doses. Further, 

EDCs show disparate response at different life-stage dependent physiological 

concentrations of hormone, challenging current risk assessments methodologies which 

are not in consonance with life-stage changes (Welshons et al., 2003; Vandenberg et al., 

2013).  For instance, a study from Ohtake et al., (2003) showed that EDCs can produce 

contrary response based on physiological stage of prepubertal and pubertal. The 

interference of EDCs with developmental stages (prenatal-postnatal-early childhood-

adulthood) and reproductive stages showed time of exposure as an important factor to 

determine its potency as well as developmental effect (Haimes, 2009; Gore et al., 2014). 

For example, there are strong relationship of EDCs exposure affecting HPG axis system 

and alteration in the age of female puberty showing developmental effect (Wang et al., 

2005; Euling et al., 2008). The biological marker like enzyme expression and hormone 

level can help in assessing developmental risk  by knowing detail mode of action of 

EDCs (Rockett et al., 2003). 

Human are subject to continuous and simultaneous exposure to EDCs  via its 

surrounding environment and bioaccumulation becomes inevitable in many cases, 

which might cause permanent damage following physiological adaptation failure 

(Vandenberg et al., 2013). Several studies showed that chemicals at individual level 



 

have no observed effect level (NOEL), when exposed simultaneously as a mixture 

shows adverse effect disproving the concept of NOEL and taking more attention 

towards mixture studies (Rajapakse et al., 2002; Silva et al., 2002). The successive use 

of PBPK model in field of toxicology is commendable since it has great advantage of 

predicting internal tissue dose by integrating experimental data (both in vivo and in 

vitro) and extrapolation across species (Caldwell et al., 2012). However, level of 

biomarker of exposure (internal tissue dose) is, in many case, not sufficient to predict 

the toxicity of chemicals and additionally, when the effect of chemical mixture for 

certain response deemed to have toxicodynamic interaction. . Moreover, many 

biological response is the convergence of multiple signaling pathways, eventually 

become vulnerable to multiple targets of EDCs. Incorporation of the relationship 

between the exposure at the sites of action and the response generated can extend PBPK 

model to PBPK/PD (Nestorov, 2007). The objective of this review (summarized in 

Figure 1) is to understand the mechanism of actions of EDCs which includes interaction 

of chemicals with molecular receptor, enzymes, proteins, gene regulatory mechanism or 

epigenetic process thus affecting biological system, including window of exposure. 

Besides, this review also investigates the normal endogenous pathway of hormone 

sidewise to better understand the physiology dependent EDCs’ action. The last part of 

the review includes an example showing common as well as cross talk mechanism of 

EDCs mixture affecting estrogen kinetics. Improved understanding of common as well 

as crosstalk mode of action and categorization of chemical based on similar adverse 

outcomes may provide better scaffolding for integration of pharmacokinetics and 

pharmacodynamics into predictive mixture toxicological model of EDCs. 

2. Molecular mechanism of EDCs on the endocrine system 

In general, individual EDCs can affect the endocrine system accounting their synthesis 

to metabolism; receptor mediated action, various signaling pathway and crosstalk 

signaling between receptors. In this section, a summarized review of EDCs’ effects on 

major hormones namely thyroid and steroids (corticosteroid and gonadal) is provided. 

2.1. EDCs affecting thyroid hormone 

Thyroid hormones (THs) are one of the integral parts of hormone system required for 

normal brain and somatic development.  It has been seen that EDCs can disrupts the 

function of thyroid system possibly through multiple mechanisms such as synthesis, 

transports, and the receptors like TR, Ahr, CAR, PPAR and RXR, mediated function for 

subsequent action and metabolism of hormone. Various chemicals affect homeostasis 

of  hormone including Perchlorates, PCBs, PCDDs and PCDFs (Zoeller, 2010). 

Perchlorates inhibits uptake of iodide into thyroid follicle (Clewell et al., 2004). PCBs, 

PCDDs and PCDFs competitively bind with transthyretin impair transportation (Lans et 

al., 1994) and their affinity towards the Ahr receptor leads to increase metabolism of 

hormones (Poland and Knutson, 1982).  

The toxicology pathway  of EDCs via Ahr is shown in Figure 2; where Ahr receptor is 

present in the cytosol in conjugation with subunits like chaperon protein HSP90, 



 

regulatory protein p23 and immunophilin like protein XAP2 ( Perdew, 1988; 

Kazlauskas et al., 1999; Petrulis et al., 2000). Subsequently binding of EDCs with Ahr 

form complex followed by dissociation of Hsp90, P23 and XAP2 and translocation into 

the nucleus. In the nucleus, Ahr forms heterodimer complex with Arnt which then bind 

with XRE causing increase in expression of CYP1A1 and UDPGT1A; and finally leads 

to increase in metabolism of thyroid hormone (Hankinson, 1994; Birgelen et al., 1995). 

Simultaneously, there is feedback inhibition of Ahr transactivation by Ahrr (Mimura et 

al, 1999). Qatanani et al., (2005) reported that EDCs affinity towards CAR, can be other 

possible mechanism of metabolism of thyroid, that alters the UGTs and SULT mediated 

glucuronidation and sulfation of TH, respectively.  

BPA has been reported as anti-thyroid agent that is mediated via multiple molecular 

mechanisms, mainly involved in altering receptor gene expression and dynamic 

stability. It decreases the TRα, TRβ mRNAs level and subsequently suppress RXR gene 

expression which is a heterodimer partner of TR. Additionally, it can also inhibits the  

binding of T3 to TR by recruiting N-CoR (Moriyama et al., 2002; Iwamuro et al., 

2006). The isoform of TR remains in dynamically equilibrium state between inactive 

and active form to maintain the physiological action. The binding of EDCs with TR 

favors its inactive isoform (see Figure 3) via recruitment of (N-CoR). Subsequently, 

increase in HDAC, HMT, and HDM level induces the repression of target gene making 

TR inactive. In contrast, binding of thyroid to TR induces conformation changes and 

recruit coactivators of p160/SRC (steroid receptor coactivator). These coactivators have 

inherent histone acetylase activity that recruits complex like histone arginine 

methyltransferase (HMT), HAT and chromatin remodeling complex and form active 

homodimer or  heterodimer complex with RXR (Ahuja et al., 2003; Yoon et al., 2005; 

Flamant et al., 2007).  Juge-Aubry et al., (1995) mentioned that RXR was the common 

partner for both TRs and PPARs to form active heterodimers. Hence, the EDCs having 

affinity for PPARs or RXR could affect thyroid activity through crosstalk mechanism. 

2.2. EDCs affecting steroid hormone 

2.2.1. EDCs affecting corticosteroid hormone  

Among  corticosteroid  hormones, glucocorticoids such as cortisol is produced in 

response to stress and is an integral part of HPA axis involved in cellular homeostasis 

and different metabolic processes. The enzymes that  are responsible for the 

biosynthesis of these hormones mainly involved CYPs, HSDs and steroid reductases 

(Miller, 1988). The molecular mechanisms involved in biosynthesis are transfer of 

cholesterol to inner mitochondrial membrane by regulatory protein StAR (Manna and 

Stocco, 2005) and conversion of cholesterol to pregnenolone by CYP11A or 

CYP450scc (Parker and Schimmer, 1995; Manna and Stocco, 2005). Subsequent action 

of CYP17A and HSDs enzyme accomplish the glucocorticoid synthesis.  

The interconversion of cortisol (active) to cortisone (inactive) involves two isoform of 

11β-HSD namely 11β-HSD1 and 11β-HSD2 (Krozowski et al., 1999). This 

interconversion plays an important role in regulating central adiposity (Stewart et al., 

1999) and protecting developing fetus from glucocorticoid excess (Krozowski et al., 



 

1995). The EDCs like PFASs, TBT, TPT and dithiocarbmates inhibit 11β-HSD2 

isoform (Atanasov et al., 2003; Ohshima et al., 2005; Zhao et al., 2011) , and their 

exposure during pregnancy stage has been found to alter normal fetus development. 

Wang et al., (2012) mentioned the role of BPA on increased expression of 11β-HSD1, 

results in higher cortisol level, increase lipoprotein lipase and PPAR- γ which lead to 

increased adipocyte differentiation. The expression of PEPCK and TAT, well 

characterised metabolic response of glucocorticoid, was shown to be inhibited by DBT 

which decrease affinity of glucocorticoid towards its receptor (Gumy et al., 2008). 

Furthermore, one of the metabolic pathways of steroid involves PXR, a xenobiotic 

receptor which regulates CYP3A expression. Chemicals like phthalic acid and 

nonylphenol inhibit PXR degradation, thus enhancing CYP3A expression which leads 

to alteration in metabolism of steroid hormones (Masuyama et al., 2000, 2002). 

2.2.2. EDCs affecting gonadal hormone 

The effect of EDCs on human reproductive system has been linked with infertility, 

mediated through diverse mechanism that includes: altering gonadal steroidogenesis, 

affecting HPA axis and feed-back mechanism, altering receptor biology, crosstalk of 

receptor signaling, and direct organ toxicity. For the steroidogenesis, cholesterol is the 

main precursor which can be affected by the EDCs that alters receptor like PPARα and 

PXR which regulates transporter protein, such as Translocator protein (TSPO) or 

peripheral type Benzodiazepine receptor (PBR) that transport cholesterol from cytosol 

to the mitochondria (Hauet et al., 2005; Fan and Papadopoulos, 2012) and the 

metabolism of cholesterol by regulating  transcription of rat CYP7A1 (cholesterol 7α-

hydroxylase) gene (Marrapodi and Chiang, 2000; Staudinger et al., 2001; Li et al., 

2011).  

Moreover, the involvement of many supplementary pathways initiated via different 

receptor likes GHR, IGF-1 and (RXR/ TR) which regulate the function of  steroidogenic 

enzyme and the affinity of EDCs towards these  receptors, makes toxicity mechanism 

more complex (Chandrashekar and Bartke, 1993; Xu et al., 1995; Hull and Harvey, 

2000; Manna et al., 2001; N’Diaye et al., 2002). In addition to that, the central system 

HPG axis which regulates gonadal cell plays an important role in normal reproductive 

development process. At the hypothalamic level, kisspeptin neurons express both, 

ligand KiSS-1 and its receptor GPR54 that regulates the release of GnRH in pituitary 

which in turn control expression of FSHR and LHR in gonadal cell. The kisspeptin 

neurons also express ER-α which involves in feedback inhibition of GnRH in response 

to estrogen stimulation. This feed forward mechanism holds important role during 

normal fertility cycle of pre-ovulatory to ovulatory phase (Roseweir and Millar, 2009; 

Silveira et al., 2010; Hameed et al., 2011). It has been shown in rodent models that 

exposure of BPA affects HPG axis with different mechanism depending on life stage of 

exposure; at prepubertal stage damages kisspeptin neuron and at puberty stage alters 

ERαmRNA expression (Ceccarelli et al., 2007; Patisaul et al., 2009). Xi et al., (2011) 

showed that the involvement of BPA on transcript levels of GnRH and FSH in the male 

and female pup via altering Kiss-1 mRNA expressions further supports the notion of 

multilevel mechanism of EDCs.  



 

Boberg et al., (2008) reported that exposure to phthalates causes the reduction of 

anogenital distance, sign of male infertility, via the reduction of leptin level which 

supports the concept of  leptin regulation of LH and FSH via leptin-kisspeptin-GnRH 

pathway (Neurons et al., 1999; Luque et al., 2007). The Leptin synthesis was also found 

to be inhibited by cadmium exposure (Stasenko et al., 2010). In addition to that the local 

gonadal enzyme CYP19A (aromatase) catalyses the androgen to estrogen conversion to 

balance androgen-estrogen level which is the  prerequisite for the normal fertility in 

both male and female (Simpson et al. 1994). Several studies have been reported TBT 

inhibition of aromatase enzyme in granulosa cell results in imposex affecting fertility 

(Saitoh et al. 2001; Heidrich et al. 2001). Many studies have shown the EDCs dual 

action regards to estrogen level (Ohtake et al., 2003, 2007). For instance dioxins 

exposure at prepubertal stage, shows estrogenic activity via enhancing binding of ERα 

to ERE. However at pubertal stage, dioxin-receptor complex repressE2 bound ER 

function leading to antiestrogenic effects (Ohtake et al., 2003). In  another study, 

Ohtake et al., (2007) reported the antiestrogenic activity of EDCs like TCDD and 3MC 

via activation of E3 ubiquitin ligase pathway that results in degradation of ERα and Ahr. 

In contrast to antiestrogenic activity,  certain EDCs increase bioavailability of estrogens 

via inhibiting principle of estrogen sulphotransferase (SULT1E1) enzyme which causes 

inactivation of E2 (Kester et al., 2002). 

The male sex hormone testosterone biosynthesis has been shown to be affected by 

TCDD and PFOA via different mechanism of action that involves altering signaling 

pathway, regulating expression of enzyme or direct inhibition of enzyme involved in 

steroidogenesis (Fukuzawa et al., 2004; Lai et al., 2005a; Shi et al., 2009; Zhao et al., 

2010; Wan et al., 2011). Saunders et al., (1997) reported that exposure of pregnant 

mother to octyl phenol, decreases the level of testosterone in the fetal rat testis via 

altering the expression of CYP17α-hydroxylase/C17-20 lyase and steroidogenesis factor 

1 (SF-1) leading to development reproductive disorder. The local hormone like AMH 

responsible for sexual differentiation in fetus during embryogenesis also nurture the 

testosterone by increasing prenatal proliferation of leydig cell and maintain the 

prepubertal stage in male. In parallel, developmental exposure of BPA and PCBs are 

linked to decrease level of AMH , LHR ,17β HSD3 and reduced aromatase activity in 

hypothalamus, affecting sexual maturation (Lee and Donahoe, 1993; Hany et al., 1999; 

Rey et al., 2003; Nanjappa et al., 2012). In addition to that, TBT or TPT are found to 

inhibit  both 5α-R1 and 5α-R2 isozymes, responsible for production of active androgen 

(Svechnikov et al., 2010), affecting male sexual characterization (Doering et al. 2002). 

Castro et al., (2013) found similar results for BPA,  reporting inhibition of  both 5α 

reductases at their synthesis level. Simultaneous exposure of both chemicals (TBT and 

BPA) could lead to more impact on male fertility. Moreover, exposure to EDCs has 

shown to induce reproductive toxicity by damaging the integrity of blood testes barrier 

(BTB) in sertoli cell  that causes impairment in spermatogenesis (Cheng et al., 2011).  

The EDCs like BPA, PFOS, DEHP and cadmium induced reproductive toxicity is found 

to be mediated via altering MAPK, PI3K/c-Src/FAK, p38 MAPK and ROS signaling 

pathway leading to alteration in synthesis and metabolism of different protein likes 



 

occludin, ZO-1, Cx43 and catenin affecting BTB integrity (Chitra et al., 2003; Sobarzo 

et al., 2006; Li et al., 2009; Siu et al., 2009; Cheng et al., 2011; Wong and Cheng, 2011; 

Qiu et al., 2013; Ansoumane et al., 2014). It has also been found that Sertoli cells have 

functional Ahr, responsible for  TCDD  dose-dependent toxicity that alters mRNA level 

of testin, aromatase, sertolin and MIS which are important for germ cell development 

(Lai etal. 2005). Phthalates are well characterized as reproductive toxic agents that 

causes apoptosis of germ cell by activating caspase pathway which includes: activation 

of fas by increased expression of fasl ( Richburg and Boekelheide, 1996; Lee et al., 

1999; Richburg et al., 1999; Koji et al., 2001), accumulation of lipid in somatic cells via 

increased LXRα mRNA expression (Muczynski et al., 2012) and  downregulation of 

both GJA1 and vocal adhesion molecule vinculin (VCL) by increasing MMP2(Yao et 

al., 2012). Subsequently, activation of NFkB via increase expression of TRAIL-

R1(DRP4) and TRAIL-R2 (DRP5) leads to increase apoptosis of germ cell without 

modification of their proliferation (Giammona 2002; Lambrot et al. 2009). Figure 4 

shows the mechanism of phthalates causing germ cell apoptosis in fetus. 

3. Effect of EDCs in different window of exposure: case study on 

female fertility 
It has been shown that EDCs have disparate response at different life-stage, depending 

on the physiological concentrations of hormone (Ohtake et al., 2003). However, primary 

concerns for female fertility are exposure to EDCs at prenatal and postnatal stages, 

which are at higher risk of reproductive failure as well as metabolic disorder and 

hormonal disorders in their later life.  EDCs can alter normal cellular and tissue 

development and function through their interference in developmental programming of 

body (Schug et al., 2011). To study the life stage risk assessment on fertility, it is very 

important to know the detailed mechanism behind development of germ cell into mature 

oocyte. This involves complex and sequential biological network of signaling pathway. 

3.1. Physiology of development of germ cell into mature oocyte 

During epigenetic reprogramming of germ cell, at the very first step, involves DNA 

demethylation to regain differentiation totipotency which subsequently undergoes 

mitotic division without completing cytokinesis to the formation of germ cell cyst 

(Pepling and Spradling, 1998). Before birth, germ cells go through meiosis and arrest in 

diplotene phase of meiotic prophase until puberty comes. Meanwhile germ cell cyst 

undergoes apoptosis followed by surrounding of pregranulosa cell forming primordial 

follicles (Borum, 1961; Pepling and Spradling, 2001). After forming primordial 

follicles, estrogens play a role in  maintaining these follicles pool by inhibiting oocyte 

nest breakdown through  inhibition of BCL-2 gene transcription via both genomic and 

nongenomic pathway ( Perillo et al., 2000; Chen et al., 2007, 2009).  

Moreover, additional pathways are also involved for the regulation of primordial 

follicles which involves Notch signaling, and KIT-KL pathway. Notch signaling 

activation involves expression of Jagged1 and Jagged2 (ligand), in germ cells and 

Notch2 (ligand), in granulosa cells to form a receptor ligand complex. The proteolytic 



 

cleavage of this complex by γ-secretase produces intracellular domain of Notch (NICD) 

which translocate into the nucleus and interacts with the CSL family to form the 

complex. This complex recruits histone acetylase and regulates the expression of LHX8, 

NOBOX, Figla and Sohlh2 involved in formation of primordial follicles (Baron, 2003; 

Shih and Wang, 2007; Chen et al., 2014; Vanorny et al., 2014). KIT receptor expressed 

in oocyte and the KIT ligand is present in both oocyte and primordial follicle, help in 

initiation and progression of follicular development (Parrott and Skinner, 1999) via the 

activation of  the MAPK pathway (Jones and Pepling, 2013). GDF9 increases kit ligand 

mRNA expression and thus promotes the progression of primary follicle development 

(Nilsson and Skinner, 2002). BMP4 and BMP7 play a major role in survival and growth 

of primordial follicle to primary follicle by decreasing KL and TGF-α expression 

respectively (Nilsson and Skinner, 2003; Lee et al., 2004). Cx43 expressed in both 

cumulus and granulosa cell play an important role in  paracrine signalling and gap 

junctional intercellular communication between cumulus cell and follicular cell 

providing follicular development and oocyte quality (Ackert et al., 2001; Gittens et al., 

2005; Wang et al., 2009). BMP4, BMP7 and BMP15 downregulate Cx43 in human 

granulosa cell via smad pathway and thus decreases the gap junctional intercellular 

communication leading to prevention of premature luteinization ( Chang et al., 2013; H. 

M. Chang et al., 2014). 

The interplay between paracrine hormones is very important for the transition of 

primordial follicle to primary follicle to become a mature oocyte. AMH  inhibits 

primordial follicles to enter the pool of growing follicles (Durlinger et al., 1999) by 

decreasing expression of inhibin (Themmen and Themmen, 2009). Billiar et al., (2003) 

also reported the inhibition of expression of inhibin by the estrogen in pregranulosa and 

oocyte. Thus, estrogens play an important role in regulating inhibin and  follicular 

development. The TGF-β signaling involves GATA-4 and Smad-3 coordination for 

activation the inhibin (Anttonen et al., 2006). Androgens play an important role in 

follicle development via increasing expression of, FOXO-3, GDF9 through PI3/AKT 

pathway, and, KIT/KL through genomic pathway during primordial follicle to primary 

follicle stage. Specifically, during development of primary follicle to antral stage, it  

inhibits proapoptotic proteins and stimulates FSH mRNA expression, cAMP and 

p450scc through both genomic and non genomic i.e. MAPK/ERK pathway which in 

turn stimulates aromatase enzyme (Prizant et al., 2014). FSH stimulates LHR 

expression, (Richards et al., 1976) inhibin B production (Lee et al., 1982), and induces 

aromatase activity in the granulosa cells, results in more estradiol level (Short, 1962; 

Richards et al., 1976; Hillier et al., 1981). Moreover, most FSH sensitive called 

dominant follicle produces the highest levels of inhibin B and estradiol which in turn 

causes feedback inhibition of FSH production, required for growth of remnant follicles 

(Hirshfield and Midgley, 1978). After selection of dominant follicle, subsequently 

progesterone causes germinal vesicle migration and breakdown (GVBD) for resumption 

of meiosis at puberty by activating p53 and E2F transcription factor 1 (Garcia-reyero et 

al., 2015) leading to ovulation. The fertilization of ovum results in formation of zygote 

and matured follicle after releasing ovum called lutein cell which secretes VEGF. It 



 

prolongs the lutein cell function that maintains the progesterone level important for 

pregnancy development. VEGF function is regulated via PPARγ (Fraser et al., 2000; 

Kaczmarek et al., 2005). 

3.2. EDCs interaction with target molecules and its pathway 

Exposure to Lindane, PCBs and PAHs to embryo has been linked with premature 

reproductive ageing by causing the apoptosis of germ cell through different pathways 

such as activation of caspase-3 and poly-ADP ribose polymerase cleavage (PPAR) by 

Lindane and activation of BAX via Ahr  by PAHs (Ronnback and de Rooij, 1994; 

Matikainen et al., 2002; La Sala et al., 2009; Kee et al., 2010). Phthalates exposure 

induce primordial follicle recruitment via activation of PI3K/AKT pathway, resulting in 

premature ovarian follicle and infertility (Hannon et al., 2014). Moreover Castrillon et 

al., (2003) study supported that FOXO3A knock out mouse, leading to premature 

oocyte follicle which is regulated by the PTEN/PI3K/AKT pathway. Both, Phthalates 

and BPA  lowers the expression of LHX8, Nobox, Figla, and Sohlh2, involved in 

oocyte survival and follicular recruitment to form primordial follicle. In addition to this 

both compounds alter epigenetic reprogramming of Lhx8 by preventing DNA 

demethylation (Zhang et al., 2012, 2014). However, BPA shows multiple mechanism of 

action, altering steroidogenesis and proliferation of granulosa cell such as: induction of  

PPARγ causing  downregulation of FSH-stimulated IGF-1, SF-1, GATA4, aromatase, 

and E2 (Kwintkiewicz et al., 2010), decreases both StAR and P450scc mRNA impairing 

hormone production in the antral follicles (Peretz et al., 2011), activates nongenomic 

pathway of estrogen via PKA and PKG pathway associated with phosphorylation of 

transcription factor CREB and the cell cycle regulator Rb (Bouskine et al., 2009). 

Additionally, BPA delayed maturation of oocyte by inhibiting resumption of meiosis 

via altering ER expression, following hypomethylation of imprinted gene Igf2r, Peg3, 

and GVBD, (Chao et al., 2012). On the other hand, other EDCs like Methoxychlor 

inhibits follicular development by stimulating AMH (Uzumcu et al., 2006). This is 

further supported by the  study of impairmaint of follicular development in neonates on 

exposure of  estradiol benzoate found to be via increased expression of  AMH (Ikeda et 

al., 2002). Moreover, Nagel et al., (1999) shown that BPA even at very low dose can 

affect sexual dimorphism of infants via its estrogenic action in brain. whereas in normal, 

prenatal estrogen form complex with Alpha fetoprotein, protecting the female brain 

from defeminization and masculinization (Bakker et al., 2006). 

EDCs contamination in the human follicular micro-environment is associated with a 

lower chance of an oocyte to develop into a top-quality embryo, leading to lowering in 

fertilization rate (Petro et al., 2012). For instance, PCBs exposure affects oocyte quality 

and competence via multiple mechanisms; alters microtubule organization, mRNA 

polyadenylation levels, redistribution of cortical granules, mitochondrial 

disorganization, leading to polyspermy and affecting in transcript stability. It can also 

directly cause cumulus cell apoptosis which is communicator cell between oocyte and 

follicle mediated via Ahr signaling (Gandolfi et al., 2002; Brevini et al., 2005; Pocar et 

al., 2006). MEHP an endocrine disruptor inhibit embryonic genome activation (EGA) 



 

initiation and maternal-effect genes resulting in the suppression of maternal-to-

embryonic transition by generating ROS (Chu et al., 2013). 

Figure 5 summarizes the life stage development of germ cell to oocyte and the possible 

targets of EDCs. In his turn, Figure 6 explains the complex signaling pathway for life 

stage development of  germ cell maturation to oocyte. 

4. Grouping strategy and conceptual model of PBPK/PD in 

assessing risk for chemical mixture 
4.1. Grouping strategy  

There are numerous classification of EDCs reported in the literature based on different 

criteria like pathway of exposure, level of exposure, target hormones, adverse effects, 

and diseases outcomes (Caserta et al., 2008; Wuttke et al., 2010; Craig et al., 2011; 

Schug et al., 2011; Casals-Casas and Desvergne, 2011; Vandenberg et al., 2012; Hampl 

et al., 2014). Ongoing discussion of the risk assessment for chemical mixture (EFSA, 

2013) needs new grouping strategy which clusters EDCs based on their similar adverse 

outcomes via independent, cross talk and common interaction mechanism involving 

multiple organs and hormones. Similar  prerequisite for cumulative risk assessment of 

chemical mixtures has been cited by EFSA (Kortenkamp, 2007; EFSA, 2013). This type 

of grouping strategy (based on similar adverse outcomes) could also help in making 

decision on whether to go for dose addition or response addition method for mixture 

interaction study (Culleres et al., 2008). A detail discussion on classification is beyond 

the scope of this review. However, a detail classification for selected chemicals is 

provided in Annex Table 1. Classification of EDCs proposed in this review is based on 

target organs, hormones, biomolecule (MOA) and adverse outcomes, which can 

provides basis for grouping strategy for mixture modelling. Proposed grouping strategy 

has been illustrated in Figure 7 by giving a small example of four chemicals (BPA, 

TCDD, Phthalates and PFOS). Some of these chemicals are categorized in one group 

for mixture study based on their similar adverse outcome including targets organs like 

thyroid gland and sertoli cell, and in another group with dissimilar mode of action 

(crosstalk) producing common adverse effect of altering thyroid action and decreasing 

sperm count, respectively. Similar grouping strategy has been followed in Figure.9 for 

the chemicals affecting female fertility.  

4.2. Conceptual model of PBPK/PD 

A chemical can alter hormone actions by targeting at the level of epigenetics-gene-

enzyme/receptor followed by endogenous intracellular signaling pathway (Grün and 

Blumberg, 2006; Cruz et al., 2014). Therefore, the mixture of chemicals producing 

similar adverse outcomes via entirely different mode of action can be categorized in one 

group in order to analyze the combination effect. Furthermore, timing and level of 

exposure is also an important parameter which can make adverse effect temporary or 

permanent and has to be included when assessing risk ( Fenton, 2006; Buck Louis et al., 

2008; Palanza et al., 2016). Based on methodologies (Figure 7), we proposed a 



 

conceptual model which brings the fate and the consequence of chemical mixture in the 

integrated risk assessment framework of exposome-internal exposure-biological effect 

to the adverse outcome (Figure 8). 

At the dynamic level, integration of individual mechanisms to the dynamic interactions 

of mixture for assessing risk is still debatable (Lambert and Lipscomb, 2007; EFSA, 

2013; Karri et al., 2016). Figure 9 shows a small example of hypothetical schematic 

model that integrates individual mode of actions based on their target molecule in a 

system based approach. It includes common, crosstalk as well as dissimilar mode of 

action based on their targets of common outcome. For instance, the dioxin-like 

chemicals, DBP, BPA, TOP and PAH-OH alter the estrogen action at different levels of  

peripheral as well as central mechanism. Their major targets include kisspeptin neuron, 

CYP19A (aromatase), SHBG, ER, Ahr, ERE CYPA1 and CYPB1 affecting estrogen 

and progesterone feed forward mechanism, consequently leading to risk of infertility. In 

fact, EDCs like DBP, BPA and TOP show similar mode of action via targeting 

CYP19A and SHBG. Dioxin-like substances exhibit dual role such as “antiestrogenic” 

via Ahr dependent CYPB1 mechanism and “estrogenic” via estrogen receptor showing 

crosstalk between ER and Ahr. PAH-OH and BPA can interact with other dioxin-like 

substances in respect to their targets via crosstalk between Ahr and SULTE1 altering 

metabolism of estrogen. BPA, PAH-OH and other dioxin-like substance are able to 

simultaneously interfere with endocrine system through multiple mechanisms. The 

mixture effects of these chemicals in system based model can be possible by 

considering estrogen, progesterone and ERE, as end point biomarker of infertility, and  

integrating available individual toxicological profile data into a dynamic mixture model 

of EDCs (PBPK/PD). 

5. Summary & future perspective  
We have summarized the effects of endocrine disruptors on thyroid, adrenal, and sex 

hormones accounting their effects on synthesis, metabolisms and actions. Mixture of 

chemicals can simultaneously interfere with multiple endocrine pathways via multiple 

mechanisms making mixture effect more pronounced than individual. The EDCs acting 

on certain hormone via multiple mechanisms (central or peripheral) can be grouped for 

risk assessment of mixture of chemicals, according with their similar adverse outcomes. 

Most of the EDCs have non monotonic dose-response curve which is the major 

drawback when establishing a relationship between the exposure kinetics and elicited 

response (Vandenberg et al., 2012; Beausoleil et al., 2013; Yang et al., 2016). 

Additional challenges like multiple mechanisms, delayed response ( time lag between 

exposure to adverse outcomes), dynamic interaction involving crosstalk and common 

mechanism, and transgenerational effect added more complexity in  the quantitative risk 

assessment (Maffini et al., 2006; Matthiessen and Johnson, 2007; Rubin, 2011; Fowler 

et al., 2012).  

However, understanding molecular mechanism of interaction of chemicals with 

endogenous molecule or pathway can explain the variability among chemicals for the 



 

same adverse effect (Filby et al., 2007). For instance, BPA shows complex dose-

response curve in concentration dependent model which could be explained by the fact 

that it alters the gene expression through genomic as well as nongenomic pathway 

(Takayanagi et al., 2006; Vandenberg et al., 2009; Vandenberg, 2014). Similarly, 

dioxin-like substance shows dual response that can be explained by availability of 

endogenous hormone and their action. The potential dynamic interaction may leads to 

change in the response curve in case of mixture of chemical, which can be explained by 

understanding different type of mechanistic interactions like crosstalk or similar or 

dissimilar MOAs as it has been explained in this review. Similarly, understanding 

latency of exposure (i.e. lag time between exposure and response) is important as in 

case of infertility disorder, which can only be detected after a certain age though 

exposure occurs at early stage of life.  

Lots of experiments have been done on individual EDCs but it is very hard to find 

mixture level studies. Selecting chemicals and then optimizing dose for selected mixture 

for carrying animal experiment is another difficult task. To know the potency of 

individual chemical in mixture due to their complex interaction behavior at different 

levels, require large combinatorial experimental design. Normally this kind of 

experiments requires large number of animals which will be against the current ethical 

guideline of risk assessment (EU, 2010).  However, tremendous development in in-

vitro, in-silico techniques and emerging area like omics, generating lots of toxicological 

data leads to new era of quantitative risk assessment (Knudsen et al., 2015).  

Incorporation of individual mechanism of chemicals into mixture model provides 

platform for assessment of combined risk produced by mixture of chemicals. 

Understanding individual mechanism and implementing those mechanisms in system 

based approach will help us in the development of mixture model. This will provide 

better understanding of the risk produced by chemical mixture exposure and it will 

further assist in designing animal experiment and optimization of dose which will 

reduce the use of animals. European Union, (2011) suggested concentration addition 

method for cumulative risk assessment of chemicals with similar or dissimilar 

mechanism of action by considering their common adverse outcomes. But response 

addition method for a common adverse effect is still not recommended. 

Categorization of chemicals in same group according to similar adverse outcomes, 

accounting both similar as well as dissimilar mechanism (crosstalk) of action may 

provide sound basis for studying mixture toxicology. Based on this grouping strategy, 

addressing both kinetic and dynamic interaction of mixture and establishing a 

relationship between pharmacokinetic - pharmacodynamic- altered molecular events 

will give a better model to correlate the environment exposure with adverse outcomes. 

Finally, integrating individual mode of action of each chemical by the help of 

mathematic equation into advanced tools such as PBPK/PD would enable the 

simultaneous assessment of EDCs mixtures correlating concentration in various 

biological matrixes (blood, tissue, urine) with various end points (endocrine diseases). It 

will also help in finding the toxic equivalent dose of chemical eliciting similar adverse 



 

effect. Similarly, timing and duration of exposure is another important factor which 

needs to be considered while assessing the risk. Integrating physiology of human body 

at different life stages and respective mode of action of EDCs will help in building life 

stage dynamic model. For example, dividing life stage into prenatal-postnatal-puberty-

menopause and incorporating susceptible gene or receptor or protein at different life 

stage targeted by EDCs and physiological data provides a model able to predict the risk 

of infertility in females by exposure to these chemicals in different stage of life. 
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Figure 1: Effects of EDCs on hormone action at different level. 

Enzyme responsible for hormone synthesis, HR- hormone, P- hormone binding protein, 

R- receptor, D- degradation of hormone and its receptor, HRE- hormone response 

element.  

 

 

 

 

            

 

Figure 2: Summary of molecular mechanism of EDCs binding with Ahr-. The 

binding of EDCs with Ahr leads to translocation of Ahr receptor to the nucleus from 

cytoplasm following dissociation of chaperons, forming Ahr-Arnt complex. This 

complex binds with XRE (xenobiotic response element) causing induction of CYPs 

enzyme, enhancing metabolism of endogenous hormone. 
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Figure 3: EDCs affecting dynamic state of receptor. Unliganded thyroid receptor 

resides in nucleus in inactive state by recruiting NCoR and thyroid binding facillates 

active stage by recruiting NCoA. Binding of EDCs with thyroid receptor induced 

conformational changes by recruiting NCoR facilitating its inactive stage.  

                                             

 

 

Figure 4: Mechanism of phthalates causing germ cell apoptosis in fetus. Phthalates 

exposure at tissue level causes activation of caspase pathway which lead to apoptosis of 

germ cell through interaction and activation of receptor and gene at cellular level. 

  



                       

 



Figure 5: Life stage development of germ cell and the possible targets of EDCs. The germ cell, basis of future sexual life or transgenerational development, 

development of oocyte from germ cell starts at embryo stage. Exposure of EDCs to pregnant mother (F0) may cross placental barrier and affect embryonic 

germ cell in fetus (F1). This could lead to alteration in oocyte quality required for fertilization and transgenerational fetus development (F2). Every stage of 

development of germ cell to high quality oocyte, demands fine tune balance of endogenous level and interaction pathway. Categorizing development of germ in 

stages provides information on susceptible targets of EDCs during the journey of germ cell of fetus (F1) residing in mother embryo (F0) to high quality of 

oocyte, for development of transgenerational fetus (F2). 

  



 

 

     

 

Figure 6: Signaling pathway for life stage development of germ cell to zygote. The figure depicts the 

different signaling pathways initiation via binding of endogenous molecule with receptors, which leads to 

inhibitory and stimulatory effect on signaling molecule following physiological demand for the development 

of germ cell into mature oocyte. 

 



 

BPA-          , TCDD-  , Phthalates-  , PFOS-  

Figure 7: Endocrine disruptor’s classification on the basis of mode of action for selected chemicals 

(BPA, TCDD, Phthalates and PFOS), with different targets on thyroid and sertoli cell with common 

adverse effect in respective cell. 

 

 

 

 

 

 



               

 

 

                                               

Figure 8: Conceptual model of PBPK/PD in assessing risk for chemical mixture (ED- endocrine 

disruptor exposure, C- concentration of ED in systemic circulation, I- concentration of ED in target organ or 

tissue, DI- dynamic interaction) 

PBPK usually well describes time course of tissue level exposure of chemical relating environmental 

exposure by including their absorption, distribution, metabolism and excretion. At cellular level, the 

interaction of chemicals with endogenous biomolecules and their pathways which are interrelated with each 

other results in initiation of an event that could lead to adverse outcomes which can be describe by PBPD 

model. The integrated PBPK/PD can describe the kinetic as well as dynamic interaction of EDCs giving 

time course effect of chemicals.  

 



 

Figure 9: Schematic model for studying mixture effect in dynamic level. 

This figure contains the hypothetical mixture model of characterizing risk through detail understanding of 

mode of chemicals’ interaction with different biological components of the HPG pathways describing 

multiple mechanisms. 

 

 

 

 

 

 

 

 

 

 

 



 


