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Introduction: 

In this paper we are going to see about finite fields, irreducible polynomials over finite fields, the proof 

of Wedderburn’s little theorem and describe them in detail. All the materials presented in here are expository 

and taken from the various sources, listed in the reference. However, we have made effort to collect the basic 

concepts and results needed to understand the contents of the chapters and presented them in a self contained 

exposition. Also, we have provided, wherever we thought necessary, explanation and proofs for the results 

mentioned with very brief details in the source material. We also provided many examples throughout this 

paper. 

Finite Fields: 

Lemma 1:  

Let F be a finite field containing a subfield K with q elements. Then F has q
m
 elements, where m = [F: 

K]. 

Proof: 

 F is a vector space over K, finite-dimensional since F is finite. Denote this dimension by m; then F has 

a basis over K consisting of m elements, say b1, . . . , bm. Every element of F can be uniquely represented in the 

form k1b1+…+kmbm (where k1, . . . ,km   K). Since each ki   K can take q values, F must have exactly q
m

 

elements. We are now ready to answer the question: “What are the possible cardinalities for finite fields?” 

Theorem 1: 

Let F be a finite field. Then F has p
n
 elements, where the prime p is the characteristic of F and n is the 

degree of F over its prime subfield. 

Proof: 

Since F is finite, it must have characteristic p for some prime p. Thus the prime subfield K of F is 

isomorphic to Fp, by Theorem 4.5, and so contains p elements. Applying Lemma 6.1 yields the result. So, all 

finite fields must have prime power order - there is no finite field with 6 elements, for example. We next ask: 

does there exist a finite field of order p
n
 for every prime power p

n
? How can such fields be constructed? We 

saw, in the previous chapter, that we can take the prime fields Fp and construct other finite fields from them by 

adjoining roots of polynomials. If f   Fp[x] is irreducible of degree n over Fp, then adjoining a root of f to Fp 

yields a finite field of p
n
 elements. However, it is not clear whetherwe can find an irreducible polynomial in 

Fp[x] of degree n, for every integer n. The following two lemmas will help us to characterize fields using root 

adjunction. 

Lemma 2: 

If   F   is a finite   field with q elements, then every a   F satisfies  a
q 
= a. 

Proof:                                                                                     

Clearly a
q 

= a is satisfied for a = 0. The non-zero elements form a group of order q – 1  under 

multiplication. Using the fact that a
|G|

 = 1G for any element a of a finite group G, we have that all 0 ≠ a   F 

satisfy a
q−1 

= 1, i.e. a
q 
= a.  

Lemma 3: 

If   F  is  a  finite  field  with  q  elements and K is a subfield of F, then the polynomial x
q
 − x in K[x] 

factors in F[x] as  x
q
 − x = 

Fa

(x − a)  and   F  is  a  splitting  field  of  x
q
 − x   over  K. 

Proof: 

Since the polynomial x
q
 − x has degree q, it has at most q roots in F. All the elements of F are roots of 

the polynomial, and there is q of them. Thus the polynomial splits in F as claimed, and cannot split in any 

smaller field. We are now ready to prove the main characterization theorem for finite fields. 

Theorem 2: (Existence and Uniqueness of Finite Fields) 

For every prime p and every positive integer n, there exists a finite field with p
n
 elements. Any finite 

field with q = p
n
 elements is isomorphic to the splitting field of x

q
 − x  over Fp. 
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Proof:  

(Existence) For q = p
n
, consider x

q
 − x  in Fp[x], and let F be its splitting field over Fp. Since its 

derivative is qx
q−1 

− 1 = −1 in Fp[x], it can have no common root with x
q
 − x  and so, by Theorem 3.15, x

q
 − x  

has q distinct roots in F. Let S = {a   F : a
q
 − a = 0}. Then S is a subfield of F since 

 S contains 0; 

 a, b   S implies (by Freshmen’s Exponentiation) that (a−b)
q
 = a

q
−b

q
 = a−b, so a−b   S; 

 for a, b   S and b ≠ 0 we have (ab
−1

)
q
 = a

q
b

−q
 = ab−1, 

so ab
−1

   S. On the other hand, x
q
 − x  must split in S since S contains all its roots, i.e its splitting field F is a 

subfield of S. Thus F = S and, since  S  has  q elements, F is a finite field with q = p
n
 elements. (Uniqueness) Let 

F be a finite field with q = p
n
 elements. Then F has characteristic p and so contains Fp as a subfield. F is a 

splitting field of x
q
 − x. The result now follows from the uniqueness (up to isomorphism) of splitting fields. As a 

result of the uniqueness part of Theorem 6.5, we may speak of the finite field (or the Galois field) of q elements. 

We shall denote this field by Fq, where q denotes a power of the prime characteristic p of Fq. 

Example 1: 

 We constructed a field L = F3(θ) of 9 elements, where θ is a root of the polynomial x
2
 + x + 2   F3[x]. 

L is the field of 9 elements, i.e. F9. 

 We constructed a field L = F2(θ) of 4 elements, where θ is a root of the polynomial x
2
 + x + 1   F2[

x
].  

L   is   the   field   of  4  elements,   i.e.  F4. 

 We can also completely describe the subfields of a finite field Fq. 

Theorem 3: (Subfield Criterion) 

Let Fq be the finite field with q = p
n
 elements. Then every subfield of Fq has order p

m
, where m is a 

positive divisor of n. Conversely, if m is a positive divisor of n, then there is exactly one subfield of Fq with p
m
 

elements. 

Proof:  

Clearly, a subfield K of F must have order p
m
 for some positive integer  m ≤ n. By known Lemma, q = 

p
n 

must be a power of p
m
, and so m must divide n. Conversely, if m is a positive divisor of n, then p

m
−1 divides 

p
n
−1, and so 11 mpx  divides 11 npx  in Fp[x]. So, every root of xx

mp    is  a  root  of  x
q
 − x,  and  

hence belongs to  Fq.  It follows that, Fq must contain a splitting field of xx
mp   over Fp as a subfield, and 

such a splitting field has order p
m
. If there were two distinct subfields of order p

m
 in Fq, they would together 

contain more than p
m
 roots of xx

mp   in Fq, a contradiction. So, the unique subfield of Fpn of order p
m
, where 

m is a positive divisor  of  n,  consists  precisely  of  the  roots  of  xx
mp   in  Fpn. 

Example 2: 

Determine the subfields of the finite field F2
30 

. To do this, list all positive divisors of 30. The 

containment relations between subfields are equivalent to divisibility relations among the positive divisors of 30. 

(For diagram, see lectures!) 

We can also completely characterize the multiplicative group of a finite field. For the finite field Fq, we denote 

the multiplicative group of non-zero elements of Fq by F
*

q . 

Theorem 4: 

For every finite field Fq, the multiplicative group F
*
q of nonzero elements of Fq is cyclic. 

Proof: 

 We may assume q ≥ 3. Set h = q − 1, the order of F
*
q, and let h = p

r1
1 p

r2
2 . . . p

rm
m be its prime factor 

decomposition. For each   i,  1 ≤ i ≤ m,  the  polynomial   x
h/pi 

– 1   has  at  most   h/pi Roots in Fq. Since h/pi < h, 

it follows that there are nonzero elements of Fq which are not roots of this polynomial. Let ai be such an 

element, and set 1
ripih

ii ab . Now, 1
ripi

ib , so the order of bi divides pi
ri
 and so has the form pi

si
 for 

some 0 ≤ si ≤ ri. On the other hand, 1
1




i
ir

i ph

i

p

i ab so the order of bi is precisely pi
ri
 . Let b = b1b2 . . . bm. 

We claim: b has order h(= q − 1), i.e. is a generator for the group. Suppose, on the contrary, that the order of b is 

a proper divisor of h. It is therefore a divisor of at least one  of  the  m  integers  h/pi, 1 ≤ i ≤ m;  wlog, say of  

h/p1. Then 1 = b
h/p1

 = b1
h/p1

 b2
h/p1

 ・ ・ ・ bm
h/p1

. Now, if 2 ≤ i ≤ m, then pi
ri
 divides h/p1, and so bi

h/p1
 = 1. This 

forces b1
h/p1

 = 1. Thus the order of b1 must divide h/p1, which is impossible since the order of b1 is p1
r1

. Thus F
*
q 

is a cyclic group with generator b.  

Definition 1: A generator of the cyclic group F
*

q is called a primitive element of Fq. By Theorem 1.13, Fq 

contains ø(q − 1) primitive elements, where ø is Euler’s function: the number of integers less than and relatively 

prime to q −1. Recall that, if the integer n    has    the    prime    factorization     p1
k1

p2
k2

. . . pr
kr

,    then  

)
1

1).....(
1

1)(
1

1()(
21 rppp

nn  . 
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Example 3: 

 5F  has Φ (4) = 2 primitive elements, namely 2 and 3. 

 4F  has Φ(3) = 2 primitive elements. Expressing 4F  as  1,,1,0)(4  F , where 

012  , we find that both θ and θ + 1 are primitive elements. 

We are now ready to prove an important result. 

Theorem 5: 

Let qF  be a finite field and rF  a finite extension field. Then 

 rF
 is a simple extension of qF , i.e rF

 = )(qF   for some β  rF
; 

 Every primitive element of rF  can serve as a defining element β of rF  over qF . 

Proof: 

Let α be a primitive element of rF . Clearly, )(qF
 
 rF . On the other hand, since )(qF  

contains 0 and all powers of  α, it contains all elements of rF . So rF  = )(qF . So, we can express any finite 

field K with subfield F, by adjoining to F a root β of an appropriate irreducible polynomial f, which of course 

must have degree d = [K : F]. Although the proof of Theorem 6.12 uses a β which is a primitive element of K, it 

is not in fact necessary for β to be a multiplicative generator of
*K , as the next example shows. 

Example 4: 

Consider the finite field 9F . We can express 9F  in the form )(3 F , where β is a root of the 

polynomial 12 x , irreducible over 3F . However, since 
4  = 1, β does not generate the whole of

*

9F , i.e. β 

is not a primitive element of 9F . 

Corollary 1: 

For every finite field qF  and every positive integer n, there exists an irreducible polynomial in  xFq  

of degree n. 

Proof: 

Let rF  be the extension field of qF  of order 
nq , so that [ rF  : qF ] = n. By Theorem 6.12, rF  = 

)(qF  for some  ∈ rF . Then, by properties of minimal polynomials, the minimal polynomial of α over qF  

is an irreducible polynomial in  xFq  of degree n.  

Irreducible Polynomials: 

Lemma 4: 

Let  xFf q  be an irreducible polynomial over a finite field qF  and let α be a root of f in an 

extension field of qF . Then, for a polynomial  xFh q , we have h(α) = 0 if and only if f divides h. 

Proof: 

  The minimal polynomial of α over qF  is given by fa 1
, where a is the leading coefficient of f (since 

it is a manic irreducible polynomial in  xFq   having α as a root). The proposition then follows from part (ii) of 

known theorem.  

Lemma 5: 

Let  xFf q  be an irreducible polynomial over qF  of degree m. Then f divides xx
nq    if and 

only if m divides n. 

Proof:                                                                                                                        

First, suppose f divides xx
nq  . Let α be a root of f in the splitting field of f over qF . Then 

 
nq

, so nq
F . Thus )(qF  is a subfield of nq

F . Since mFF qq ]:)([    and nFF qqn ]:[ , 

we have  mFFn qqn )](:[  , so m divides n.  Conversely, suppose m divides n. Then by Theorem 6.7, nq
F

contains mq
F  as a subfield. Let α be a root of f in the splitting field of f over qF . Then mFF qq ]:)([  , 
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and so mqq FF )( . Thus  nq
F , hence  

nq
, and so α is a root of ][xFxx q

qn

 . Therefore, 

by Lemma 7.1, f divides xx
nq  . We are now ready to describe the set of roots of an irreducible polynomial. 

Theorem 6: 

If  f  is an irreducible polynomial in  xFq  of degree m, then f has a root α in mq
F .  Moreover, all the 

roots of f are simple and are given by the m distinct elements 
12

,.....,,,
mqqq    of mq

F . 

Proof:  

Let α be a root of f in the splitting field of f over qF . Then mFF qq ]:)([   , hence 

mqq FF )( , and so mq
F . We now show that, if mq

F  is a root of f, then 
q  is also a root of f. 

Write )(..... 01 qi

m

m Faaxaxaf  . Then 
   01.....)( aaaf qqm

m

q    

             01..... qqqqm
m

q aaa    

             
qm

m aaa ).....( 01    

             0)(  qf  , 

using Lemma 6.3 and Freshmen’s Exponentiation. Thus, the elements 
12

,.....,,,
mqqq   are roots of f. 

We must check that they are all distinct. Suppose not, i.e. 
kj qq    for some 0 ≤ j < k ≤ m− 1. Raising this to 

the power 
kmq 

 , we get  
 mjkm qq

.It then follows from Lemma 7.1 that f divides xx
jkmq 



. By 

Lemma 7.2, this is possible only if m divides m − k + j, a contradiction since 0 < m − k + j < m.  This result 

gives us two useful corollaries. 

Corollary 2: 

Let f be an irreducible polynomial in  xFq  of degree m. Then the splitting field of f over qF  is mq
F . 

Proof: 

  Theorem 7.3 shows that f splits in mq
F . To see that this is the splitting field, note that 

m

m

qq

qq

q FFF 


)(),....,,(
1


.
 

Corollary 3: 

Any two irreducible polynomials in  xFq  of the same degree have isomorphic splitting fields. As we 

shall see later, sets of elements such as those in Theorem 7.3 appear often in the theory of fields. 

Theorem 7: 

For every finite field qF  and every n ∈ N, the product of all monic irreducible polynomials over qF  

whose degrees divide n is equal to xx
nq  . 

Proof: 

  By Lemma 7.2, the monic irreducible polynomials over qF  which occur in the canonical factorization 

of xxg
nq   in  xFq  are precisely those whose degrees divide n. Since g′ = −1, by Theorem 3.15 g has no 

multiple roots in its splitting field over  qF  . Thus each monic irreducible polynomial over qF  whose degree 

divides n occurs exactly once in the canonical factorization of g in  xFq . 

Example 5: 

Take q = n = 2; the monic irreducible polynomials over  xF2  whose degrees divide 2 are 1, xx  

and  1,2 xx . It is easily seen that  xxxxxxxx  442 )1)(1(   

Corollary 4: 

If )(dNq  is the number of monic irreducible polynomials in  xFq  of degree d, then 


nd

q

n ddNq )(  for all Nn , where the sum is extended over all positive divisors d of n. 
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Proof:  

This follows immediately from Theorem, upon comparing the degree of xxg
nq   with the total 

degree of the canonical factorization of g. This corollary allows us to obtain an explicit formula for the number 

of monic irreducible polynomials in  xFq  of a given degree. To do so, we need the following arithmetic 

function, which will also prove useful in the next chapter. 

Definition 2: The Moebius function µ is the function on N defined by 















prime; a of square by the divisible isn   if 0

primes;distinct )1(

;11

)( kofproducttheisnif

nif

n k
 

Example 6: µ(5) = −1; µ(35) = 1; (iii)    µ(50) = 0. 

Lemma 6: 

For n ∈ N, the Moebius function satisfies 









nd nif

nif
d

.10

11
)(  

Proof: 
The n = 1 case is immediate. For n > 1 we need only consider the positive divisors d of n for which 

µ(d) is non-zero, namely those d for which d = 1 or d is a product of distinct primes. If kpp ,......,1  are the 

distinct prime divisors of n then 

 
 


k

i kiind

pkpppipipid
1 1

21

21

)....21(.....)()()1()(   

= k

k

kkk
)1(......)1(

2
)1(

1
1 2 




























 

= .0))1(1(  k  

Theorem 8: (Moebius Inversion Formula) 

Additive Version: let h and H be two functions from N into an additively written abelian group G. Then  


nd

dhnH )()(  for all  Nn …………..(1) if and only if  

 
ndnd d

n
HddH

d

n
nh )()()()()(   for all  Nn ………….(2) 

Multiplicative Version: let h and H be two functions from N into a multiplicatively written abelian 

group G. Then  
nd

dhnH )()( for all Nn ……………(3) if and only if 

)(
)(

)()()(

d

nd

d

n

nd d

n
HdHnh




   for all   Nn   …………….(4) 

Proof:  

Additive version: we prove the forward implication; the converse is similar and is left as an exercise. 

Assume the first identity holds. Using Lemma, we get 

  
nd

d

n
c

ndnd

chd
d

n
HddH

d

n
)()()()()()( 
 

)()()()()( nhdchchd

c

n
d

nc

c

n
d

nc

   
for all n ∈ N. 

Multiplicative version: immediate upon replacing sums by products and multiples by powers. 

Theorem 9:                                                                                                          

The number )(nNq  of monic irreducible polynomials in  xFq  of degree n is given by 

              
 

nd nd

d

n

d

q qd
n

q
d

n

n
nN )(

1
)(

1
)( 

.          

Proof: 

Apply  the  additive  case  of  the  Moebius  Inversion Formula to the group  G = (Z, +). Take   

)()( nnNnh q  and 
nqnH )(   for all n ∈ N. By Corollary 7.8, the identity (3.1) is satisfied, and so the 

result follows. 
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Remark: Since it is clear from this formula that  )(nNq  is greater than zero for all n, this gives an alternative 

proof of Theorem 9. 

Example 7: 

The number of monic irreducibles in  xFq  of degree 12 is given by 

))12()6()4()3()2()1((
12

1
)12( 234612 qqqqqqNq    

).0.1.0)1()1(.1(
12

1 234612 qqqqqq   

)(
12

1 24612 qqqq  . 

We can also obtain a formula for the product of all monic irreducible polynomials in  xFq  of fixed degree. 

Theorem 10: 

The product I(q, n; x) of all monic irreducible polynomials in  xFq  of degree n is given by: 

                      
 

nd

dq

nd

d

n

q xxxxxnqI
d

n

d )(
)(

)()();,( 
 . 

Proof: 

From Theorem 6 we know that );,( xdqIxx
nd

qn

  

Now apply Moebius Inversion in the multiplicative form to the multiplicative group G of non-zero rational 

functions over qF  . Take h(n) = I(q, n; x) and xxnH
nq )(  to get the desired formula. 

Example 8: 

Take q = 2 and n = 4. Then the product of all monic irreducible quartics in  xF2  is: 

)4(2)2(4)1(16 )()()();4,2(  xxxxxxxI   

1

1
3

15

4

16











x

x

xx

xx
 

136912  xxxx  
A New Proof of Wedderburn’s Little Theorem: (A Finite Division Ring is Commutative) 

 We will prove the well know fact that a finite division ring is commutative along the following lines. 

We start with a minimal counterexample L, viz. a finite division ring which is not commutative but all its 

maximal division subrings are commutative. We then prove that not all maximally commutative subgroups in 

these maximal subfields are eigenheimers. (A subgroup H of a group G ≠ H is called an eigenheimer of G if N G

(H) = H). For if we suppose moreover that  all  maximal  subfields  are  conjugate  then by a simple counting 

argument the number  of  elements  in  these  maximal  subfields  don’t  add  up to the number of elements of  

the  finite  division ring  L and if we assume that there are at least  two  different  classes  of  conjugate  maximal  

subfields  then  we  find also by  a  simple  counting   argument   that   there  are  too  many  elements. From  

these  two  contradictions  we  can  thus  assume  further  that  at  least one of   the   maximally   commutative   

subgroups,  let  us  say  M


,  has  a  normalizer different from  M


  and M


 is thus not an eigenheimer of L


. 

Thus there exists a maximal subfield, let us say N ≠ M, whose cyclic group N


 contains an element x ∈ N − Z 

that lies in the normalizer of M


 but not in M. We prove that the whole subgroup  N


  lies in the normalizer of  

M


 by defining a left vectorspace V over the maximal subfield M spanned by a set Q of independent powers of  

x. We will see that the sum but also the product of two vectors is in V. So we find V = L. We then express the 

conjugate bases   ,...., 221  QgggQg  in matrix form and we prove the contradiction that   )( 
 MNg

L
. 

So M is a normal subfield. According to a theorem of Cartan-Brauer-Hua M is in the center of L. A 

contradiction. 

Proof: 

We give a combinatorial proof, without making use of the complex numbers or permutation theory, of 

the following 

Theorem 11: 
Wedderburn’s Little Theorem “A finite division ring L is commutative”. 

Proof: 
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Let L be a finite division ring.  By  definition  L  is  an  additive  group   which  is  abelian,  and  with  

zero  element  0,  and  L


 = L−{0}  is a multiplicative group, which need  not to be  commutative,  with identity 

element 1. In addition the multiplication is left as well as right distributive over the addition: a(b +c) = ab + ac 

and (b + c)a = ba + bc for all elements a, b, c ∈ L.A  field is a commutative division ring. The center Z of L, 

consisting of all elements z ∈ L which commutes with all elements a ∈ L is a subfield.  L can be considered as a 

left vector space over Z. Thus there exists a unique prime p and natural numbers z and ℓ such that |Z| = p
z
  and | 

L| = p
l
   and z|ℓ. We use induction on the number n of elements of finite division rings. The theorem is true for 

n = 2. L contains only the two elements 0 and 1 and the multiplication is commutative. So we assume the 

theorem is true for finite division rings with less than n elements and we put n ≥ 3.  Before we proceed with the 

proof we   prove a useful theorem. 

Theorem 12: 

Let G be a non-commutative group with center Z and H a maximally commutative subgroup. Then Z ⊂ 

H. 

Proof: 

The subset HZ = ZH is a subgroup of G.  Let  Hhh 21,  and Zzz 21, . Then  

HZzhzzhhzhzh  3321212211  and  HZzhhzzh 
 1

1

1

1

1

1

1

1

1

11 )(  and HZ is a 

subgroup of G.  But HZ is also commutative for 11222211 zhzhzhzh  . Now H ⊂ HZ but H is a 

maximally commutative subgroup of G. Thus H = HZ and Z ⊂ H = HZ. We proceed with the main proof. We 

assume that L is a minimal counter example where the maximal division subrings of L are commutative and we 

that the groups of units are cyclic and by theorem 2 all the maximal division subrings contain the center Z of L. 

We see also that every element a ∈ L – Z lies in a unique maximal subfield (or otherwise it is an element of Z). 

We need a definition. 

Definition 3: A subgroup H of a group G ≠ H is called an eigenheimer of G if the normalizer of H is equal to H: 

Thus N G (H) = H. 

Hypothesis 1: 

For every maximal subfield M of L the normalizer of M


 in L


 is equal to M


, all the M


 are thus 

eigenheimers. We put for the moment |L| = ℓ, |M| = m, |N| = n, |Z| = z for division rings L,M,N,Z.  

Contradiction: (i) Suppose that all maximal subfields are conjugate with M. Then 

|L| = |Z| + 
1

1





m

l
 |M − Z|  or  ℓ = z + 

1

1





m

l
 (m− z) or (ℓ − z)(m− 1) = 

(ℓ − 1)(m − z) or ℓm− ℓ − zm+ z = ℓm− ℓz − m + z or ℓ = m. But ℓ > m. 

Contradiction: (ii) Suppose that there are two maximal subfields M and N which are not conjugate. Then 

|L|  ≥  |Z| + 
1

1





m

l
 (m − z) +

1

1





n

l
 (n − z)  or 

ℓ−z  ≥  2 












1

1

m

l
(m−z)                             or 

(ℓ−z)(m−1)  ≥  2(ℓ−1)(m−z)                  or 

ℓm−ℓ−zm+z  ≥ 2ℓm − 2ℓz − 2m + 2z   or 

2ℓz  ≥  ℓ(m + 1) + m(z − 2) + z             or 

2ℓz  ≥  ℓ(m + 1)                                    or 

2z  ≥  m + 1  >  2z                                 or 

z > z. 

But  z = z. (We have assumed that 
1

1





m

l
 (m − z)  ≤ 

1

1





n

l
 (n − z)). From the contradictions (i) and (ii) it 

follows that Hypothesis 4 no longer holds and must be replaced by another hypothesis as we shall state in a 

moment. But first we prove a few group theoretic theorems: 

Theorem 13: 

Let G be a finite group and let H be a proper subgroup. Then GxHxGU x   )( 1

 
Proof: 

Let |G| = g, |H| = h. Let x
xHxGD )( 1  and Let  |D| = d  ≥  1.  
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Then |G : N G (H)|  ≤  
h

g
 and thus (g − d) ≤ 









h

g
(h − d)  or  h(g − d)  ≤  g(h − d)  or gd  ≤  hd  or  g = h.  A 

contradiction. 

Theorem 14: 
Let G be a finite non-commutative group. Then one of the maximally commutative subgroups is not an 

eigenheimer. 

Proof: 

Let H and K be maximally commutative subgroups of G and let H ≠ K. Let Z be the center of G. Then 

H ∩ K = Z. We call a subgroup H of a group G ≠ H an eigenheimer if the normalizer N G (H) = H.  We assume 

that all maximally commutative subgroups are eigenheimers, otherwise we are done. Let |G| = g, |H| = h and |Z| 

= z. Suppose (i) that all maximally commutative subgroups are conjugate with H. Then (g−z) = 
h

g
(h−z) or g = 

h. A  contradiction. Suppose (ii) that H and K are not congugate. We assume that the number 

)( 1 xHxGU x  is minimal. Then (g −z) ≥ 
h

g
 (h−z) + 

k

g
 (k −z) ≥ 2

h

g
 (h −z) or h(g − z) ≥ 2g(h−z)  or 

0 ≥ hz +g(h−2z)  ≥  hz. A  contradiction. 3 From these two contradictions it follows that at least one of the 

maximally commutative subgroups, let us say H, is not an eigenheimer: N G  (H) ≠ H. 

Theorem 15: 

Let G be a finite group and for every commutative subgroup H of G we have: N G  (H) = C G (H). Then 

G is commutative. 

Proof: 

Suppose that G is non-commutative.  Let H i  be the maximally commutative subgroups of G. Then one 

of the maximally commutative subgroups, let us say H, is not an eigenheimer. Thus H < N G (H) = C G (H) ≠ H. 

Let c ∈ C G (H)−H then the group generated by  H  and  c  is commutative. Thus H is not maximally 

commutative.  A contradiction. Thus G is commutative. We continue with the proof of theorem 1 by stating the 

following hypothesis which replaces hypothesis 4. 

Hypothesis 2: 

There exists a maximally commutative subgroup, let us say M


, whose normalizer N L
(M


) ≠ M


. 

Let  x  be an element of a maximal subfield  N  such that  x ∈ N – Z  and  x is  an element of  N L
(M


). We call 

the smallest subfield of N containing x to be N 1 . We are going to prove that N 1  = N but first we make a 

necessary detour. Now       the        commutative     subgroup          M


      is     cyclic    and       is generated by 

an element, let us say m. Thus the elements 
kikkiiii mmxxmxmxxxmmxxmxmxm   ,....,)(,,

211221
Are elements of M


 where 

k is minimal   for x
k

 to be  an  element  of Z.  Let n 1  be the multiplicative order of x. Thus

)....1)(1(01
12 11 


nn

xxxxx , so the set of powers of  x,  12 1,...,,,1



n

xxxP  forms a 

dependent set of vectors in the space N 1  over Z. Let  qiii
xxxxQ ,....,,,,1 43  be a maximal independent set 

of vectors of P. which spans a left vector space N 1  over Z. Each power of  x ∈ P can be written as a linear 

combination of the powers of  x  which are in  Q. Then we consider the left vector space  L  over  M  with basis  

Q.  So M ⊂ V ⊂ L. We shall prove V = L. Let V be the set of linear combinations 

qi

q

i
xxxxf   ....)( 3

321
with scalars from M. Let qi

q
i

xxxxg '
3

'
2

'' ....)( 3

1
   

be a second linear combination with scalars from M. We define 

qi
qq xxxgxfxgf )(.....)()()()(:))(( ''

221
'

1  
 

and we define 

qi

q xxxf   ....:)( 21 , where µ ∈ M, sothat  V  is a left vector space over M.  To show that 

V is a division ring we see that the product  f(x)g(x)  is also a linear combination of the powers of  x  in  Q  after 

suitable simplifications:    )()()( "'

sr

i
s

i

r iixxxxgxf sr   where  )( '" rr i
s

i

r xx


  . 

Now µ′′∈ M and Px sr 
 and can thus be written as a linear combination of the powers of  x which are in set 
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Q. We leave all the necessary details to the reader. V contains M  and  x and  V = L. We now prove that N 1  = 

N. The maximal subfield N, which contains subfield N 1  has a cyclic subgroup N −{0} which is generated by an 

element, let us say y. y is a linear combination of powers of  x in Q with scalars in M. Let

qi
q

i
xxxy "

3
"

2
"

1
" ....3   y.  

But ))"(....)"()"()"( 11

3

1

2

1

1

1 3 qi

q

i
xxxxxxmxxxxxxyxy    . For all 

scalars µ′′ r = xµ′′
1""  xx rr    sothat  Zr " . All the scalars of y are in Z and y ∈ N 1 . Thus N 1  = N. 

We make the last step in the main proof. Let )( 
 MNLg

L
. Recall that N ⊂ )( 

 MN
L

. Let 

 Tii qxxxX ,....,,,1 3   and let  Tii
ggxggxgxggXg q 1111 ,....,,,1 3   . Let  ijM )1(

1   be the 

matrix of order q × q with elements from M such that 
1

1

 gXgXM .  Let    ij
i

iM )(  be the matrix of 

order q×q with elements from M such that 
ii

i gXgXM  . For i = 2 we have     

XMggMgXgggMgXMgggXgggXgXM 1

1

1

11

1

1

1

1122

2 )()()(    . Because     

X ≠ 0     we     have      1

1

12 MggMM        so     that     
1

1

1

12


 ggMMM .         For       

ii

i gXgM           

We can write XMgXgMgXgggMgXgMggXggXM iii

ii

i 1

1

1

11

1

1

1

111 )( 











 
 

and because X ≠ 0 we have: 1

1

1 MggMM ii



  . Thus 
1

1



 ggM i   have only elements from M. Generally 

we have s

s

r

s

sr MgMgM 

  so that the elements of    
s

r

s gMg 

 
 are from M.  Especially let H be the 

union of all the elements in the matrices ,....,, 2

1

21

11

 gMgggMM
 
Then H ⊂ M and gHg

1
 = H. Let H be 

the subgroup of M


 generated by the elements of H then H is cyclic and the only subgroup of M


 of order |H|. 

Besides gHg
1

 = H. Every conjugate of M


 contains one conjugate of H and vice versa. Thus 

)()( 
  MNHN

LL
 so that )( 

 MNg
L

. A contradiction. Thus M is an normal subfield of L. However 

Theorem 16:  

Let L be a division ring with center Z and let M be a proper normal subfield of   L. Then  M ⊂ Z. 

Proof: 

Let ℓ ∈ L − M and m ∈ M − Z, then ℓm ≠ mℓ. Consider the following Identity of Hua (1949): ℓ = (m
1

 

− (ℓ − 1) 
1

m
1

 (ℓ − 1))(ℓ
1

m
1

ℓ − (ℓ − 1) 
1

m
1

 (ℓ − 1)) 
1

then we see that ℓ ∈ M sothat  ℓm  =  mℓ. A  

contradiction. Thus L is commutative. By induction L is commutative. 

Conclusion: 

This paper provides the theorems related to finite fields, irreducible polynomials over finite fields and 

theorems of wedderburn, Artin, Zassenhaus and Carten-Brauer-Hua in a detailed manner. Also in this exposition 

we have seen many results on finite fields and irreducible polynomials. Moreover, in this paper we have 

produced many facts, examples, wherever necessary, so that it will be easier to understand the concepts in the 

material. 
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