Conference paper Open Access

VIDEO AESTHETIC QUALITY ASSESSMENT USING KERNEL SUPPORT VECTOR MACHINE WITH ISOTROPIC GAUSSIAN SAMPLE UNCERTAINTY (KSVM-IGSU)

Christos Tzelepis; Eftichia Mavridaki; Vasileios Mezaris; Ioannis Patras


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Video aesthetic quality assessment</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Rules of photography and cinematography</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Support vector machine</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Video representation uncertainty</subfield>
  </datafield>
  <controlfield tag="005">20200120163605.0</controlfield>
  <controlfield tag="001">159236</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">25-28 September 2016</subfield>
    <subfield code="g">ICIP 2016</subfield>
    <subfield code="a">IEEE International Conference on Image Processing</subfield>
    <subfield code="c">Phoenix Cinvention Center, Phoenix, Arizona 85004 USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI), CERTH</subfield>
    <subfield code="a">Eftichia Mavridaki</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI), CERTH</subfield>
    <subfield code="a">Vasileios Mezaris</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Queen Mary University of London</subfield>
    <subfield code="a">Ioannis Patras</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">939516</subfield>
    <subfield code="z">md5:e1d2690710feec497a767f606bae165b</subfield>
    <subfield code="u">https://zenodo.org/record/159236/files/icip16_2_preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://2016.ieeeicip.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-09-25</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ecfunded</subfield>
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:159236</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI), CERTH, Queen Mary University of London</subfield>
    <subfield code="a">Christos Tzelepis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">VIDEO AESTHETIC QUALITY ASSESSMENT USING KERNEL SUPPORT VECTOR MACHINE WITH ISOTROPIC GAUSSIAN SAMPLE UNCERTAINTY (KSVM-IGSU)</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecfunded</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this paper we propose a video aesthetic quality assessment method that combines the representation of each video according to a set of photographic and cinematographic rules, with the use of a learning method that takes the video representation's uncertainty into consideration. Specifically, our method exploits the information derived from both low- and high-level analysis of video layout, leading to a photo- and motion-based video representation scheme. Subsequently, a kernel Support Vector Machine (SVM) extension, the KSVM-iGSU, is trained to classify the videos and retrieve those of high aesthetic value. Experimental results on our large dataset verify the effectiveness of the proposed method. We also make publicly available our dataset, in order to facilitate research in the area of video aesthetic quality assessment.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/ICIP.2016.7532791</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
70
37
views
downloads
Views 70
Downloads 37
Data volume 34.8 MB
Unique views 67
Unique downloads 37

Share

Cite as