Conference paper Open Access

VIDEO AESTHETIC QUALITY ASSESSMENT USING KERNEL SUPPORT VECTOR MACHINE WITH ISOTROPIC GAUSSIAN SAMPLE UNCERTAINTY (KSVM-IGSU)

Christos Tzelepis; Eftichia Mavridaki; Vasileios Mezaris; Ioannis Patras


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Christos Tzelepis</dc:creator>
  <dc:creator>Eftichia Mavridaki</dc:creator>
  <dc:creator>Vasileios Mezaris</dc:creator>
  <dc:creator>Ioannis Patras</dc:creator>
  <dc:date>2016-09-25</dc:date>
  <dc:description>In this paper we propose a video aesthetic quality assessment method that combines the representation of each video according to a set of photographic and cinematographic rules, with the use of a learning method that takes the video representation's uncertainty into consideration. Specifically, our method exploits the information derived from both low- and high-level analysis of video layout, leading to a photo- and motion-based video representation scheme. Subsequently, a kernel Support Vector Machine (SVM) extension, the KSVM-iGSU, is trained to classify the videos and retrieve those of high aesthetic value. Experimental results on our large dataset verify the effectiveness of the proposed method. We also make publicly available our dataset, in order to facilitate research in the area of video aesthetic quality assessment.</dc:description>
  <dc:identifier>https://zenodo.org/record/159236</dc:identifier>
  <dc:identifier>10.1109/ICIP.2016.7532791</dc:identifier>
  <dc:identifier>oai:zenodo.org:159236</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/693092/</dc:relation>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/687786/</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/ecfunded</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/invid-h2020</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/moving-h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Video aesthetic quality assessment</dc:subject>
  <dc:subject>Rules of photography and cinematography</dc:subject>
  <dc:subject>Support vector machine</dc:subject>
  <dc:subject>Video representation uncertainty</dc:subject>
  <dc:title>VIDEO AESTHETIC QUALITY ASSESSMENT USING KERNEL SUPPORT VECTOR MACHINE WITH ISOTROPIC GAUSSIAN SAMPLE UNCERTAINTY (KSVM-IGSU)</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
73
48
views
downloads
Views 73
Downloads 48
Data volume 45.1 MB
Unique views 70
Unique downloads 48

Share

Cite as