Mr. De la Rue on Will's Nitrogen Apparatus. 347

April 5, 1847.—Thomas Graiam, Esq., Vice-President, in the Chair.

"On the Chemical Composition of Calcareous Corals, by J. Silsman, Jun., Esq.," was presented by the author, with several copies for distribution.

The following papers were read:—

On a Modification of the Apparatus of Varrentrapp and Will for the estimation of Nitrogen. By Warren De la Rue, Esq.

My attention having been called to a communication by Mr. Alex. Kemp in the number of the 'Chemical Gazette' for the 1st of April 1847, in which he describes a modification of Messrs. Varrentrapp and Will's tube for nitrogen determinations, of a very similar construction to one I employed as far back as November 1845 in the laboratory of the Royal College of Chemistry, and which I have repeatedly shown to my friends, I am induced to lay before the Society a description of my form of apparatus, which differs somewhat from that described by Mr. Kemp.

By the drawing, it will be seen that the tube BE, instead of opening immediately into the bottom of the flattened bulb C, is prolonged and rises for some distance into the bulb curving over towards its side; in this respect Mr. Kemp's apparatus does not differ materially from mine. I found it necessary however to have a third bulb (D) blown (which is best of a spheroidal form), in order to effectually prevent the acid from being drawn into the tube G whenever a sudden absorption took place; this third bulb communicates with C by a narrow neck. If the apparatus be constructed without
Dr. Playfair on Transformations

the third bulb D, a portion of fluid generally passes into the tube G from the rotary motion induced in the fluid in C.

The dotted lines indicate the height of fluid in the bulbs, and this quantity is quite sufficient for the condensation of all the ammonia likely to be formed. I would remark, that if during the progress of the combustion a cessation of the production of gas should occur, the construction of the apparatus is such as to prevent the whole of the acid ever being carried over into the bulb C, so that on the evolution again commencing no fear need be entertained for the complete condensation of the ammonia.

It only remains for me to add, that though this new form of apparatus is not so readily rinsed out as the original one of Messrs. Varrentrapp and Will, no great inconvenience is experienced from that cause, as the acid can, at the close of the operation, be easily caused to flow into the bulb C and out at the tube G, by properly inclining the bulbs, &c., and when this is done water or alcohol may be introduced by a pipette through the limb H.

CXCIII. On Transformations produced by Catalytic Bodies.
By Lyon Playfair, Esq.

BERZELIUS rendered a most useful work to science, when he collected into one class those varied phenomena of chemical action resulting from causes certainly very different from the ordinary manifestations of those affinities, which produce combinations or promote decompositions. This philosopher believes the power *, which causes decomposition without the acting body participating in its result, to be a distinct electro-chemical agency different from other recognised powers, and he named it the "Catalytic force." According to this view, catalytic bodies do not act by chemical affinity, but they excite inherent affinities in other substances,

* Jahres Bericht, xv. 237.
in consequence of which new combinations or decompositions ensue.

Mitscherlich *, adopting this view, considered a number of catalytic decompositions in detail, and showed the important influence exerted by the state of surface of bodies in favouring this peculiar action, which he denominates decomposition by *contact*. The examples, adduced in this interesting memoir, of the favourable action of an extended surface upon combination, fully prove that the physical condition of bodies exercises an important influence upon the action of this force; but they do not remove the necessity for studying the force itself, as it may either be a *vis occulta*, entirely distinct from powers already recognised, as Berzelius supposes, or may be modified forms of those in continual operation.

Liebig † views the catalytic power as a dynamical action on the atoms of a complex molecule, conceiving that the activity of the atoms of a body in a state of motion may be communicated to those of another body in a state of rest. The atoms of a compound, according to this view, if in a state of exact statical equilibrium, arrange themselves according to new affinities, when the *vis inertiae* is overcome by motion. In proof of this view, Liebig carefully examines a large number of decompositions, and accounts for some of the most difficult transformations in organic chemistry.

But there are many instances, to which I shall have to draw attention in the present memoir, where catalytic decompositions ensue when there is no intestine motion in the atoms of the exciting body; and hence we cannot do more than consider motion as favourable to the development of dormant affinities, in a manner similar to the surface action described by Mitscherlich. The power of peroxide of hydrogen and of pyruvic acid to reduce oxide of silver is certainly a singular phænomenon, and appears favourable to Liebig’s views; but the cause of the original decomposition of the peroxide of hydrogen cannot be ascribed to motion, as the atoms of the oxide of silver are not in that state, and those of the peroxide of hydrogen either not at all or only slightly so. Neither will it suffice to suppose that the escape of gas during such decompositions is due to the presentation of angular points from which the gas may escape ‡, because solutions of alkalies equally effect the decomposition, according to Thenard §. The cause, therefore, which enables cer-

† Liebig’s Chem. of Agriculture, 4th edit., p. 284.
‡ Ann. der Pharm., ii. 22.
§ Ann. de Chim. et de Phys., xlvi. 79.
tain substances to hasten the decomposition of such bodies as peroxide of hydrogen or persulphuret of hydrogen, although favoured by the state of surface and by motion, is independent of mere physical condition.

In further proof of the importance of motion in causing combination or decomposition, Liebig cites the favourable effects of agitation on the precipitation of potash by tartaric acid. It may be questioned, however, whether this is not either a mechanical breaking up of a combination or the simple effect of cohesion. Thus when water is saturated with a gas, a brisk agitation with a rod causes the separation of bubbles of gas previously dissolved. The mechanical force may here be supposed to have broken up the compound molecule of water and gas by detaching the former, and thus enabling the gas to escape by its elasticity. In the precipitation of potash by tartaric acid, cohesion may effect the same result that elasticity does in the case of gas, the agitation knocking off the atoms of water which are feebly attached. In fact we know that the addition of alcohol equally aids the precipitation, the action here being a chemical separation of the water, as in the other it is mechanical. The diminished solubility of the salt, after it has been influenced by cohesion and separated from water, has its counterpart in many similar instances; for example, in the small solubility of anhydrous sulphate of iron. The effect of agitation on a solution of sulphate of soda, saturated while hot and allowed to cool, I ascribe to the same cause. The supposed effect of cohesion or elasticity in these cases is nothing more than that constantly observed in ordinary phenomena, when the gravity of a substance is different from that of the medium in which it exists. The vesicles of water in the atmosphere may be so small that they float in it and produce fogs; but when aggregated together by the motion of the air, they form drops, which precipitate to the ground with a rapidity proportionate to their size: the converse of this is also true. Thus, the particles or aggregated atoms of carbonic acid in water may be so very small, that, with the slight affinity of the latter added, they may be enabled, when in a state of rest, to remain without resuming their elastic form; but agitation causes a larger system of aggregated atoms, and the gas now escapes in small bubbles.

The first instance of cohesion applies in the precipitation of tartar. At the moment of formation the particles may be so widely apart, that, aided by their slight affinity for water, they remain without aggregating to any considerable extent. Brisk agitation, and the presentation of an extended surface,
effect their aggregation and cause a speedy precipitation. It may be that these are really instances of combination favoured by motion; but presuming that they are, the general argument is not affected, that other decompositions perfectly analogous are produced where the exciting body is in a state of rest.

The third theory of these decompositions is, that catalytic bodies act by exerting a feeble chemical affinity on one of the constituents of the body decomposed. This view was introduced by Mercer*, and supported by several very ingenious experiments communicated to the British Association at its meeting in Manchester. One of these was, that protoxide of manganese had the singular power of hastening the oxidation of starch in nitric acid†. The metallic protoxide, from its disposition to pass into the state of peroxide, aids the oxalic acid to decompose the nitric acid, the united affinities of both being able to accomplish what neither by itself could do. The protoxide remains unaffected at the end of the experiment, because, under the circumstances (the presence of acid), it cannot gratify its desire to become peroxide, and, therefore, it passes over its oxygen to the carbon, which escapes as carbonic acid. Mercer cited, as further examples, the action of protoxide of copper in eliminating oxygen from a solution of hypochlorite of lime, and of peroxide or binoxide of nitrogen in commencing the oxidation of a mixture of protochloride of tin and nitric acid. Mercer implied by these instances, that catalysis is an affinity of the catalytic agent for an element in the body acted upon, that affinity being feeble and incapable of gratification under the circumstances.

It would be advantageous to science if we could arrange under a known power the cases of decomposition which appeared so mysterious as to induce the great Berzelius to ascribe them to the action of a new force. It may not be possible in the present state of our knowledge to comprehend the whole of the instances observed, but, if most are included in one category, we have a right to suppose that the others may be embraced as our knowledge progresses. I shall therefore endeavour to show that many catalytic decompositions are

* Reports of British Association, vol. xi. 2d Part, p. 32.
† The experiment is easily made by dissolving 1 ounce oxalic acid in ½ a pint of water at 180° F., and adding to this 1 oz. colourless nitric acid of 1·80 sp. gr. No action ensues on this mixture, but it immediately commences on the addition of a protosalt of manganese, which for simplicity may be the oxalate or nitrate. The action is also strikingly shown by heating a mixture of oxalic acid until the action commences, then diluting it till all action ceases. A little protosalt of manganese now added to the solution causes an immediate renewal of the oxidation.

* Chem. Soc. Mem. vol. III. 2 c
Dr. Playfair on Transformations

merely cases of chemical affinity exerted under peculiar conditions.

In no instance of chemical union does there seem to be such a complete gratification of affinity as to suppress the attractions of the elements. The inherent affinities still remain more or less powerful, for, if it were not so, the compound would be permanent under all circumstances and not liable to further change by the action of external agents. When manganese unites with 1 atom of oxygen, the affinity of the metal for oxygen is not wholly merged, but is still strong enough to attach to itself 1, 2 or 3 atoms more oxygen. When the oxide is one of the lowest of the series, this affinity exhibits itself in a basic power by attaching itself to any complex highly oxygenized molecule, such as the oxygen acids, or of radicals playing the part of oxygen. When, on the other hand, the manganese or other radical becomes highly oxygenized, we find it possessing acid properties, that is, the additional atoms of oxygen, being less firmly attached, are capable of gratifying the disposition of a less oxygenized atom (the base) to attach itself to a higher oxide, or, to use the convenient phraseology of Graham, the base becomes zinco-rous to the acid, which is now chlorous.

On heating the nitrates, nitric acid is not given off, but \(\text{NO}_4 + \text{O} \). The decomposition readily results from the disposition of the base to appropriate more oxygen and pass into the higher oxides. If the base be oxide of nickel, the oxygen becomes attached to the oxide and remains; if, however, an oxide which has but a feeble affinity for oxygen at an elevated temperature, the elasticity of that element is able to overcome the affinity, which succeeded in breaking up the nitric acid. The final action is so obviously dependent upon the oxygenous part of the acid, as to make Schönbein believe that salts contain peroxides ready-formed; thus that \(\text{NO}_5, \text{HO} = \text{NO}_4 + \text{HO}_2 \), or \(\text{PbO, NO}_5 = \text{NO}_4 + \text{PbO}_2 \). This however is an unnecessary supposition, the previous view accounting sufficiently for the decomposition of a nitrate, so as to produce \(\text{NO}_4 \) and \(\text{O} \). Admitting this view to be correct in the expression that the preponderating quantity of a chlorous element in an acid renders the latter chlorous to a base, the mechanical attachment being to the chlorous element, we can understand why the number of atoms of oxygen in a base should regulate the number of atoms of acid attached to it. Thus \(\text{RO} \) presents only one chlorous element of attachment to the acid, and therefore the latter adheres to it in one proportion; whereas \(\text{R}_2 \text{O}_9 \), which possesses three atoms of a chlorous element equally distributed.
round a zincoous nucleus, presents three points of attachment, and therefore produces a salt R_3O_93A. This view in result gives all the simplicity of the acid radical theory, both views entertaining the idea that the oxygenous atoms of the base and acid are attached to each other. We have certain instances, as for example $KOClO_3; PbO, NO_3$, where the elastic atoms of oxygen combine as closely together as non-elastic atoms, such as lead or silver.

Although to aid conception we may suppose the atoms of oxygen of the base and of the acid to be in mechanical connexion, the true arrangement is probably not so, seeing that in a base there is always a part more zincoous than the oxygenous atom, although the base as unity is zincoous to the acid. We see many instances in chemistry of union of atoms in pairs, or what may be called dual affinity. This Graham* has proved to be the case with regard to atoms of water, and we know of numberless instances in the case of oxides. Thus RO uniting with oxygen forms RO_2. In this case $RO + O$ corresponds to $RO + A$, the acid here representing the chlorous element from its oxygenous character. It is not necessary to suppose that A and O are associated in one continuous line, the probability being that the molecule may really be represented by ARO. Thus also in R_3O_9, where the O_3 are probably grouped equally round R_3, there is room for three more of a chlorous element to gratify the dual affinity, and the general formula R_3O_93A is the result, the $3A$ here representing three of a simple chlorous element. The result, as regards affinity, will still however be the same, the whole depending upon the attraction of the central nucleus R. It is therefore only for simplicity of expression in studying the phenomena of catalysis, that I view the atoms of oxygen of an acid as associated in mechanical continuation with the atoms of oxygen of the base, the effect being represented by this expression: the whole views of molecular or atomic constitution of bodies are in my opinion only convenient fictions to enable us to study the forces themselves, and the conception of a mechanical arrangement I only adopt as expressive of the manifestations of powers residing in matter.

To show that the tendency of bases to NO_3, even without being combined, is to attach themselves to the oxygenous part of the acid, a curious phenomenon observed by Mercer may be cited.

A portion of alumina may be taken and placed at the bottom of a vessel containing warm NO_3; no action ensues, ex-

Dr. Playfair on Transformations

cept partial solution; a slip of calico coloured in indigo-blue may now be introduced into the mixture, and remains unaffected in the clear acid, but is immediately discharged when pressed with a glass rod into the alumina. Here the alumina acts by placing the oxygen of the nitric acid in a state of tension without however succeeding in decomposing it, but the moment an assistant affinity comes into play, that state is shown by the decomposition of the nitric acid and oxidation of the indigo. The alumina in the presence of the acid could not oxidize (in fact, we know of no higher oxide), and therefore the indigo appropriates the oxygen. I find that various other oxides, such as calcined \(\text{Cr}_2\text{O}_3 \) and \(\text{SnO}_2 \), have the same power, the latter showing this disposition more strongly than any of the other oxides. The best mode of trying these experiments is to heat a certain quantity of nitric acid, and then dilute it till indigo cloth ceases to be bleached. The oxide of tin is now added and allowed to fall to the bottom. On introducing a slip of indigo-blue calico, the portion in the clear acid will be found to remain unaffected, while that in contact with the insoluble oxide will be bleached in a few seconds. That this decoloration of the indigo is due to the assistant affinity of another body acting in the same direction, i.e., also having a disposition to unite with oxygen, may perhaps best be shown by the following experiment:—Warm nitric acid is diluted to such extent that it just ceases to discharge indigo-blue calico; it is then divided into two portions, with slips of coloured calico in each, and through one of these binoxide of nitrogen is passed. In the latter the indigo becomes quickly bleached, while it remains unaffected in the former, the action obviously being due to the accessory affinity of the nitric oxide for more oxygen. In the same way indigo-blue is discharged during the decomposition of a nitrate by heat, other kinds of organic matter being oxidized under like circumstances; in these instances the decomposition of the nitric acid is much facilitated,—1. by the affinity of the base for oxygen; 2. the affinity of the organic matter for oxygen, which unites with it at the elevated temperature. There are many similar instances of this kind, where the behaviour of \(\text{NO}_2 \) or \(\text{NO}_4 \) as an assistant is too clearly contrasted with the action of other bodies to permit mistake. Thus urine when kept is unfit for the preparation of urea, that substance having been converted into carbonate of ammonia during the action of the air upon the mucus or colouring matter contained in the fluid. Colourless nitric acid unites with urea and may be heated with it without decomposition; but nitric acid containing any of the lower oxides of nitrogen, such as
NO₂ or NO₄ immediately decomposes urea into carbonic acid
and ammonia*. We cannot conceive that a lower oxide can
more readily oxidate urea than a higher oxide, and hence we
can only view the NO₄ as aiding the urea to oxidize itself, as
the mucus does in urine. In the same way, the action of
pure nitric acid on colourless uric acid is to form alloxan, if
the operation has been conducted so as to prevent the formation
of nitrous acid (NO₂) during the oxidation. But if NO₄
has been evolved, or if the colouring matter of the urine be
still contained in the uric acid, the products are only carbo-
nate and oxalate of ammonia. The colouring matter of the
urine and NO₄ are thus seen to possess a similar action,
which is exactly the same as that of protonitrate of manga-
nes on a mixture of starch and nitric acid, no oxalic acid
being formed in the presence of this salt, the only product of
oxidation being carbonic acid. The NO₄ or NO₈ acts in these
cases clearly by aiding the compound ready to oxygenate, but
which, under the conditions, has not sufficient power to de-
compose the nitric acid without additional aid. The same ex-
planation probably applies to the singular discovery of Pro-
fessor Graham†, that the addition of NO₄ to non-accendible
phosphuretted hydrogen renders it inflammable. In this case
the two combined affinities produce the union of oxygen
with one of the bodies. The presence of the small quantity
of another compound of phosphuretted hydrogen in the sponta-
aneously accendible gas, as described by Leverrier‡ and by
Thenard§, may probably act in the same manner.

The action of this compound (PH₃) corresponding to ami-
dogen (NH₃) may be conceived so to disturb the attraction of
the phosphorus to the hydrogen in the gas PH₃ as to produce
the inflammability. Both the elements of this gas are highly
combustible, uniting with oxygen at a low temperature.
Their mutual attractions are sufficiently strong to prevent the oxygen breaking up this union; but when the second body
is present, the desire of PH₃ for another atom of hydrogen
may be supposed so far to draw the third atom of hydrogen
from the PH₃, that oxygen has now the power to unite with
the two inflammable elements. In disturbing the existing
equilibrium, it is presumed to act just as a spark would do by
elevating the already strong affinities of the two elements for

* A solution of urea in nitric acid is immediately decomposed with lively
effervescence when a little NO₂ is passed through it.
‡ Ann. de Ch. et de Phys. lx. 174.
pp. 252, 914; t. xix. p. 318.
When a solution of hypochlorite of lime is poured into a solution of muriate of ammonia in excess, a very pungent volatile compound results, which has no bleaching properties, and therefore does not contain hypochlorous acid. The decomposition is expressed by the equation \(\text{NH}_4\text{Cl} + \text{CaO}_2\text{ClO} = \text{NH}_2\text{Cl} + 2\text{HO} + \text{CaCl} \). The volatile compound \(\text{NH}_2\text{Cl} \) has an affinity for hydrogen in order to pass into \(\text{NH}_3\text{Cl} \). This body was well-fitted to test the view of the cause of the inflammability of phosphuretted hydrogen (even supposing \(\text{PH}_2 \) is not spontaneously inflammable, as it is stated to be by Thenard). On placing gas (which had entirely lost its inflammability by standing several days over water), in contact with the above mixture, in about an hour it acquired the property of smoking strongly in the air, although it did not inflame spontaneously. This showed that the affinity of \(\text{PH}_2 \) for oxygen was much elevated, although the attraction was not sufficient for inflammation.

There cannot be any doubt that the atoms of a body may be placed in a greater or less degree of tension by varying conditions. The experiments of Mr. Joule* and myself on Allotropism have fully proved that the space occupied by the same body alters under different circumstances. It is therefore not an unreasonable assumption that the affinity of one body for a particular element may be sufficiently great to produce a tense state of the atoms without effecting decomposition; hence the added affinity of a second body acting in the same direction may cause that change which each alone could not effect. Anything that disturbs the state of statical equilibrium in such a body will often effect its decomposition.

This accessory affinity is recognised when both bodies enter into union. Charcoal and chlorine decompose alumina at a red heat, though neither can do so separately. In the same way Boudault† has shown that a mixture of potash or soda and red prussiate of potash oxidizes various metallic oxides, while Mercer has for many years made use

† The alteration in volume is best seen in those oxides which contract and increase in specific gravity by the application of heat, for example, when the brown oxide becomes the green oxide of chromium. The two oxides must have a different molecular constitution, and this may be supposed to result from the elastic powers of one of its elements and the cohesive force of the other. The first effect of heat on oxide of chromium must be to expand the atoms of oxygen, and removing them further from the two atoms of chromium, permit the cohesive attraction of the latter to be gratified. Hence the compound acquires properties dependent upon cohesion, such as indifference to union and diminished solubility.
‡ Journal de Pharmacie, tome vii, 437.
of this mixture to discharge indigo-blue on calico*. Red prussiate of potash (Fe₃Cy₆3K) has a great disposition to attach to itself another atom of potassium to become yellow prussiate of potash (Fe₂Cy₆4K). It cannot gratify this desire without aid; but when assisted by a substance having an affinity for the oxygen of the potash, and capable of appropriating it, decomposition follows. There are often cases in which the body exercising the accessory affinity may be unable to effect the union, either by the influence of unfavourable chemical conditions or of cohesion or elasticity. Thus, in the case with which we first started, the affinity of protoxide of manganese for oxygen aids in the decomposition of nitrate of protoxide of manganese, and sesquioxide of manganese remains. If the temperature during the decomposition be elevated, the oxygen resumes its elastic state and refuses to form this higher oxide, as in fact we know is the case in Mercer's experiment with oxalic acid and nitric acid, where the presence of hot NOₓ is an unfavourable chemical condition to the existence of Mn₂O₃, and therefore it is not formed, but in its stead the oxygen is passed over to the organic matter, which is able to unite with it under the circumstances. A similar instance of the effect of such conditions is seen when the peroxides of copper, manganese or lead, are thrown into a solution of bleaching powder. The affinity of these oxides for an additional quantity of oxygen enables them to decompose the hypochlorite of lime, converting it into chloride of calcium. When the protoxides are used, this liberated oxygen unites and converts them to peroxides. The latter themselves have sufficiently strong affinity for oxygen to cause the decomposition to proceed; but not uniting with it, pure oxygen is given off in the gaseous state. Here elasticity has come into play, and being more powerful than the feeble chemical affinity, causes the oxygen to escape as a gas. When the solution is cool the gas goes off in a succession of small bubbles; but when hot, the escape is tumultuous, the heat aiding the oxygen to enter into the elastic state†. A solution

* Memoirs of the Chemical Society, vol. iii. p. 320. In justice to Mercer, although this does not remove Boudault's claim of priority of publication, I cannot refrain from stating that the former chemist pointed out to me the oxidizing powers of the prussiates four or five years since.

† The best mode of instituting the experiment is to make a mixture of chloride of soda and caustic soda, heat this to a temperature near ebullition, and add sulphate of copper. The oxide of copper precipitated in the fine state of division causes such a copious evolution of oxygen gas that the contents are apt to be thrown out of the vessel: a mixture of chloride of lime and lime, or the ordinary unfiltered bleaching-powder of commerce, are also well-fitted to show the action.
Dr. Playfair on Transformations

of chloride of lime evolves oxygen slowly at the boiling-point; but the decomposition is much accelerated by the accessory agents referred to.

The action of certain oxides upon peroxide of hydrogen is exactly similar to that on a solution of hypochlorite of lime. Thus peroxide of manganese, the protoxides of cobalt and lead, minium, peroxide of iron, and the protoxides of nickel, copper and bismuth, all exert this action on peroxide of hydrogen with a force indicated by their order*. In none of these cases does the oxide unite with a further proportion of oxygen. The violence of the action is however in proportion to their power of uniting with more oxygen. The first five oxides in the list have higher oxides of definite composition and of a certain degree of stability, with the exception of ferric acid; while the protoxides of copper and bismuth, although possessing the power of uniting with more oxygen, do not present superior oxides of a marked character. We should have expected the oxides of nickel and cobalt to have exerted the same power, but from Thenard’s description of the former being in the state of a black powder, it may have been the oxide of increased specific gravity, to which attention has already been drawn†. In all these cases the affinity is supposed to be sufficiently strong to break up the atoms of a body yielding to the slightest disturbance of its state of statical equilibrium. Two affinities are at play in these decompositions, viz. the attraction of the metallic oxide for oxygen and that of the water for the same body; both these affinities resist the union, and therefore, elasticity coming into operation, robs both oxides of the gas. The affinity causing the decomposition is so slightly preponderating in its influence, that a second cause coming into operation is quite sufficient to alter the conditions under which it was originally exerted, and to draw one of the elements of the body acted upon beyond the sphere of its affinity.

The balance of affinities in all such cases is so near that we not unfrequently find apparently contradictory effects resulting from their gratification. Thus the addition of oxide of silver to peroxide of hydrogen expels oxygen from the latter, but at the same time it is robbed of its own oxygen and reduced to the metallic state. In this case we have two feeble compounds instead of one, with affinities very nearly balanced, and with atoms so tense as to yield readily to the first disturbing cause. We can scarcely adopt as sufficient the ex-

* Thenard’s Traité de Chémie, 6th edit. vol. i. p. 216.
planation of Thenard and Mitscherlich*, that the reduction is due to the elevation of temperature accompanying the decomposition, because even when that is lowered by the addition of much water to the peroxide of hydrogen, the silver still becomes metallic.

It is a point yet undetermined, whether a lower oxide is to be considered as unity to a higher oxide, or whether all the atoms of oxygen are held by equal attractions. We know that tartaric acid is able to separate potash from nitric acid in forming a bitartrate, and yet acetic acid is sufficient to remove the second atom of potash from the neutral tartrate. But in a bibasic acid, like tartaric acid, it may be either atom of potash that is abstracted, and the superior affinity for the remaining one may be owing to attractions resulting after the expulsion of the first. Thus MnO₂ may have its atoms of oxygen distributed round the central nucleus Mn, and held by equal attractions, and the stability of the red oxide produced by its calcination does not show that it pre-existed in the black oxide, but merely that the attraction became stronger when one of the elements which divided it was removed. If it be admitted that the attraction of a radical for oxygen is equally divided between all the atoms of that element associated with it, the action to which we have alluded becomes comprehensible. In an oxide we have the attraction of affinity opposed by the elasticity of its oxygen and by the cohesive force of the metal. If a be the attraction of the central nucleus or radical, c the cohesive force of the metal, and e the elasticity of the oxygen, then the molecular formula of a protoxide will be $\frac{a}{c + e'}$, of a sesquioxide $\frac{2a}{2c + 3e'}$, and of a binoxide $\frac{a}{c + 2e'}$. Now if, as in oxide of silver, the a and e are nearly equal, or the a only slightly preponderating, and the c or cohesive force very powerful, we can readily conceive that the added force of a second e may overcome the small amount of preponderating force in favour of a. Thus, when oxide of silver is placed in contact with peroxide of hydrogen, its affinity for more oxygen is sufficient to draw the second atom of oxygen beyond the sphere of attraction of H₂ and deliver it over to its own elasticity. But in doing this the attraction of silver for oxygen has been divided between its own oxygen and that of the peroxide of hydrogen. Scarcely at any time capable of retaining its own oxygen, this division of its attractive force has been fatal to the existence of its oxide, and the water in statu nascens at the same

* Poggendorff's *Annalen*, lv. 321.
time exerting an affinity for the oxygen just ready to escape; all these causes combined result in the reduction of the silver.*

When pyruvic acid is in contact with oxide of silver, it unites and forms a salt; but when acting on carbonate of silver, a certain quantity of oxygen also leaves the oxide during the escape of carbonic acid, and metallic silver remains†. As Liebig ‡ suggests, motion may aid this result; but were this the only explanation, we should expect that silver would constantly be reduced during the action of other feeble acids on carbonate of silver. If, however, we suppose that the pyruvic acid, \(C_6H_5O_5\), from its affinity for more oxygen, exerts an attraction for that element at the moment of the liberation of the carbonic acid, the decomposition would be similar to those we have already considered, especially if the previous view of the molecular constitution of salts be admitted. In that case the oxygen of the oxide being attached to that of the carbonic acid, will be made highly tense during the escape of the latter, and may therefore be detached by a very feeble force, its elasticity finally overcoming the weak affinity. An extension of the explanation however strikes me as more probable, but it would be premature to insist upon it without being supported by experiments which I have not yet been able to conclude.

The action of metals and of charcoal on peroxide of hydrogen may be explained by the same feeble affinity. Alkalies also, from their attraction for oxygen, as indicated both by their capability of uniting with more oxygen and by their basic power or disposition to attach themselves to a compound behaving as an oxygenous or chlorous element, favour the decomposition of \(HO_2\), while acids, on the other hand, render it more stable, perhaps, as Thenard himself suspected §, from there being an inferior oxide (\(H_2O_3\)). In this instance the elasticity of the oxygen tends to conceal the play of affinities by preventing combination.

* During the passage of this paper through the press, Mr. Brodie, in a lecture at the Royal Institution, showed that peroxide of potassium reduces chloride of silver, the two atoms of oxygen passing off in the gaseous state, while chloride of potassium and metallic silver remain behind, a singular decomposition, when the behaviour of potash is remembered. But the action is strictly the same as that here described; the atoms of oxygen, being liberated at the same time, are presented to the silver, which, dividing its attractive force between them, is not able to overcome the influence of elasticity of the oxygen and its own cohesion, and therefore remains in a metallic state.

‡ Chemistry of Agriculture, 4th edit., page 283.
§ Traité de Chémie, p. 211.
When the acting body is present in large quantity, or exhibits an increased surface, the action goes on with proportionate rapidity. Thus, when nitric acid is in contact with starch, the action is moderate until a certain quantity of peroxide of nitrogen has been evolved by decomposition, after which it proceeds with a violence difficult to control. The peroxide of nitrogen surrounding every particle of starch aids it in the decomposition of the nitric acid. That this is the real cause of the phenomenon may be proved by the following simple experiment. Nitric acid is heated with starch to a temperature at which the action has a tendency to commence but has not yet begun. A stream of NO₄ or NO₂ is then passed through the liquid, when action immediately begins with an activity proportionate to the quantity of gas added. The elevation of temperature due to the progressive action influences the decomposition, by causing the atoms of nitric acid to become more tense. Exactly the same accessory affinity is used by the manufacturer of oxymuriate of tin, when he adds a fragment of tin to the mixture of chloride of tin and nitric acid. The tin eliminating some nitric oxide quickens the action, which commences with difficulty with pure nitric acid; nitric oxide gas passed through the solution answers the same purpose.

This accessory affinity also enables oxide of copper or peroxide of manganese to evolve copious streams of oxygen from chlorate of potash in a state of fusion. The heat of fusion decomposes the compound slowly, but on adding a body having an affinity for the element acted upon by the heat (oxygen), the decomposition proceeds with greatly increased rapidity. We cannot ascribe this action to the presentation of points from which the gas may escape, as in the lowering of the temperature of ebullition by particles of sand, because silica has no influence in accelerating this decomposition*.

In the examples previously given we have the decompositions aided by the tendency of one of the bodies to assume the elastic form. But when the body acted upon has two elements, one of which is influenced by elasticity, the other by cohesion, we find it peculiarly liable to be acted upon by external agents. Persulphuret of hydrogen is a compound of this class, and has been closely studied in its decompositions by Thenard†. The same bodies which decompose peroxide of hydrogen act catalytically upon this sulphuret. The decomposition cannot be due to points for the escape of gas, as suggested by Liebig‡, to explain the decomposition of peroxide of hydrogen, because solutions of the alkalies act with

† Ann. de Ch. et de Ph. xlvii. 79.
‡ Ann. der Pharm. ii. 22.
equal power. The sulphurets, especially those of the alkaline metals, decompose it very readily. As in the case of peroxide of hydrogen, the acids afford stability to its sulphur analogue. In the view of acids given, they are supposed to have become chlorous or electro-negative, representing and behaving as oxygen, and therefore exerting no affinity, we should anticipate that they would not show any disposition to break up an oxygenous compound or its analogue of sulphur. Another instance of accessory affinity is seen in the nitrosulphates*; the formula \((\text{RO}, \text{SO}_3^+ + \text{NO}_3^-)\) given by Pelouze to these compounds does not allow us to understand their decompositions, which however becomes intelligible if we view nitrosulphuric acid as nitric acid, in which the fifth atom of oxygen has been replaced by one of sulphur \((\text{RO}, \text{NO}, \text{S})\). In this acid we have two elements—the nitrogen and the sulphur—sharing the oxygen, their mutual affinities being nearly balanced when the acid is united with an alkali, although in a free state, the sulphur exhibits a superior affinity, as shown by the decomposition which then results, \(\text{NO}_3^+ \rightarrow \text{NO} + \text{SO}_3^-\). Now any substance which acts as an accessory to the sulphur by aiding the withdrawal of oxygen from the nitrogen decomposes it. This instability is especially exhibited in \(\text{NH}_4\text{O}, \text{NO}, \text{S}\); the 3 atoms of hydrogen of the ammonia in their attraction for oxygen introducing another affinity, which accelerates decomposition. And, in fact, we do find that the same agents which so readily decompose the oxygenous compounds, chloride of lime and peroxide of hydrogen, do equally cause the disruption of nitrosulphate of ammonia into protoxide of nitrogen and sulphate of ammonia. Alkalies are an exception to this rule, as they render the nitrosulphates more stable, while they make the peroxide of hydrogen prone to decomposition; but the cases are different, the latter substance having none of the properties of an acid.

The basic character of alkalies, defined as their power of uniting with more oxygen, or with an acid playing the part of an oxygenous element, is illustrated by several curious decompositions. Thus, though grape-sugar reduces sulphate of copper with ease, cane-sugar alone does not readily do so, but when mixed with potash and boiled with the salt, suboxide of copper is produced, as in the mode of preparation of that oxide suggested by Boettger†, or the reduction of chloride of silver as proposed by Levol‡. Here the disposition of the organic matter to unite with oxygen is able to gratify itself when aided by the accessory affinity of the pot-

* Ann. de Ch. et de Ph. lx. 151.
† Ann. der Pharm. und Chemie, xxxix. 176.
‡ Berzelius, Jahres Bericht, bd. xxv.
ash for oxygen. That the potash in this state acts by aiding the oxidation, is seen by heating CuO with a solution of caustic potash, exposed to the air, when it oxidizes much more rapidly than when boiled with water alone*. When suboxide of copper is dissolved in ammonia it oxidizes with surprising rapidity. In this instance the hydrogen of the ammonia adds to its disposition as an alkali to absorb oxygen. The quick oxidation is not merely due to the fact of the suboxide being in a state of solution, because the soluble salts of the suboxide do not oxidize with such extraordinary ease, nor is it to be expected that they should, if we admit that the acid itself plays the part of oxygen. The accessory affinity of alkalies for oxygen is exhibited in many other cases of chemical action. Thus, colouring matters, such as deoxidized logwood, Brazil-wood, peach-wood, Japan, fustic and catechu are oxidized more rapidly in contact with alkalies than in water alone; and various dyeing principles, such as orcin and erythrin, absorb oxygen with great avidity in the presence of ammonia. Sugar may be boiled with potash without decomposition, but when air is admitted, formic, melassic, and glucic acids are produced. Hydruret of benzule when exposed to air gradually absorbs oxygen and passes into benzoic acid, but in contact with potash this absorption is very much accelerated. The rapid decomposition of the gallates and of hematin in the presence of free alkali and air is a phænomenon of the same kind. In fact, numberless instances of this catalytic action of the alkalies are known to chemists.

We find the influence of an accessory oxidation in many cases of chemical union. Thus Campbell has shown† that the transformation of cyanide of potassium into cyanate of potash is much accelerated by the presence of the iron in yellow prussiate of potash, the iron being converted into oxide during the transformation. Here the iron plays the part of the protoxide of manganese in the cases of oxidation already referred to, or it perhaps bears a more direct relation to the action of lead in communicating a tendency to the base metals

* This experiment may be simply made as follows:—Three shallow evaporating basins of the same size and form, each containing the same quantity of suboxide of copper, are taken, and to one is added a solution of potash or soda; to the second, a solution of chloride of manganese; to the third, common water, taking care that the same volume of each fluid is added. The whole are now placed on a sand-bath, so as to be exposed to equal temperatures, and stirred occasionally. The suboxide of copper in the basin containing chloride of manganese oxidizes very rapidly; that in contact with the potash more slowly; and that with simple water is scarcely effected when both the others have lost their red colour. These actions are strictly in accordance with theory.

† Memoirs of Chemical Society, vol. i. p. 38.
to seize oxygen during the process of cupellation. The influence exerted by peroxide of manganese in first converting cyanide of potassium into cyanate of potash and afterwards into the carbonate of that base, is another instance of accessory affinity; for only a portion of the oxygen is derived from the oxide employed. The solution of an alloy of silver and platinum in nitric acid may be supposed to be a similar affinity. It is not necessary to believe that this is a case proving the communication of intestine motion to the atoms of platinum, by which it acquires the power of decomposing nitric acid *; for an equally simple explanation is given by assuming that the united affinities of platinum and silver are able to decompose nitric acid, both these affinities acting in one direction at the same time, and enabling the platinum to dissolve. We have only to suppose that the atoms of nitric acid are placed by the silver in a state of such tension that the platinum can now seize oxygen, which it could not do from the nitric acid when in a less tense state. The quartation of gold is obviously a phænomenon of the same kind. In these instances the interposing silver much reduces the cohesive or aggregative force of the platinum or gold, which opposes so strongly the action of nitric acid upon them. But when we have every atom of platinum or of gold separated by one of silver, great facility is given to the nitric acid to act upon these metals, especially when the silver at the same time aids them by its assistant affinity.

We have seen, in the consideration of the previous instances of catalysis, that the play of affinities was occasionally so nearly balanced, that a second disturbing cause determined the direction of the action. In the case of non-accendible phosphuretted hydrogen, the addition of another oxidizable body, NO₄, decided the union of oxygen with the gas. In accendible phosphuretted hydrogen the compound PH₂ played the same part. When the accessory agent is present in small quantity, the preponderating affinity of the body acted upon shows itself in the result. But, as the action is due to two affinities nearly equal in amount, it is easy to conceive that the increased quantity of the accessory agent may exactly balance affinities, and that the catalytic phenomenon will be prevented. Thus one-twentieth of the volume of binoxide of nitrogen, according to Graham †, added to accendible phosphuretted hydrogen, does not deprive it of inflammability; the bubbles of gas escaping into the air with a kind of explosion, although one-tenth volume of the same gas altogether prevents the accendibility. This nitric oxide,

* Liebig's Elements of Agriculture, 4th edit., p. 280.
† Phil. Mag., Third Series, vol. v. p. 403.
when pure, does not, like protoxide of nitrogen, render phosphuretted hydrogen spontaneously inflammable, the reason obviously being that its own affinity for oxygen is more powerful than that of the phosphuretted hydrogen. When added however in such small proportion to the accendible gas that the foreign constituent in it preponderates, then it becomes an accessory to the oxidation, though an increase of the quantity renders it more powerful, and prevents accendibility by itself seizing oxygen. Thus also larger volumes of gas, having an affinity for oxygen, but incapable like NO₄ of gratifying that desire under ordinary circumstances, may exactly balance the feeble affinity of the foreign accessory body and prevent oxidation. Five volumes of hydrogen, 2 volumes of carbonic acid, 1 volume of olefiant gas, and 1 volume sulphuretted hydrogen, deprive 1 volume of phosphuretted hydrogen of its spontaneous inflammability*. The very conception of a catalytic agent, on the view adopted, implies the exertion of an affinity, which is passed over or added to that of the body acted upon. If, therefore, a third body claim this added affinity, the increase of power being divided, may be insufficient to exert the force which it did when wholly applied to aid the affinity of one body. It may be this balancing of affinities which prevents the action of platinum on a mixture of oxygen and hydrogen. The platinum by its *surface affinity* condenses oxygen, and presenting it to hydrogen in a condensed form produces union. But in the presence of small quantities of certain oxidizable gases, such as sulphuretted hydrogen, carbonic oxide, and olefiant gases †, it ceases to exert this action, the assumption in this case being that the affinity of the added gases for oxygen balances that of hydrogen for the same gas.

This balancing of affinities may account for several phenomena otherwise inexplicable. On the decay of vegetable mould we find the hydrogen constantly diminishing in quantity until a certain period of decomposition, when the affinity of the carbon of the humus for its hydrogen balances the affinity of the surrounding oxygen. It seems to be the same balancing of affinities which renders corrosive sublimate so antiseptic in its properties; but, in this case, the balance results from the affinity of the second atom of chlorine in the bichloride of mercury for the hydrogen of the organic substance, thus preventing its union with oxygen. It is probable

* The influence which the vapours of turpentine exert in preventing the oxidation of phosphorus in the air is probably another instance of this balancing of affinities.

that the same affinity of chlorine for hydrogen causes turpen-
tine and the volatile oils to act catalytically in exploding chlor-
ride of nitrogen. The chlorine attracted by the hydrogen of
these substances is drawn without the sphere of its attraction
for nitrogen, and a disruption of the elements consequently
ensues, compounds such as this resting on the very verge of
separation between physical and chemical attraction. The
antiseptic action of corrosive sublimate is very different from
that exerted by sulphurous acid and sulphate of iron, these
bodies acting by their superior affinity for oxygen, and neu-
tralizing the power of the ferments or accessory oxidizers
present in the organic body.

There is no difficulty in applying these notions of catalysis
to organic compounds, which from the complexity of their
molecules are peculiarly liable to change. If it once be ad-
mitted that an assisting affinity may exist in the sense defined
in the present paper, then we see the same cause operating
upon organic as well as inorganic molecules. When nitric
acid acts on oxalic acid or starch, an inorganic body (a pro-
tosalt of manganese) lowers the temperature necessary for
the oxidation, and exerts its influence until all the starch
is converted into carbonic acid, being equally efficacious
on the addition of more nitric acid and starch. Here the
body acting as an assistant remains unchanged, and there-
fore continues its action ad infinitum, rendering it impossible
to prepare oxalic acid from nitric acid and starch or sugar,
carbonic acid being the only product*. Had the assistant
oxidizer passed from solution during the progress of the oxida-
tion, it could not of course continue its favourable effect, and
a new portion of it must have been added. Here the inor-
ganic salt enables the sugar to oxidize itself from the sur-
rounding medium just as yeast does, the only difference being
that the yeast itself suffers change, and therefore can only
continue its action for a limited period. It is exactly in the
same condition as a mixture of nitric acid and binoxide of
nitrogen made to act on protochloride of tin. A small portion
of the latter added to such a mixture is oxidized, but when
the solution is heated until all the NO₂ is expelled, oxidation
does not ensue on the addition of a new portion at the same
low temperature as before. Now Saussure and Colin have
shown that yeast only induces fermentation when it is in a
position to absorb oxygen. It acts therefore strictly as bin-
oxide of nitrogen, or a protosalt of manganese, in the previous

* In this it resembles the action of oxalic acid in converting an unlimited
quantity of oxamide into oxalate of ammonia, with this difference, that the
oxalic acid, which causes the change, may not be the same, but a regene-
rated portion, while the salt of manganese always remains unchanged.
instances, by adding its affinity for oxygen to that of the sugar, the added affinities of both completing the union. The only difference between these two decompositions is, that in one case the oxidizing agent is nitric acid, in the other it is water. The composition of sugar shows it to contain the elements of alcohol and carbonic acid minus an atom of water. In such a compound we have the affinity of carbon for hydrogen and of carbon for oxygen. The yeast by its nitrogen also exerts an affinity for hydrogen, and by its carbon for oxygen. The united affinities of the sugar and of the yeast acting upon water decompose it, its elements on their liberation being shared by the carbon of the sugar, for which it may be supposed to have the strongest affinities,

\[C_{12}H_{11}O_{11} + HO = 4CO_{2} + 2(C_{4}H_{6}O_{2}) \]

To show the exact similarity of the two processes of oxidation when the assisting body is either organic or inorganic, I may cite the curious manufacturing process for oxidizing oils in the method of dyeing Turkey-red used in this country, and included in Mercer's patent for that colour. It consists in oxidizing oils by blowing hot air through them, the oils being in contact with a solution of a salt of copper or of bran; the contact of either of these solutions is found very materially to accelerate the oxidation. The catalytic action of oxide of copper in evolving oxygen from hypochlorite of lime was adduced as showing its affinity for more oxygen, and this feeble affinity is well known and used empirically by all calico-printers, who are in the constant habit of mixing a salt of copper with their colours for the purpose of ageing them more speedily; in other words, of causing them to unite with oxygen. This also is the assisting cause in Mercer's process for oxidizing oils; bran in solution answers the same purpose from its affinity for oxygen. The addition of common salt or muriate of ammonia favours the oxidation in all the cases referred to, the oxidation proceeding much more quickly in their presence. No sub-chloride is ever formed, the action being purely catalytic, and probably depending on the conversion of the salt of copper into a chloride, the chlorine of which may be supposed to exert a slight affinity for the hydrogen of the compound, thus withdrawing it somewhat from the sphere of its own special attractions in the body; the copper now aiding the chlorine, delivers the hydrogen more easily into the power of the oxygen of the atmosphere. It is therefore immaterial whether the body exercising the assistant affinity be organic or inorganic, if the conditions be favourable to the exercise of this influence. The action of a body in acetous fermentation on the transformation of brandy into vinegar must be recognised.
Dr. Playfair on Transformations

as a phænomenon of a like kind. We know that brandy may trickle without change over a large surface of wood shavings, through which air circulates at the heat of the human body, but that it is quickly converted into vinegar if brandy in the act of oxidation be mixed with it. Here the added ferment exerts its assisting affinity in precisely the same way as the salt of copper, when it aids the oxidation of oils or colours, or as protonitrate of manganese or peroxide of nitrogen during the oxidation of starch. The conversion of hydrogen and oxygen into water by the action of fermenting silk, cotton, or woody fibre, as observed by Saussure, is obviously a phænomenon of the same kind, and can only be exerted slowly and in the immediate vicinity of the assisting oxidizers, just as a ball of spongy platinum silently effects the union of these two gases.

In these cases we must admit that the action is independent of a state of intestine motion of the atoms of one compound molecule imparted to those of another, or, if we do not allow this, we must create two new powers and separate decompositions caused by inorganic bodies from those produced by organic compounds, although all the phænomena of the decomposition show them to belong to one category.

In a body in a state of such incessant change as the blood of living animals, it would naturally be expected that an added agency, such as that described, would render it prone to abnormal actions and oxidations, and in fact we do recognise by all the recent progress in the study of public hygeine that the addition of any oxidizing miasm or putrid matter to the blood does produce those changes which are known by their results in the different forms of disease. These and other catalytic agents no doubt exercise most important influence on the processes of animal life and on the action of medicaments on the system, but it would be foreign to the object of this paper to examine them in detail.

The limits of a paper such as this compel me to avoid including many other instances of catalytic decompositions which come under this explanation, or of drawing special attention to those which cannot be included in the present state of our knowledge. Thus diastase, acting on starch, converts it into sugar, but we have so little knowledge of the composition or properties of the first body, that it would be unwarrantable to embrace a case such as this. But in analogous changes produced by bodies which are understood, the same power is recognised. Sulphuric acid in converting starch into grape-sugar offers an example of combination which may fairly be examined by the same
method employed in investigating other decompositions. Graham has shown* that heat is evolved even on the addition of the 48th atomic proportion of water to sulphuric acid, or, in other words, that the affinity of that acid for water is not gratified as long as our instruments of research can follow the change. This is merely another proof of the doctrine with which I started, that there is no evidence of such a complete gratification of affinity as ever to merge entirely the attractions of the elements of any body. In the case referred to, the development of heat on each successive addition proves that the water is condensed on entering into union with the acid. When the heat of the sulphuric acid is artificially increased, this compound is broken up, for distillation drives off the water and concentrates the acid. Now when starch is in the presence of this weak combination of sulphuric acid and water, at a temperature at which the latter is just able to exert its affinity and again have it destroyed by heat, it is not at all extravagant to suppose that the starch may seize the water in its nascent state at the moment of expulsion, or even that it may be able to unite with the last atoms of the series of acid and water when presented in that condensed state, although it cannot do so when the water is free and not nascent. Any such union would explain the transformation of starch into grape-sugar, the change merely being in the acquisition of water, $C_{12}H_{14}O_{10} + 4H_2O = C_{12}H_{14}O_{14}$. The action here is not the same, but the very reverse of that which ensues in the preparation of aëther. In the one case the sulphuric acid abstracts water, in the other it is the means of adding it, and the difference of the action depends on the relative strength of the acids employed. Without at all giving an opinion in favour of the necessity for the formation of sulphovinic acid, as supposed by Liebig†, or as to its not being an essential condition, as argued by Mitscherlich‡, the final result is simply of the order now under consideration. In this decomposition the sulphuric or phosphoric acid is so strong that it combines with the water instead of yielding it, and the elevation of temperature essential to the change may either be due to the formation and after decomposition of sulphovinic acid, or it may be simply owing to the necessity of rendering the molecule of alcohol tense by heat, the elasticity of the aëther and water both tending to break up the hydrate, the decomposition of which is determined by the presence of the strong acid now also aiding and abstracting the water. The final result is certainly

† Geiger's Pharmacie, Band ii. S. 711 et seq.
‡ Lehrbuch der Chemie, Band i. S. 247 et seq.
purely catalytic in whatever light it is considered, although there may be more than one step in the process.

In conclusion, facts have been brought forward to show that there is at least as much probability in the view that the catalytic force is merely a modified form of chemical affinity exerted under peculiar conditions, as there is in ascribing it to an unknown power, or to the communication of an intestine motion to the atoms of a complex molecule. Numerous cases have been cited in which the action results when the assisting or catalytic body is not in a state of change, and attempts have been made to prove by new experiments that the catalytic body exercises its peculiar power by acting in the same direction as the body decomposing or entering into union, but under conditions in which its own affinity cannot always be gratified. The catalytic body is therefore a substance which acts by adding its own affinity to that of another body, or by exerting an attraction sufficient to effect decomposition under certain circumstances, without being powerful enough to overcome new conditions, such as elasticity and cohesion, which occasionally intervene and alter the expected result.

At the same time the theory is far from being fully proved; but if I have succeeded in rendering probable that the catalytic force is only chemical affinity recognised under an aspect which chemists have not been accustomed to view it, and exerted under conditions which can only be developed by close attention to details, it will not have been useless to direct increased study to this interesting class of phenomena.