Journal article Open Access

Multistate and multihypothesis discrimination with open quantum systems

Kiilerich, Alexander Holm; Mølmer, Klaus


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">nanoqtech</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">rare earth</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">quantum technologies</subfield>
  </datafield>
  <controlfield tag="005">20200120164509.0</controlfield>
  <controlfield tag="001">1566638</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark</subfield>
    <subfield code="a">Mølmer, Klaus</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6317392</subfield>
    <subfield code="z">md5:a878cfd36243f685124c5a451b406e89</subfield>
    <subfield code="u">https://zenodo.org/record/1566638/files/1802.02849.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-05-14</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-nanoqtech-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1566638</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark</subfield>
    <subfield code="a">Kiilerich, Alexander Holm</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Multistate and multihypothesis discrimination with open quantum systems</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-nanoqtech-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">712721</subfield>
    <subfield code="a">Nanoscale Systems for Optical Quantum Technologies</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We show how an upper bound for the ability to discriminate any number&amp;nbsp;N&amp;nbsp;of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an&amp;nbsp;N-dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple non-orthogonal quantum states as a semi-definite programming problem. We investigate the structure of the optimal POVM and we provide three realistic examples of hypothesis testing with open quantum systems.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1103/PhysRevA.97.052113</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
67
52
views
downloads
Views 67
Downloads 52
Data volume 328.5 MB
Unique views 58
Unique downloads 52

Share

Cite as