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the doublets also varying periodically. Each doublet would
occupy a volume c/w cube, and so would give interference
effects. It is also seen that if both polarized rays are
eliminated by crossed nicols no energy will get through,
and it would be impossible to have “ longitudinal radiation”
by itself.

A source of radiation of frequency o would consist of a
number of rotating doublets. Energy would be dissipated
in two'ways :—(1) A doublet losing all its energy, as its
periphery is moving with velocity ¢, would send out a pulse
to infinity—if all the doublets were rotating in phase, the
disruption of a number at a fairly steady rate would give
the ordinary periodic radiation and interference effects ;
(2) a doublet owing to a “collision” would leave the
cluster and travel as a whole in a straight line from the
source until through anotler collision it gave up all its
energy—its velocity would be less than ¢, but would
probably give effects that would appear instantaneous.
Accordingly, it seems that a source could be very weak
and give interference effects, and yet be able to start the
photoelectric effect in an inappreciable time.

LXXXV. On Oscillation Hysteresis in a Triode Generator
with Two Degrees of Freedom. By BALTH. VAN DER PoL
Jun., D.Sc.*

WHEN two oscillatory circuits are linked together by
means of a magnetic, electrostatic, or resistance
coupling, it is well known that the circuit combination
possesses two degrees of freedom. If one of these oscillatory
circuits is, moreover, a part of a triode generator, it is
natural to ask whether the two modes of vibration can exist
simultaneously or, if this is not the case, whether the one or
the other mode of vibration will obtain for any particular
conditions.

Now it is found experimentally that, when the system
oscillates in one of the two modes of vibration and the
natural frequency of the secondary circuit is varied gra-
dually, the system suddenly jumps at a certain point from
the first mode of vibration to the other. If afterwards
the natural frequency of the secondary is varied in the re-
verse direction it is found that the system -jumps from the
second into the first mode of vibration, but at a point which
is not identical with the first one mentioned above, and thus

* Communicated by Professor H. A. Lorentz, For.M.R.S.
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a kind of oscillation hysteresis is obtained, which, apart from
its importance in technical applications, is of interest from a
physical point of view.

The normal experimental arrangement is shown in fig. 1,
where an oscillatory circuit L,C; is shown coupled through

Fig. 1.
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the mutual induction M to the circuit L,C; belonging to a
normal triode generator. We may consider the indications
of the thermal ammeters 7; and i; when

(i.) C,is brought from a small value, through the point
of resonance (L,C,=1L,C,)L,, to a large value ; and

(ii.) when the value of C; is therenpon gradually de-
creased through resenance to the first small value.

The relations between ¢; and w,? and i, and w,? thus ob-
tained are shown in figs. 2 and 3, where the arrows indicate
the paths followed. Further, in these two diagrams the total
systemis found to vibrate for conditions represented by
EFB in one of the two modes of vibration, i.e. with the
higher one of the two coupling frequencies, while for con-
ditions represented by DCA the system vibrates with the
lower coupling frequency. Hence at the points B and A
discontinuities occur in the modes of vibration, resulting in
a discontinuity both in frequency and amplitudes of the
currents. Bat, further, it is also seen from these graphs that
the system has the tendency to go on oscillating as long as
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possible in the mode of vibration in which it is already oscil-
lating, though the other mode of vibratien is possible for the
same parameters.

Fig, 2.
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These phenomena were noticed by the author in February
1920, bus it was felt that no sati-fuctory explanation could
be given uniess progress was first made.in the development
of a non-linear theory of sustained oscillations. - For it is
obvious that, when the problem is treated with linear
differential equations, the principle of superposition is valid,
and in tis case oscillations in the one mode are uninfluenced
by oscillations in the other. It is therefore somewhat sur-
prising that up to the present, though several theoretical
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contributions to the problem have already appeared *, the
phenomenon has, as far as we are aware, only heen dealt
with in a linear theory. The solutions of the differential
equations in this case are of the form ¢**sin w¢, and it
depends on the sign of « whether an oscillation will build
up or decay. But whether both oscillations will be present
simultaneously or whether the one mode of vibration will
suddenly be replaced by the other when a parameter of the
circuits is gradually varied, and whether a hysteresis loop
will be obtained, these questions can not be answered by a
linear theory. In order therefore to retain in the analysis
the necessary interaction of simultaneous vibrations which
determines the stability of the oscillations, non-linear terms
which occur through the curvature of the triode charac-
teristics may not be ignored.

Betore attempting, however, to set out a non-linear theory
of the phenomena under consideration, a few remarks may
first be made concerning the terminology.

The notion of oné or two degrees of tfreedom is used here
as an extension of the usual meaning attached to these terms
in the ordinary linear treatment of oscillation problems.
Wae are well aware that, e. g. to speak of a system as having
one degree of freedom when more than one stable oscillation
is possible for a given set of parameterst is not altogether
satisfactory, but 1t is hoped that from the description of the
phenomena the meaning will be sufficiently clear.

Farther, we shall discriminate between a “ possible” vibra-
tion and a vibration that can actually be realized. With
“ possible ” is here meant a solution representing a stationary
oscillation with a constant amplitude. It may, however, be
that this oscillation cannot be realized, it being unstable.

Finally, it is obvions that for a system such as shown in
fig. 1, when the secondary circuit is very loosely coupled to
the primary, the reaction of the secondary on the primary
will be small. It is found experimentally that under these
circumstances an ordinary resonance curve can be obtained
as the secondary circuit. This case will, however, not be
considered here and ¢ shall confine our considerations to
cases where the coupling is strong.

* J. 8, Townsend, Radio Review, i. p. 369 (May 1920). XK. Heegner,
Archiv fiir Elektrotechnik, ix. p. 127 (1920). F. H:rms, Jehrbuck fiir
drahtl, Teleyraphie, xv. p. 442 (1920). H. Vogel und M. Wien, 4nn. d,
Phys. Ixii. p. 649 (1920). H. G Mtjller,. Jakrbuch fiir drahtl. Tele-
graphie, xvi. p. 402 (1920). H. Pauli, ébid. xvii. p. 322 (1921). W.
Rogowski, Archiv fiir Elektrotechnik, x. pp. 1, 16 (1421)  See also
Moller, Die Elektronenyéhre (Vieweg, 1920).

t See, e. g. Appleton and Van der Pol, Phil. Mag. Jan, 1922,
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In ovder to simplify the analysis we shall not treat the
actual circuit shown in fig. 1, which, from an experimental
point of view, is the simpler, but will replace the magnetic
coupling by an equivalent capacity coupling. We shall also
replace the series resistance of the oscillatory circuits by
equivalent shunt resistances, and therefore deal with the
circuit of fig. 4. In this way we retain all the essentials of
the problem while, through simple phase relations, a con-
siderable simplification of the analysis is obtained.

Fig. 4.
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and the square of the coupling coeflicient, £%, becomes
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" 3
Similarly the damping coefficient {:;n of the { S:clgr(gry

circuit is given by 1
“l” = CIRI ,
a'= 1
CsR,’

We call i, the variable part of the anode current and v,
the variable part of the anode potential. The application of
Kirchhoff’s laws to the circuits then leads (with neglect of
the grid current) to :

d*v, ' dsva. Ly PRI d*v,
ai T ta) e et + (1= £)a e} =5
+ (L k) (0% 4+ gty ‘fi‘; + (1 — B)oogt,
1 rd?, ' d?1, o i
=— g [t =G 1= ] W)
‘We further notice that
o=, 20
T
di
vy=—Mz",

where v, is the grid potential, so that a constant ratio exists
between the variable anode potential and grid potential,

namely,
v M

Va IJI )

w

|

Hence, though in general the anode current is a function of
both the anode and grid potentials, by means of this constant
ratio we are able to express the anode current as a function
of the variable anode potential alone. A method of deter-
mining experimentally this relation #,=+r(v,) has been
previonsly described *.  For conditions for which free
oscillations are possible this characteristic has in general a
negative slopet for v,=0. It is therefore appropriate to
develop the tunction 4,=r(v,) as

hw=—av+Bv+y'%, . . . . (la)
where the index of v, has been dropped for simplicity as
will be done in the further treatment.

* Appleton and Van der Pol, Phil. Mag. xlii. p. 201 (1921).

+ When developed in this way the theory applies equally well to
“ dynatron” circuits.

Phil. Mag. 8. 5. Vol. 43. No. 256. Apnl 1922, 27
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It may here be noticed that stable oscillations are only
possible when both &’ and «' as defined by (1«) are positive.
No further terms are needed in this series to enable us to
account for the hysteresis phenomenon under consideration,
though, naturally, in order to obtain a more exact numerical
result in all details, further terms may be necessary.

‘We further write

f“_, — N —
¢ & = 2,
1

"

oy =g,
BI

Ol —Ba
LA
G Vs

and assume, in agreement with the usual circuit dimensions,
thay the initial logarithmic increment of the total primary
(triode included) and the Iogxrlthmlc decrement of the
secondary are small compared with unity, 4. e. that

0<I<1, 0<Zgl.
w Wy

On making these snbstitutions in (1) we arrive at

14
‘ tf + (a3 — “1)‘1"{’3 +{“’12+¢02 —(1—4#2 )“1“2}d 5

+ (1 =) (w229~ wfocl) J{ + (1 - Pwlw,y

B a2 dn
=— { g H =g tel(L=k) g (B +77P).
(2)

On neglecting small terms in (2) this equation can further

be simplified, and we obtain as the fundamental differential
equatlon of our problem

dt* +(w1 +w22) i7 +(l — k) w 2w’

+ i jg+w22(l k‘)dt} (Bv? + v®) + (g~ al) z't‘"

+(1_k2)(m12a2—w22a1);ﬁ=0. N &)
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The general solution of (3) seems not to be possible, but

. @ . .
since we consider ;1 and 2 as small compared with unity,
1 @3
an approximate solution can be obtained.
From the general nature of the problem two modes of
vibration may be expected to be possible, and to express this

mathematieally we are thus led to a trial solution,
v=asin ot +bsin (ot +A),

where @ and b are certain unknown functions of the time and
oy and oy are unknown frequencies. X is an arbitrary phase
constant.
As &y 2
& 13 I 17
w; W,
and o; and o, are of the same order of magnitude, we may
expect the possible building up or decay of the amplitudes
to occur slowly compared with the oscillations themselves,
that is,
da
&t < wa,

d

dab
EZ & wIIbﬁ

Hence the second and higher differential coefficients of a
and b with respect to time will be neglected. We thus have

v =asin ot +bsin (ot +2), N
» =@ cos o + asin ot + ;b cos (ot +\)
+bsin (@t +20), |
¥ = —wasinwg + 2078 cos oyt — % sin (o1t +0)
+ 2050 cos (@it +2). ¢ (4)
T = —wla cos 0t — 3eesin @t — oh cos (it + \)

— 3w, % sin (et +\),
o = wotasin o — 4w, cos ot + ot sin (ot + )
—4w1135 cos (wrt + ). )

We shall further have to consider the terms involving »?
and v*. These non-linear terms obviously snggest the pre-
sence of higher harmonics and combination tones, but as the
increment and decrement are small, the main effect of
the non-linear terms is in their influence on the amplitudes.

272
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For under these circumstances the series representing the
amplitudes of the harmonics may be expected to converge
rapidly so that the influence of the harmonics on the ampli-
tude of the fundamental may, as a first approximation, be
neglected. We are thus justified in neglecting as a first
approximation the presence of these higher harmonics and
combination tones and shall retain, therefore, in the terms
with v? and +® only those parts involving the frequencies wy
and w;;.  We thus see that the term Bv® has no influence on
the result. In considering, however,

= {asin o +bsin (ot +\) }3,

terms of several frequencies occur, such as w;, @y, 30, w,;,
w3+ 20y, w;—20y;, 20;+ g, ... ete., but only the terms
involving the frequencies w; and wy; will be retained.

Hence we have

P=3a(a®+2b% sin oyt + 36(0° + 2a7) sin (o t+N).  (5)

It may here be noticed that b occurs in the coefficient of
sinw;t and a in the coefficient of sin (wz+A). This funda-
mental fact in the non-linear treatment ot our problem shows
the mutual influence of simultaneous vibrations, and it will
further be found that the presence of one oscillation makes it
more difficult for the other to develop. When more than
three terms are used in the series expansion for i,, as is
advisable when working on the lower bottom part or higher
top part of the 7, —v, characteristic, then the presence of one
oscillation is, however, occasionally favourable to the develop-
ment of another oscillation. Such special cases will, however,
not be considered here.

We now proceed to substitute from (4) and (3) in (3) and
thus get an equation of the form

A sin ot + B sin (o3t +0) + C cos wyt + D cos (ot +2) =0,
(5a)

where A, B, C, and D are functions of the variables w;, w

... dad Al w
a, b, but they also contain q, b, VAT

These expressions A, B, (, and D contain ferms of three
orders of magnitude, viz. :

first order:  w'a, 0 ;

second order : aw’a, yw’a®;, 0’y .. .. etc.;
. ,da’

third order: aw’;, fyaﬂ?{ ....ete.:

but we only retain the first two orders of magnitude.
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In order to satisfy (5 a) identically we equate separately
to zero the four coefficients A, B, C, D. Thus four equations
are obtained for the four varlables a, b, o, and o, They
are found to be

o — o (0 + o) + (1— 1) w?=0, . (6u)
ol — o} (e + 0l) + (1 —kDe e’=0, . (6D)

2"+ 0’ —20p) ﬁ +H{(1=F) (o a;— wi'a)

+ o (a—a3)} a+ Fya(a® + 26%) {w (1 — k) — o} =0,

e . (To)
db

2w+ w'—20,,%) - 7 + {(1 = )00y — 05x;)
+ (o —as) } U+ 3yb(82 + 24°) {02 (1 — &%) —wy } =0.
N )]
Equations (6 «) and (65) give us the coupling frequencies
o; and wy, while (7a) and (7 4) enable us to find the pos-
sible stationary amplitudes a and 4 and to determine their
stability.
Since (6 a) and (6 8) are of the same form it is necessary
to define w; and wy; quite definitely. We shall take

® 2:%((012 +00)+ 1 V(0 + o) —4(1 —/cz)w{"wq’, } ()
W = l(wl +(022)—— V(wl +(l’2 ) 4:(1 kz)(l)l Cl)

whem the roots are to be taken positive, so that
2 2 2 2
w1 > o5, @7, @27
and i’ < o, 0, 0.

The equations (7 a) and (75) can further be written

% =K a%(ay’ —a*— 2b%), )
s . )
> E0%(be* — 6> — 247),

where, with the aid of (6 «), ( ) and (8), we have

|
2 o
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and thns E; >0,
E;>0.

Further, the term a,? introduced in (9), represents the
square of the stationary amplitude which would be obtained
when an oscillation in the first mode of vibration, ¢. e. with
a frequency w;, alone was present. 'Similarly b, is the
stationary amplitude which would be attained if the system
vibrated only in the second mode of vibration. These ampli-
tudes ay? and by? are obtained directly from (7a) and (70)
by putting fj—? = f%) =0 and are found to be

9 \

o3
a _wf—a’ o ‘
2
N X))
2 S

dyl= = =
v

W et
However, ay and b, are not the only * possible ” stationary
amplitudes as may be seén from (9) by putting

R
%)

g

Wico \
2

| R

2 2 2
1)2_31 " — @ Wy
o= e - T —

wleo

3 2 2 2
1Y W Oy

2 2
(—fl% =0, fg_; =0.
We thus bave in general for the *possible” stationary
amplitudes a, and &, the two equations
as*(ay: — at—2b,)=0,
b (b — b - 2a,2) =0,
the four sets of solutions of which are
(i) al=0, b =0, \
(i) al=3(20—uy?), b2=3%(2as>—by%), ) (11
(i) al=ug, b2 =0, ‘
(iv.) al=0, bI=bg '

But we shall further have to investigate separately which
one of these four stationary solutions (11) will be attained
in any given circumstances. Therefore (9) would have to
be solved, which is a difficult, if not impossible, matter.
However, in order to investigate the stability of each of the
four solutions (11) we may consider the effect of a small
forced change of amplitude from the stationary value due to
some disturbing cause, and investigate the tendeucy of the
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amplitude either to return to or to depart further from its
initial stationary value, thus applying the usual method in
questions of dynamic stability. In this way we shall find a
certain conservatism of the system in that the particular
mode of vibration persists (when one parameter is varied
gradually) even when conditions have been reached which
are not favourable to it and which are such that, were this
mode of vibration not actually present, yet the other one
would exist. In other words, metastable oscillation con-
ditions may arise.

Let these small changes of amplitude be represented by
the type 8. We thus substitute in (9)

a?=a2+8a2,
=02+ 3[’,2,

and only retain first powers of the small quantities §a,* and
8b2. Hence we have

, 2
) o 20— 20,3~ 2Bya 2812, )

s (12)

2
d—(%%) = En(b02 —_— 2[)82 - 26132) 8b,2 — 2Enbs28a;~’.

These linear equations (12) are solved by putting
Salt=Ad
Sb2=BeH,
and we obtain as characteristic equation for 4

4k {L(2a2 + 2b2—ay?) + Eu(2a,® + 26,2 —0b4%) }
+ E1By; { (2a,? + 2, —a?) (2a2 + 25,7 — by?) —4a,%b,*} =0.
(13)
In order that a set of stationary values a; and 0, should be
stable neither of the two roots £ of (13) may be positive as
this would show the tendency of the system to depart from

the stationary solution in question.

A set of stationary amplitudes ¢, and b, is therefore only
stable when

Er(2a2 + 262 — ap®) + En(2a? + 20,7 —be?) > 0 (19)
and  (2a2+ 20,2 — ae?)(2ad + 2b7 —by?)—4a,%,? > 0. }
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We shall now proceed to investigate the conditions of
stability of our four solutions i, ii, iii.,, iv. of (11}
separately.

i at=0, b*=0.
After substitution of these values in (14) we find as the
condition for which both amplitudes remain zero :
—altE; — b B > 0
and a2y > 0,
or, as Kr and Eq1 are both positive,
al< 0
and b? < 0,

These inequalities are expressions for the fact that only
when the circuit conditions {resistances, retroaction, etc.)
are such that no oscillations are “possible” at all, can
the system be kept in the ron-oscillatory state, from which
it may be concluded that, when oscillations are “ possible
at all, some form of oscillation (either ii., iii., or iv.) will
build up automatically.

ii. al=

This represents the case in which both coupling frequencies
would be present simultaneously. But the conditions of
stability here are from (14) easily found to be

Eia,?+ Eub? > 0
e Bt >0 (15 4, b)
—a,2bt > 0. )

Now for a, and b, to be possible at all we must obviously

have ai>0
bs2 > 07

which relations are incompatible with (155). We thus see
that the simultaneous occurrence of finite stationary oscilla-
tions of both the coupling frequencies represents an unstable
condition and can therefore not be realized in practice.
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This is in complete agreement with the experimental
results.

We saw (i.) that when a vibration is possible at all the
system will automatically start vibrating in some form. It
cannot, however, produce stationary oscillations in both
frequencies at the same time (ii.), so that only one of the
two coupling frequencies will build up. Which one this
will be depends on the circumstances and can be found from
a consideration of

i, al=ay, bi=0,
iv, al=0, br=057.

These cases may be conveniently treated together. Before
considering, however, in detail the stability of the system
when oscillating in one mode of vibration only, we shall
first determine the conditions for which such an oscillation
is ‘“possible” at all, apart from its stability. Moreover,
as the peculiar discontinuities, described in the introduc-
tion, occur when the natural frequency of the secondary
circuit is altered, we shall leave all parameters unaltered
except the detuning of the secondary and consider how
these possible amplitudes a, and b, vary as a function of
this detuning. For the circuit under consideration this
variation of w, is brought about by varying L, (fig. 4),
whieh is equivalent to a variation of the secondary capacity
in a case where the electrostatic coupling here considered is
replaced by its electromagnetic equivalent.

Now (9a) can be written

a,? 1
P ="—fiwd), |
9 2 .
r. (16)
3 Z)O?_ﬂ_f ((02) !
En PR ay MmO/
her ) 2_ 2 2 )
where Si(wg®) = 21‘2:91'-1- 2
i @y Oy l
IF . . (1D

2 2 2
—en O

21
and Ju(es’)= v s o’ J

These functions f; and fig are the coefticients with which
the damping coefficient of the secondary must be multiplied
in order to transpose the secondary damping to the primary
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circuits. They are represented in fig. 5 for a constant
k*=0-5. Since in (16) «;, 2, and ¢ are independent of o,
we can trace in the latter diagram the dependence of a,’
and by on 2 and oy’
%y
For example, if :—1 is represented by OB the amplitude ay’
2
is by (16) proportional to the vertical distance between the

Fig. 5.
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line BE and the curve fi{wz?). In a similar way &7 is pro-
portional to the distance between BE and fir(w@g?). Thus
when w2=0H < OG, a2 is proportional to CD, but when
w,? > 0G, ay? would be negative and escillations of the fre-
quency oy are impossible. In the same way oscillations of
the frequency w;y are only possible when o;* > OK.

: . a a
If we next consider a larger value of =, e.g. ==0ON,
%3
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markedly different possibilities arise. For example, the
range of values of w,? for which «g? is possible is now
represented by OL and is seen to extend leyond the
resonance position wy’=w,?. In the same way the ampli-
tude by? is now possible for all values of w,* greater than
OA. Hence a region AL for w,? exists in which both
modes of vibration are separately * possible.”” We thus
must have recourse to a consideration of the conditions of
stability in order to decide which mode of vibration will
actually be present for any given conditions,
Now in order that

af=a’, bE=0 be stable.
we must have according to (14)
Erag? + En(2a° — 0% > 0
and ag®(2ay*—1,?) > 0, }

where the second condition is the more stringent one.
Hence for a,? orly to be stable, we must have

(18 a, Z»)

ay? > by,
and similarly for 4,* only to be stable we must have
()02 > %_iaog.
These conditions are represented in fig. 5 for ?:ON.
2
The vertical SP is so chosen that SR=RQ and the vertical
TW such that TU=UV. Hence, though we foand pre-
viously AL as the region where ay® as well as b7 were
separately “ possible”, we may now further conclude that
the common region where a)? as well as b2 are separately
stable is given by the smaller distance P'W only. )
Which one of the two possible and stable oscillations
apsin o1t or bysin (wrrt+r) will be attained in the region
PW? The answer to this question, which must also include
the explanation of the hysteresis effect, is given by (9), and
will be seen to depend on the initial conditions. For let us
see what happens when w,? is gradually brought from a
small value such as represented by OH, through resonance

to a big value represented by OX. (We again assume %
to be given by ON.) %2

First, when w,>=O0H, only the first mode of vibration is
possible and stable and we therefore have

al=ay? b2=0.
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_Whether 0 bas the tendency to build up when once
a’=a,® and 0?=0, is seen tfrom (90), which can be
written

d 10}_{‘ 2

— = Ep(b—2¢?),

which shows that log % or 02 itself will only increase when
wy® has been given such a value that

])02'—2(102 > O.
This is the case when

0?=0W (ig. 5).

We can therefore bring w,? from a value w,? < @,® through
resonance (w°=e,?} to a value w?=0W > o7 while all
the time the system continues to vibrate in the first mode
only. But as soon as w,? has reached the value OW where
the square of the amplitude which would obtain if the system
vibrated in the second mode only equals twice the square of
the amplitude of the vibrations in the first mode actually
present (b?=2q,? or TV=2TU), then the oscillation sud-
denly jumps from the first mode to the second. A further
increase of w,® to any bigger value will leave the second
mode only present. In the same way bringing e,® hack
from a big value through resonance to a smaller value
results in the second mode being present up to the point P
where 252=a,%. 1t is therefore clear that the mode of
vibration once obtained persists up to the point where it is
no longer stable (not, as occasionally stated in a linear treat-
ment, where it is no longer possible) though a region may
have been traversed where the other mode wounld separately
be stable, and thus the hysteresis effect found experimentally
can be explained by theory.

Another cxperimental fact can further be found theo-
retically. When one branch of the primary circuit, such
e. g. as the grid ecircuit, is first open and thereupon the
circuit is closed, then it is found that in general when
w,? < w? only vibrations of frequency w; build up, while,
when @,® > w,?, the system starts vibrating in the second
mode.

The initial conditions here are therefore

for t=0, «*=5h==0.

Now (9) may be integrated graphically for these initial
conditions, and fig. 6 is the rvesult for a special case where
w,? < w;® and therefore a,2 > b, This figure shows clearly
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how originally both vibrations build up simultaneously but
also that the initial rate of increase of 6% is smaller than that
of a®. Further, as follows directly from (9), 6% reaches its

Fig. 6.

—

maximum when #2=0,>—20? and thereupen it goes back
asymptotically to zero while a® increases up to a?, its
stationary value.

Summing up, our results can be described in short with
the aid of the schematic fig. 7. Mode L. is stable for

Fig.
L H G F E mooe I
*lT— ‘‘‘‘‘ MODE I
A B C O
w,z — w:

w’ < w® (AB), Mode II. for w)?>w? (EF). Mode I. is
metastable for w,®>w;? but only up to the point C (BC) :
Mode II. is metastable for e, > @2 up to the point G (FG).
The part CD is unstable for Mode 1., and the part GH for
Mode II. DK represents the part where Mode I. is
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impossible at all, LH the impossible part for Mode II.  On
closing the primary ecircuit only stable oscillations are
obtained, while the metastable states can only be realized
when the system is first in a stable state and thereupon
slowly (compared with the damping coefficients} (or adia-
batically) brought to the metastable state.

Some doubt, however. still exists whether it is exactly the
point of resonance which separates the regions where on
closing the primary circuit either a2 or &7 is finally
attained, as some dissymmetry still exists in the formule
By # Ep).

But u value for w;® very close to ;> may easily be
obtained experimentally for which it is a mere matter of
chance whether g, or b, will finally be obtained. A simple
way of demonstrating this fact is by putting a big leaky
condenser in series with the grid of the triode circuit. It1s
well known that with this arrangement the oscillations are
periodically quenched in an automatic way, so that regular
trains of vibrations are obtained. The group frequency may
¢.g. be made of the order of one second. When uext the
secondary circuit is coupled to the primary we can, with a
heterodyne arrangement, produce an audible combination
tone corresponding to either the one or the other of the two
frequencies wy; and wy. In general, each time only one of
these two combination tones is obtained, but with w, close to
or equal to ®,, the combination tone heard every-second
jumps erratically between the two tones corresponding to
w; and oy respectively, and it is a mere matter of chance
which one of the two occurs.

Finally, (9 a) yields for oy=w,

1
ag’= E (@ —ay),

1

1}02-: ;3& (dl —d2)’

and thus shows that, as far as our approximations go, the
two amplitude carves intersect at the point of resonance. -
But, moreover, these amplitudes at the resonance point are
independent of the coupling coefficient. Fig. 8, which gives
a set of observations of the mean square secondary cuarrent
(in a circuit like that of fig 1) as a function of w,? for dif-
ferent coupling coeflicients (increasing with the numbers
0,1, 2, 3,4, 5),1s a confirmation of this theorstical result.
For very loose coupling (Carve O) an ordinary resonance
curve is obtained, but for closer coupling (1, 2, 3, 4, 5) the
figure clearly shows that the intersection of the two branches
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(1—1), (2—2), etc., occurs practically at resonance and for
all curves at the same height.

Fig. 8.
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