Dataset Open Access

Simulation of GW150914 binary black hole merger using the Einstein Toolkit

Wardell, Barry; Hinder, Ian; Bentivegna, Eloisa

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.155394</identifier>
      <creatorName>Wardell, Barry</creatorName>
      <affiliation>University College Dublin</affiliation>
      <creatorName>Hinder, Ian</creatorName>
      <affiliation>Max-Planck Institute for Gravitational Physics</affiliation>
      <creatorName>Bentivegna, Eloisa</creatorName>
      <affiliation>Universita degli Studi di Catania</affiliation>
    <title>Simulation of GW150914 binary black hole merger using the Einstein Toolkit</title>
    <subject>Numerical Relativity</subject>
    <subject>Gravitational Waves</subject>
    <subject>Binary Black Hole</subject>
    <date dateType="Issued">2016-09-27</date>
  <resourceType resourceTypeGeneral="Dataset"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo"></relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;On February 11, 2016, the LIGO collaboration announced that they had achieved the first ever direct detection of gravitational waves. The gravitational waves – which were detected by both LIGO detectors on September 14, 2015 at 09:51 UTC – were generated over a billion years ago by the merger of a binary black hole system. The announcement came along with the simultaneous publication of a peer-reviewed paper [Phys. Rev. Lett. 116, 061102]; several other papers giving technical details; and a full release of the data from the detection, which has been given the name GW150914.&lt;/p&gt;

&lt;p&gt;The LIGO analysis found that the merger consisted of a 36 + 29 solar mass binary black hole system, the remnant was a 62 solar mass black hole, and the remaining 3 solar masses were radiated as gravitational waves. This dataset represents a subset of the data from a simulation in which the Einstein Toolkit was used to evolve the last 6 orbits and merger of a binary black hole system with parameters that match the GW150914 event.&lt;/p&gt;

&lt;p&gt;More details on the simulation, including instructions for how to run it and how to analyse the data can be found in the Einstein Toolkit gallery at;/p&gt;</description>
    <description descriptionType="Other">{"references": ["Frank L\u00f6ffler, Joshua Faber, Eloisa Bentivegna, Tanja Bode, Peter Diener, Roland Haas, Ian Hinder, Bruno C. Mundim, Christian D. Ott, Erik Schnetter, Gabrielle Allen, Manuela Campanelli, and Pablo Laguna. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Classical and Quantum Gravity, 29(11):115001, 2012. (doi:10.1088/0264-9381/29/11/115001)", "Denis Pollney, Christian Reisswig, Erik Schnetter, Nils Dorband, Peter Diener.  High accuracy binary black hole simulations with an extended wave zone. Phys.Rev. D83 (2011) 044045. (doi:10.1103/PhysRevD.83.044045)", "Erik Schnetter, Scott H. Hawley, and Ian Hawke. Evolutions in 3-D numerical relativity using fixed mesh refinement. Class. Quantum Grav., 21:1465\u20131488, 2004. (doi:10.1088/0264-9381/21/6/014)", "Jonathan Thornburg. A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian Grids in Numerical Relativity. Class. Quantum Grav., 21:743\u2013766, 2004. (doi:10.1088/0264-9381/21/2/026)", "Marcus Ansorg, Bernd Br\u00fcgmann, and Wolfgang Tichy. A single-domain spectral method for black hole puncture data. Phys. Rev. D, 70:064011, 2004. (doi:10.1103/PhysRevD.70.064011)", "Olaf Dreyer, Badri Krishnan, Deirdre Shoemaker, and Erik Schnetter. Introduction to isolated horizons in numerical relativity. Phys. Rev. D, 67:024018, 2003. (doi:10.1103/PhysRevD.67.024018)", "Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Mass\u00f3, Thomas Radke, Edward Seidel, and John Shalf. The Cactus framework and toolkit: Design and applications. In Vector and Parallel Processing \u2013 VECPAR'2002, 5th International Conference, Lecture Notes in Computer Science, Berlin, 2003. Springer.", "J. David Brown, Peter Diener, Olivier Sarbach, Erik Schnetter, and Manuel Tiglio. Turduckening black holes: an analytical and computational study. Phys. Rev. D, 79:044023, 2009. (doi:10.1103/PhysRevD.79.044023)"]}</description>
All versions This version
Views 3,7433,762
Downloads 312312
Data volume 104.8 GB104.8 GB
Unique views 3,5973,616
Unique downloads 195195


Cite as