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Abstract

Mercury pollution and its impacts on human health are global concern.  The authors of this paper

were members of the Plenary Panel on Human Health in the 12th International Conference on 

Mercury as a Global Pollutant held in Korea in June 2015.  The Panel was asked by the 

conference organizers to address two questions:  what is the current understanding of the impacts

of mercury exposure on human health and what information is needed to evaluate the 

effectiveness of the Minamata Convention in lowering exposure and preventing adverse effects.  

The authors conducted a critical review of the literature published since January 2012 and 

discussed the current state-of-knowledge in the following areas: environmental exposure and/or 

risk assessment; kinetics and biomonitoring; effects on children development; effects on adult 

general populations; effects on artisanal and small-scale gold miners (ASGM); effects on dental 

workers; risk of ethylmercury in Thimerosal-containing vaccines; interactions with nutrients; 

genetic determinants and; risk communication and management. Knowledge gaps in each area 

were identified and recommendations for future research were made. The Panel concluded that 

more knowledge synthesis effort is needed to translate the research results into management tools

for health professionals and policy makers.

Key words: Critical Review; Environmental Exposure; Environmental Pollutants; Humans; 

Mercury; Methylmercury; Toxicity; Health; Advisory 
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Introduction

Mercury (Hg) is a global pollutant that affects human and ecosystem health (UNEP 2013).  The 

awareness of health effects of Hg pollution began since the 1950s when chemical waste was 

released into the nearby sea by the Chisso Corporation in Minamata, Japan. The waste led to the 

accumulation of the more bioavailable form of Hg, i.e. methylmercury (MeHg) in fish, and 

consequent devastating thousands of local populations who had consumed the fish as their main 

food source (Kurland et al. 1960). It is well documented that prenatal or postnatal exposure to 

MeHg can produce adverse neurological impacts in adults and children, now known as 

Minamata Disease (Harada 1995). These patients with chronic Hg poisoning continue to 

complain of distal paresthesias of the extremities and the lips even 30 years after cessation of 

exposure to MeHg (Ekino et al. 2007). Moreover, more recent evidence showed that even 

general population exposed to MeHg in Minamata who were not certified Minamata Disease 

patients showed increased risk of psychiatric symptoms (e.g., impairment of intelligence and 

mood and behavioral dysfunction) (Yorifuji et al. 2011). With increasing awareness of 

environmental stewardship, an incidence of acute Hg poisoning from industrial pollution like 

Minamata has become rare.  However, the scale of chronic exposure to a lower dose of Hg as a 

result of global pollution or occupational hazard has grown. For example, the Food and 

Agriculture Organization (FAO)/World Health Organization (WHO) identified that hundreds of 

millions of peoples worldwide who rely on fish as their major source of protein in their diet are 

at risk of increased exposure to MeHg (FAO/WHO 2011).  Artisanal and small-scale gold mining

is another major contributor to mercury consumption and emissions into the environment 

affecting millions of people particularly in low- and middle-income countries (Veiga et al. 2006).
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These growing concerns have led to the initiation of numerous international efforts to address the

issues.  For example, the United Nations Environment Programme (UNEP) has implemented a 

number of global projects that aimed at decreasing human health and environmental risk from 

the release of Hg, as well as improving the understanding of international Hg emissions and their

transport and fate (UNEP, 2013a). Most significantly, an international treaty (Minimata 

Convention on Mercury) was signed in October 2013 to control the global release of Hg to the 

environment (UNEP, 2013b). The objective of the Minamata Convention, as indicated in Article 

1, is “to protect the human health and the environment from anthropogenic emissions and 

releases of mercury and mercury compounds” (UNEP, 2013b). The Convention recognizes that 

anthropogenic emissions are a serious threat to human and environmental health and each 

signing nation will make a commitment to reduce the emission and use of Hg to protect human 

and environmental health.  By the end of 2015, the Minamata Convention has been signed by 

128 countries and ratified by 20 countries.  It will go into effect after 50 countries have deposited

their instruments of ratification, acceptance, approval, or accession that is expected to be in 2017.

Article 16 of the Convention stated the concern on human health aspects. It encourages states to 

promote strategies to: 1) identify all the population affected by mercury pollution; 2) adopt 

health guidelines regulating mercury exposure; and 3) provide education about dangers of 

mercury exposure. Countries should provide appropriate health-care for treatment and care for 

people who are already exposed to mercury compounds.  It is clear that more scientific 

knowledge is needed to fully understand effects of Hg emission reduction on environmental 

concentrations and identify other factors leading to reduced human exposure and resulting in 

prevention of adverse outcome.  Moreover, integration of science with national and international 
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policy efforts is needed to target efforts in the implementation of the intervention and evaluate 

the effectiveness of the Convention on improving health.

The authors of this paper were invited by the organizing committee of the 12th International 

Conference on Mercury as a Global Pollutant held in Korea in June 2015 to be members of the 

Plenary Panel on Human Health.  The Panel was challenged to prepare presentations to address 

two questions:  what is the current understanding of the impacts of mercury exposure on human 

health and what information is needed to evaluate the effectiveness of the Minamata Convention 

in lowering exposure and preventing adverse effects. This review paper is prepared based on the 

presented materials and discussions at the Conference.  In addition, a systemic review of the 

literature was conducted to assured all the most recent publications are included in our attempt to

address these questions.
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Methods

A literature search was conducted in OVID Medline (January 2012-present) and Toxline 

(January 2012-present). The search strategy combined terms for mercury, methylmercury, 

human, and health.  The rationale for the choice of inclusion period was based on the publication 

of the latest review paper of this nature by Driscoll et al. (2013) that cited bibliography published

until the end of 2011. The included papers were grouped into the following 10 major areas: 

environmental exposure and/or risk assessment; kinetics and biomonitoring; effects on children 

development; effects on adult general populations; effects on artisanal and small-scale gold 

miners; effects on dental workers; risk of vaccination; interactions with nutrients; genetic 

determinants and; risk communication and management. Selected publications were included in 

this critical review in the context of addressing the two questions posed to the Panel (Figure 1).

Results and Discussion

6

Total articles identified in electronic search : 815 papers 
Search engines : OVID Medline and Toxline (January 2012-present)
Combined key words:mercury, methylmercury, human, and health

Addressing the two questions posed to the Panel :  766  papers
- the current understanding of the impacts of mercury exposure on human health  

- information needed to evaluate the effectiveness of the Minamata Convention 

Exclusion criteria papers 
• primarily reported results in environmental matrices(121)
• bench studies limited implications on human health (  65  )
• studies on other species (66)

Final relevant papers: 514 
Grouped 10 major areas: environmental exposure and/or risk assessment; kinetics and biomonitoring; 
effects on children development; effects on adult general populations; effects on artisanal and small-scale 
gold miners; effects on dental workers; risk of vaccination; interactions with nutrients; genetic 
determinants and; risk communication and management.

Figure 1. Flow chart of literature search for the impacts of mercury on human health



Results

The literature search found a total of 815 papers published between Jan 1, 2012 to present. A 

screening found that 514 are relevant (Table 1). The others primarily reported results in 

environmental matrices, bench-based studies that have limited immediate implications on human

health, or studies on other species. 

Table 1.  Results of the literature search of papers published related to Hg health effects. 

Areas Number of publications (%)
Review papers 25  (5)
Environmental exposure and risk assessment 108 (21)
Kinetics and Biomarkers 66 (13)
Effects on children development 75 (15)
Effects on fish consuming adults 72 (14)
Health hazards of artisanal and small-scale gold 

mining

14 (3)

Effects of Dental Amalgam 22 (4)
Effects of Hg in Thimerosal-containing vaccines 4 (1)
Nutrient interactions 59 (11)
Genetic Factors 20 (4)
Risk communication and Policy 49 (10)

Total 514(100)

The relative number or percentages of publications in the 10 different areas of Hg research may 

reflect the recent research focus.   It is not surprising that the highest number of papers (21%) 

was on environmental monitoring and exposure assessment.  This is the first step of hazard 

identification in many regions around the world.  There was almost an equal number of studies 

reporting effects of Hg on maternal-child health (15%) and adult fish consuming populations 

(14%).  There were 11% of papers reporting results on the interactions between nutrients and Hg 

effects.  The risk of Hg exposure on artisanal and small-scale gold miners (3%) and effects of 

dental amalgam (4%) have been intensive areas of research. The potential risk of Thimerosal-
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containing vaccines (1%) remains to be a concern and studied. Genetic polymorphisms (4%) 

have been identified to be important modifiers or confounding factors affecting the 

toxicokinetics and effects of Hg.  Almost 10% of the papers are on risk communications and 

policy, again showing the growing challenge among public health professionals to educate the 

public on the complex issues of risks and benefits. The following sections will discuss the state 

of the knowledge and knowledge gaps in each of these areas.

Discussion

There were 25 review papers published during that period.  The relatively high number of review

papers (almost 5%) of the publications probably reflected the increase scientific interests in the 

Hg research and the response among of the environmental health scientists to the call from the 

national and international agencies on the need for scientific evidence support for the signing of 

the Minamata Convention. We highlighted 4 papers of review papers below. Rice et al. (2014) 

reviewed the systemic pathophysiology of individual organ systems including cellular, 

cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, 

reproductive, and embryonic toxicological effects. The review by Syversen & Kaur (2012) 

attempted to address the long time " mysteries" of methylmercury neurotoxicology related to the 

cellular selectivity and the delayed onset of symptoms and presented some suggestions towards 

explaining these observations. Bernhoft (2012) focused his review on the diagnosis of Hg 

clinical toxicity and therapeutic treatments.   Sheehan et al. (2014) was the first systematic 

review on the relationship between MeHg exposure from seafood consumption and risk of 

developmental neurotoxicity.  Their review included 164 studies of women and infants from 43 

countries.   They found that the fish-consuming populations living along rivers near small-scale 
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gold mining and consumers of marine mammals in Arctic regions had  MeHg intake several 

times higher than the FAO/WHO reference.  In a comment letter, Myers et al. (2015) highlighted 

the importance of including the benefits of nutrients in fish into the risk assessment, particularly 

among the low- and middle- income countries where fish consumption is high and resources are 

limited. 

Environmental Exposure and Risk Assessment

The World Health Organization (WHO 2010) recognized the importance of collecting site-

specific data of Hg concentrations in fish and seafood around the world as there is a high intra-

species variation that is determined by the local environment. The report also identified the lack 

of data for many areas of the world outside of Europe, the US and Japan.  This highlight the need

for collecting local data for exposure assessment and there is a current effort by the Global 

Environmental Monitoring System - Food Contamination Monitoring and Assessment 

Programme (GEMS/Food) of WHO to collect contaminant data from foods, including Hg in fish,

data from all countries for the assessment of their contribution to total human exposure, and 

significance with regard to public health and international trade. 

Most of the papers reported measured Hg concentrations in food or other matrices and estimate 

human exposure using dietary survey information or biomonitoring results. There are ongoing 

total diet studies or national health and nutritional examination survey which reported food 

concentrations and/or biomonitoring of contaminants including Hg in the general populations at 

the national level, e.g. in France (Arnich et al. 2012) and in Korea (Park et al. 2014).  More 
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importantly, there is an increasing number of data coming from developing countries, e.g. Nepal 

(Thapa et al. 2014), Peru (Diringer et al. 2015; Ashe 2012), Ghana (Rajaee et al., 2015), and 

Suriname (Peplow & Augustine 2012), etc.  Also, more studies were designed to target the 

specific sub-populations that have a different cultural background or a local fish-heavy diet.  For 

example, the Caribbean immigrant community in Brooklyn, New York (Geer et al. 2012) or the 

women of childbearing age in Duval County, Florida (Traynor et al. 2013). There were also 

reports studying potential exposure from known hot spots such as the historically polluted area in

southern Italy (Bonsignore et al. 2013).  As aquaculture is expected to gain global prominence in 

seafood supplies, it is important to monitor Hg levels in farm fish or shellfish, e.g. Delgado-

Alvarez et al. (2015) reported Hg in farmed shrimp in NW Mexico and characterized the risk of 

exposure is low using national consumption rate.  Increasing evidence is showing that rice can be

an important source of Hg among certain populations in China and other Asian countries (Li et 

al. 2012; Li et al. 2014; Zhang et al. 2014) but this has yet to be studied in other geographic 

regions.  It has been known that Hg is widely used in cosmetic products but the scale of human 

exposure from hand cream use was recently reported (Hamann et al. 2014).  This can be a major 

source of Hg in many populations and the exposure can be avoided by stricter regulation and 

education/communication.

Kinetics and biomarkers 

In order to assessment the effects of Hg on health, it is important to establish a quantitative dose-

response relationship.  It is particularly challenging for Hg as Hg can exist in different forms 

including elemental mercury (Hg0), divalent mercury (Hg2+) and organic mercury (mainly as 
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methylmercury, MeHg).  Exposure sources, target organs, toxicity, and metabolism differ with 

each chemical form. For example, most MeHg exposure comes from consuming fish and 

seafood. MeHg has the highest bioavailability compared to the other forms and easily absorbed 

by the digestive tract, entering the central nervous system (CNS) after passing the blood-brain 

barrier (BBB). The result is permanent injury to the CNS, particularly in the developing fetus 

(UNEP 2008).  Elemental Hg exposure mainly results from dental amalgam restorations. 

Additionally, workers at artisanal and small-scale gold mining (ASGM) sites also experience 

high exposures to elemental mercury. Target organs here include the brain and kidneys (UNIDO 

2008). There are two ways to assess exposure or dose.  The first one is to estimate external dose 

by measuring concentrations in foods or air or water and multiplied by the frequency of exposure

like consumption rate or inhalation volume over time.  The second one is to estimate Hg body 

burden by measuring Hg concentrations in tissues such as hair, urine, blood, nails, cord tissues or

blood, and placenta.  Both approaches involve challenges and uncertainty. Therefore, most 

studies reported adjusted R(2) of less than 0.5 when comparing estimated dietary exposure to 

blood Hg concentration using regression analysis.  For example, You et al. (2014) performed 

multiple regression analysis on dietary estimate and blood concentrations of 1,866 adult 

participants in Korea and reported the adjusted R(2) = 0.234. Further studies with more precise 

estimation of dietary mercury intake are required to evaluate the risk for Hg exposure by foods 

and assure risk communication with heavily exposed groups.

Human absorption of liquid Hg0 is minimal, and acute toxicity does not occur even when the 

liquid mercury used in thermometers is accidentally ingested (WHO, 1976). The problem arises 

when liquid mercury vaporizes into the gaseous phase, which causes acute interstitial pneumonia
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when inhaled at a high concentration. Approximately 80% of inhaled gaseous Hg0 is absorbed 

into the blood and easily passes through the blood-brain barrier in its un-oxidized form, thereby 

reaching the brain and damaging the central nervous system (WHO, 1976). With time, gaseous 

Hg0 in the body is oxidized to Hg2+, which accumulates in the kidneys and causes damage there 

(UNIDO 2008). The biological half-life of Hg absorbed from vapour into the blood is 

approximately 2-4 days when 90% is excreted through urine and feces. Absorption of Hg2+ 

through the digestive tract is comparatively low. However, a large intake of Hg2+, such as in 

accidental or suicidal ingestion, causes digestive tract and kidney disorders resulting in death 

(WHO, 1990). The major source of MeHg is through fish and shellfish consumption and MeHg 

was thought to be readily absorbed by the digestive tract. Animal studies indicate that the 

efficiency of gastrointestinal absorption is usually in excess of 90% of the oral intake (WHO, 

1990). Risk assessors often assumed that 100% of Hg in fish is MeHg and its absorption rate is 

also 100% (NRC 2000). Recent studies showed that these assumptions are not necessarily true. 

Matos et al. (2015) found that cooking increased the concentrations of selenium, Hg and MeHg 

in blue shark meat due to water loss, particularly by grilling. While selenium (Se) 

bioaccessibility (the amount that is free for absorption) was above 83% in grilled samples, Hg 

and MeHg bioaccessibility was lower in grilled samples with values near 50%. Afonso et al. 

(2015) reported that cooking meagre by grilling decreased the bioaccessibility for both Se and 

Hg;  Se bioaccessibility was decreased up to 82% in grilled farm meagre compared to only up to 

54% for bioaccessibility for Hg and up to 64% bioaccessibility for MeHg.  Jadán-Piedra et al. 

(2016) also reported a lower bioaccessibility for Hg in cooked swordfish (between 14 and 92%) 

than selenium. Most of the solubilization took place in the gastric step, with acidic pH and higher

pepsin concentration but the bioaccessibility of Hg decreased in the presence of bile salts.  Wang 
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et al. (2013) measured 10 freshwater and 10 marine fish collected from markets in Hong Kong 

and reported bioaccessibilities of Hg and MeHg ranging from 21.4 to 51.7% (mean 37.4%) and 

19.5 to 59.2% (mean 43.7%), respectively. These results clearly show that the conservative 

approach of assuming Hg in fish to be 90-100% bioavailable can over-estimate intake by 50%.  

More research is needed to characterize the absorption rate of different species of fish before a 

consistent correction factor can be adopted for future risk assessment.

MeHg transport into tissues appears to be mediated by the formation of a MeHg-cysteine 

conjugate, which is transported into cells via a neutral amino acid carrier protein (NRC, 2000; 

WHO, 1990). The extent of biotransformation of MeHg in the gastrointestinal tract varies 

resulting in variability in MeHg absorption rate. MeHg elimination from the human body occurs 

slowly with a half-life approximately 70 days and is a major determinant of the Hg body burden 

resulting from fish consumption (WHO, 1990). Two recent human trials provided some insight 

on the variability.  Yaginuma-sakurai et al. (2012) estimated that the half-life of T-Hg was 

calculated from raw data to be 94 ± 23 days for blood and 102 ± 31 days for hair, but the half-life

recalculated after subtracting the background levels from the raw data was found to be 57 ± 18 

based on blood concentrations measured in 27 healthy adults through fish consumption for 14 

weeks, followed by a 15-week washout period after the cessation of exposure in Japan.  

However, the half-life was estimated to be 64 ± 22 days when hair concentrations were used.  

Rand et al. (2015) measured MeHg elimination rates in eight individuals following the 

consumption of 3 fish meals in two 75-day trials separated by a 4-month washout period in the 

United States and estimated that the half-life ranged from 42.5 to 128.3 days. They also found 

that the ratio of MeHg and inorganic g (I-Hg) in feces varied widely among individuals 
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suggesting that faster MeHg elimination is associated with a higher %I-Hg in feces indicating a 

more complete de-methylation.   Carneiro et al. (2014) also found inorganic mercury in plasma 

originated endogenously through a demethylation reaction in a population exposed to MeHg. 

Moreover, age displayed a direct linkage with inorganic Hg levels in plasma.  Using a one-

compartment model, Jo et al. (2015) estimated that the mean MeHg half-life was 81.6 ± 8.4 days

for men and 78.9 ± 8.6 days for women.  Moreover, a recent systemic review concluded 

modelling studies estimated the half-life of inorganic Hg in the brain to be very long at 27.4 

years, which are consistent with autopsy findings (Rooney, 2014). A number of factors including 

ethnicity, genetics and diet may influence the variability MeHg disposition and its half-life and 

more studies are needed. In addition, naturally occurring mercury stable isotope ratios have 

emerged recently as a powerful tool to further distinguish among different forms of Hg and better

understand its toxicokinetics (Sherman et al., 2013; Sherman et al., 2015). 

The preferred biomarker reflects the MeHg concentration in the brain since the brain is the major

target organ. Generally, the amount retained in the body becomes stable under constant MeHg 

exposure and depends on dietary intake. Animal experiments indicate that the ratio of the Hg 

concentration in the blood to that in the brain becomes fixed under steady state conditions. 

Therefore, the Hg concentration in the blood/red blood cells is a good biomarker (WHO, 1990). 

The Hg concentration in the hair also reflects blood MeHg concentration during hair formation 

and is frequently used as a biomarker for evaluating MeHg exposure (WHO, 1990). Generally, 

the Hg concentration in the hair is 250 to 300-fold higher than that in the blood, because sulfur-

containing proteins rich in the hair bind to MeHg. To compare results of different studies using 

either blood or hair as biomarkers, the World Health Organization (WHO) recommends Hg hair-
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to-blood ratio of 250 for the conversion of Hg hair levels to those in whole blood. This 

encouraged the selection of hair as the preferred analyte because it minimizes collection, storage,

and transportation issues. In spite of these advantages, there is concern about inherent 

uncertainties in the use of this ratio. Liberda et al. (2014) measured total hair and total blood Hg 

concentrations in 1,333 individuals from 9 First Nations communities in northern Quebec, 

Canada and found that their hair-to-blood ratios spanning 3 to 2845. Yaginuma-sakurai et al. 

(2012) also reported the mean hair-to-blood ratio to be 344 ± 54 (S.D.) for the 27 participants of 

the fish consumption study. Therefore, using the constant ratio hair-to-blood ratio of 250 

recommended by WHO to convert hair Hg concentrations to blood concentrations could be 

unreliable, particularly at the individual level. Therefore, future Hg exposure assessment should 

refer to blood measurements when there are human health concerns.  Also, the use of singular 

hair concentrations and a standard hair-to-blood concentration conversion should be avoided for 

individual health risk assessment.

The organ targeted by MeHg exposure during gestation is the fetal brain. For this reason, 

biomarkers reflecting the MeHg exposure level in the fetus during the gestation are very 

important for predicting the effects of MeHg on child development. In addition, the MeHg 

concentration in the fetal blood reaches approximately 2-fold higher than that of the mother, 

because of active MeHg transport across the placenta (NRC, 2000; WHO, 1990). Therefore, 

umbilical cord blood is the most desirable biomarker for estimating pre-natal exposure.   

Concentrations of Hg in cord blood were reported for various population in China, the United 

States and Spain (Wu et al. 2013; King et al. 2013; Garcia-Esquinas et al. 2013).  Hg 

concentrations in umbilical cord tissue and placenta have been shown to be useful biomarkers to 

determine fetal MeHg exposure levels (Sakamoto et al. 2012; Garcia-Esquinas et al. 2013; Jin et 
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al. 2013; Chen et al. 2014). Maternal Hg levels in fingernails and toenails at parturition also 

showed strong correlations with those in cord blood and can be used as biomarkers (Sakamoto et 

al. 2015). 

In summary, it is still a challenge to compare Hg exposure between populations as different 

biomarkers or methods to estimate exposure were used.   More concerted effort to harmonize 

human biomonitoring survey design and data interpretation is needed.  For example, Smolders et 

al. (2015) reported the first ever such effort to harmonize biomarker data in 17 European 

countries.

 

Effects on children development

Mercury enters the fetus’ body through the placenta (NRC 2000). Therefore, the fetus is very 

susceptible to Hg exposure during organogenesis, a fact that has drawn great attention toward 

women’s health issues worldwide.  In the last three decades, many studies have reported negative

health outcome corresponds with low-level Hg exposure or environment dose through dietary 

consumption of seafood (Karagas et al. 2012).  In the European Union, it was estimated that 

more than 1.8 million children were born every year with MeHg exposures above the limit of 

0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World 

Health Organization (WHO) (Bellanger et al. 2013). 

Previous studies have reported that prenatal exposure is associated with low birth weight, 

delayed neurodevelopment, and growth and development of children (Grandjean et al. 2010). 

Suboptimal fetal growth has been adversely associated with neurodevelopment in childhood and 
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it has even shown an increased risk of chronic diseases in adulthood, such as metabolic 

syndrome (Fox et al. 2012).  Thus, elucidating the associations of environmental contaminants 

with health and development outcomes is of the utmost importance. As noted by a World Health 

Organization expert committee (World Health Organization, 2006), addressing such gaps in 

knowledge requires the design and implementation of prospective longitudinal cohort studies of 

pregnant women, infants, and children with assessment of their exposure at critical windows of 

development, along with sensitive health endpoints across the full continuum of development. 

Several such studies have been conducted to date to assess the effects of prenatal exposure to 

mercury, PCBs, and lead since these widespread environmental contaminants are known for their

adverse effects on neurodevelopment (Grandjean and Landrigan, 2006). 

Cohort studies in the Faroe Islands conducted since the 1980s have demonstrated that children 

exposed to methylmercury in utero exhibit decreased motor function, attention span, verbal 

abilities, memory, and other mental functions (Grandjean et al., 1997). Overall, the Faroe study 

found that a doubling of the prenatal mercury exposure for a child resulted in a developmental 

delay of one to two months at the age of seven years; that is, at the age when the child is 

expected to enter school. This delay corresponds to about 1.5 IQ points (Grandjean and Herz, 

2011) and the neurocognitive impacts persist into adulthood as a small effect on educational 

achievements was observed at age 22 years (Debes et al., 2013).  No effects were found on 

school performance at age 16 years, and only small effect on educational achievements was 

observed at age 22 years (Debes et al., 2013).  In the Faroese birth cohort study, additional 

statistical analyses have shown that post-natal MeHg as shown by the child’s current blood Hg 

concentration at age 7 contributed to neurobehavioral delays observed that were mainly 

17



determined by pre-natal exposure, particularly in regard to visuospatial processing and memory 

(Grandjean et al. 2012).  Similar to the Faroese study, a cohort study conducted on 94 Inuit 

mother-infant pairs in Arctic Canada who were exposed to elevated of Hg from their marine-

mammal based diet found that prenatal exposure to MeHg was associated with poorer 

performance on A-not-B test, which depends on working memory and is believed to be a 

precursor of executive function, among infants at 6.5 and 11 months (Boucher et al. 2014).  

Julvez et al. (2013) studied a subsample (n = 1,311) of the Avon Longitudinal Study of Parents 

and Children conducted in Bristol, UK, and found that the prenatal exposure to Hg was low but 

was positively associated with IQ, which attenuated after adjustment for nutritional and 

sociodemographic cofactors. They conclude that in this population with a low level of MeHg 

exposure, there were only equivocal associations between MeHg exposure and adverse 

neuropsychological outcomes. They suggested that heterogeneities in several relevant genes in 

the studied population might confound their results.  Genetic polymorphism as a disposition for 

Hg toxicity was reported in a cohort study started in 2006 in Korea (Lee BE et al. 2010) in which

maternal and cord blood Hg levels were associated with lower birth weight for mothers with both

GSTM1 and GSTT1 null genotype. The importance of genetic factor of Hg toxicity research will

be discussed in details in a later section.

As Japan and Korea are two major fish consuming countries in the world, results from the cohort

studies conducted in these two countries attracted worldwide interests.   The cohort study in 

Japan investigated the effects of prenatal exposure to PCB, Hg and lead on child behavior in 306 

30-month-old children from pregnancy and found that internalizing behavior in the children was 
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significantly correlated with PCB (r=0.113), but showed no significant correlation with either Hg

or lead (Tatsuta et al. 2012).  A similar association between intelligence and achievement and 

PCB was observed among the children at 42-month-old but not with Hg or lead (Tatsuta et al. 

2014). In contrast, Kim BM et al. (2011) studied 921 mother-child pair samples in Korea and 

found that the cord blood mercury level was negatively associated with the infants' attained 

weight over the first 24 months of age (β=−0.36. p=0.01). A more detailed comparison of these 

two cohort studies may be useful in future risk assessment for other fish consuming nations.   

 Prenatal and early-life exposures to mercury have been hypothesized to be associated with 

increased risk of autism spectrum disorders (ASDs) (Grandjean & Landrigan 2014). A cross-

sectional study examined the potential correlation between hair Hg concentrations and ASD 

severity among participants (n = 18) using the Childhood Autism Rating Scale (CARS) in a 

prospective cohort of participants diagnosed with moderate to severe ASD (Geier et al. 2012). 

Increasing hair Hg concentrations were found to be significantly correlated with increased ASD 

severity. This study provides biological plausibility for the role of Hg exposure in the 

pathogenesis of ASDs. Sagiv et al. (2012) conducted a population-based prospective birth cohort 

recruited in New Bedford, Massachusetts (1993-1998). In multivariable regression models, Hg 

exposure was associated with inattention and impulsivity/hyperactivity. On the other hand, there 

was a protective association for fish consumption (>2 servings per week) with ADHD-related 

behaviors, particularly impulsive/hyperactive behaviors.  Their results show that even at low-

level, prenatal mercury exposure was associated with a greater risk of ADHD-related behaviors, 

but fish consumption during pregnancy or maternal fatty acid status is protective of these 

behaviors (Steenweg-de Graaff et al. 2015). These findings underscore the difficulties of 
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balancing the benefits of fish intake with the detriments of low-level mercury exposure in 

developing dietary recommendations in pregnancy.  The importance of nutrient interactions on 

Hg toxicity will be discussed in a later section.

A number of other studies show that exposure to methylmercury does not play an important role 

in the development of ASD phenotypic behavior. For example, Yau et al. (2014) reported no 

significant association between ASDs and levels of total Hg  measured in maternal serum from 

mid-pregnancy and infant blood shortly after birth in a study on children with ASD (n=84), 

children with intellectual disability or developmental delay (DD) (n=49), and general population 

controls (GP) (n=159).  van Wijngaarden et al. (2013) evaluated the association between prenatal

methylmercury exposure and ASD phenotype in children and adolescents in the Republic of 

Seychelles, where fish consumption is high.  The Social Communication Questionnaire was 

administered to parents of a cohort of 1,784 children, adolescents, and young adults. No 

consistent association between prenatal methylmercury exposure and ASD screening instrument 

was found. Taken together, this evidence suggests that the role of Hg may be minor and 

inconsistent and can be masked by the nutritional benefits from fish consumption.

In the next few years, there will be an explosion of data generated by over 10 cohort studies 

being conducted around the world; e.g. Canada (Thomas et al. 2015), Italy (Deroma et al. 2013), 

Norway (Veyhe et al. 2015), Spain (Llop et al. 2012), Poland (Polanska et al. 2013), Amazonia, 

Brazil (Marques et al. 2013), France (Chan-Hon-Tong et al. 2013), Massachusetts, USA (Kalish 

et al. 2014), Mexico (Basu et al., 2014), and the Seychelles (Strain et al., 2015).  We would 

expect to obtain more conclusive data on the dose-response relationship between pre-natal 
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exposure and a better understanding of the confounding factors including the nutritional and 

genetic factors. However, as discussed in the biomonitoring section, the use of maternal hair or 

blood as biomarkers for fetal exposure can generate uncertainty when the dose of different 

studies was compared.  Moreover, the use of different evaluation tools at different age of the 

infants or children also make the inter-study comparison of effects challenging.  More 

harmonization efforts are needed to integrate the future database for risk assessment purposes.  
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Effects on fish consuming adults 

    Current challenges regarding the effects of fish consumption on adults depend on 

methods/strategies to identify susceptible individuals or populations affected by fish-

methylmercury (MeHg) exposure. There are no cases where markers of environmental MeHg 

exposure from fish consumption are indicators or prodromes of clinical conditions. Because of 

the complex interaction between fish-related constituents, both covariates, health-promoting and 

toxic substances, are not always taken into account; furthermore, confounding (constitutional) 

factors and/or accompanying effect modification in statistical models have frequently produced 

apparently contradictory or confusing results (Choi et al, 2008). The effects of toxic substances 

on adults are difficult to disentangle from the functional characteristics of fish consumption. 

Since the Minamata environmental disaster, human studies have focused mainly on MeHg 

contamination of fish. The extraordinary circumstances in post-war Japan and the highly polluted

Minamata Bay contaminated fish to a level not found elsewhere, with Hg concentration reaching 

in excess of 20 μg/g fish (Clarkson, 1998). These special circumstances turned ordinary fish 

consumption into a tragic and emblematic environmental disaster. Hair-Hg concentrations of fish

consumers during the `Minamata disease` outbreak ranged from 191 μg/g to 705μg/g (Koos and 

Longo, 1976; Harada, 1982).  A recent study in Japan showed that residents who were exposed to

elevated MeHg historically still showed significant functional deficit decades later (Ushijima et 

al. 2012). 

However, Amazonians who consumed large amounts of fish showed Hg concentrations as high 

as 90.6 to 303.1 µg/g without displaying the clinical symptoms of ‘Minamata disease’ (Boischio 

and Barbosa, 1993).  Moreover, a cross-sectional study also reported no observable effects on 
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neurological outcomes among whale meat consumers in Japan who had high mercury exposure 

(average hair Hg concentration of 14.9 ug/g) (Nakamura et al. 2014). The authors suggest that 

the high selenium intake offered a protective effect against the Hg toxicity. Fillion et al. (2013) 

reported color vision loss increased with hair Hg and decreased with plasma Se and % of omega-

fatty acids among residents in the Brazilian Amazon. More details on nutrient interactions will be

discussed in a later section. 

 

 It has been over 10 years since the association of tissue Hg concentrations and cardiovascular 

outcomes were suggested (Guallar et al, 2002) but inconsistent outcomes are still reported. A 

study of Amazon tribes suggested that fish consumption (hair-Hg) is inversely associated with 

age-related increases in blood pressure (Dórea et al., 2005); however, an opposite conclusion was

reached by Fillion et al. (2006) with non-Amerindian populations. Choi et al. (2015) also showed

that blood serum ferritin and mercury concentrations were associated with the prevalence of 

hypertension and that simultaneously elevated serum ferritin and mercury concentrations are 

related to the risk for hypertension in men Korea. However, in a cross-sectional study of the U.S.

general population, Park et al. (2013) found no association of hypertension with blood mercury 

but a suggestive inverse association with urinary mercury. Nevertheless, some authors suggested 

a dose-response between Hg exposure and cardiovascular health (Roman et al. 2011). It seems 

that the cause-effect relationship is far from conclusive and future prospective studies are 

warranted.
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There is emerging evidence on the positive relationship between Hg exposure and metabolic 

syndrome.  In a cross-sectional study, the blood Hg concentrations of 2,114 healthy adults in 

Korea (geometric mean of 3.90 μg/L) showed a positive association with body mass index, waist 

circumference, diastolic blood pressure, total cholesterol, and triglyceride after adjustment for 

covariates (Eom et al. 2014). Also, Hg exposure was significantly associated with metabolic 

syndrome and their components such as obesity and increased fasting glucose. These results 

show that Hg exposure is influenced by sociodemographic factors and individual lifestyles 

including dietary habits and is associated with metabolic syndrome.  Moreover, He et al. (2013) 

conducted a prospective cohort of 3,875 American young adults, and found that toenail mercury 

levels are associated with incidence of diabetes over 18 years of follow-up after adjusting for 

age, sex, ethnicity, study center, education, smoking status, alcohol consumption, physical 

activity, family history of diabetes, intakes of long-chain n-3 fatty acids and magnesium. The 

hazard ratio (95% CI) of incident diabetes compared the highest to the lowest quintiles of 

mercury exposure was 1.65 (1.07-2.56; P for trend = 0.02). This is the first time an 

epidemiological studying showing that people with high mercury exposure in young adulthood 

may have elevated the risk of diabetes later in life.  Future studies should collect more 

information on the potential effects of Hg on metabolic syndrome. 

Health hazards of artisanal and small-scale gold mining 

Liquid mercury (Hg0) is applied in artisanal and small-scale gold mining (ASGM) to extract gold

from ore. Gold containing ores are grinded, mixed with liquid mercury and panned. During this 

process gold binds to mercury forming an amalgam. The amalgam is then smelted; mercury 

being vaporized and gold remains. The panning and smelting expose the smelters and the 
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inhabitants of the mining village to toxic mercury vapor (Hg0) (Cordy et al., 2013; Cordy et al., 

2011; De Miguel et al., 2014; Gonzalez-Carrasco et al., 2011). Once mercury is released it 

methylates in the aquatic food chain, and becomes bioavailable. Especially mercury-polluted 

waters, coming from ASGM areas, can contaminate fish leading to high methylmercury levels 

(MeHg) (Barbieri et al., 2009; Castilhos et al., 2006; De Miguel et al., 2014; Diringer et al., 

2015; Dórea, 2008; Frery et al., 2001; Niane et al., 2015). Mercury can accumulate in rice grown

in ASGM areas and ingestion of this polluted rice contributes to methyl-mercury exposure of the 

population (Bose-O’Reilly et al., 2016; Feng et al., 2008; Krisnayanti et al., 2012; Li et al., 2015;

Li et al., 2014; Rothenberg et al., 2014). Miners and community members in ASGM areas are 

constantly exposed to elemental mercury vapor, and depending on the local situation to ingestion

of MeHg from local fish and/or rice. Exposure scenarios are similar downwind and downstream 

from mining areas. 

The exposure to mercury in ASGM areas shows high levels of mercury in human specimens as 

several studies showed (Gibb and O'Leary, 2014; Kristensen et al., 2013). Both reviews showed, 

that miners and their families are exposed to mercury vapor; that the exposure with inorganic 

mercury vapor is high, that fish contains MeHg; and that toxic effects have to be considered. 

Mercury levels in any analyzed biomarker were higher compared to control groups or reference 

values. Smelting and panning did lead to high and very high levels of mercury, especially in 

urine, but also in blood and hair. Smelters showed in up-to 80% typical signs of chronic mercury 

intoxication, mainly neurological symptoms like ataxia, tremor and coordination problems 

(Bose-O'Reilly et al., 2010a; Bose-O'Reilly et al., 2010b; Drasch et al., 2001; Lettmeier et al., 

2010; Steckling et al., 2011; Steckling et al., 2014). 
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World Health Organization (WHO) is concerned about mercury as a health risk for miners and 

population in ASGM areas: “Mercury exposure in ASGM communities is associated with adverse

health effects including kidney dysfunction, autoimmune dysfunction, and neurological 

symptoms” (World Health Organization, 2013).

ASGM affects approximately 15 million miners globally, as well as other community members, 

and the population downwind and downstream of mining areas, causing a serious public health 

problem (Spiegel et al., 2005; Wade, 2013). A burden of disease study for Zimbabwe showed that

chronic mercury intoxication ranks within the top 20 health hazards of the country (Steckling et 

al., 2014; Steckling et al., 2015). Mercury is a serious health problem especially for children 

(Afandiyev et al., 2011; Bose-O`Reilly et al., 2010c). The health hazards for children in ASGM 

areas are less known, only a few publications exist (Bose-O'Reilly et al., 2008a; Grandjean et al.,

1999). Children are exposed by living in ASGM areas, inhaling mercury fumes and ingesting 

mercury from fish and/or rice. Even worse off are children working in ASGM areas, performing 

all different kind of child labor, including handling, inhaling and ingesting toxic mercury (Amon 

et al., 2012; Kippenberg, 2011). The exposure to mercury leads to increased mercury levels in 

urine, blood and hair (Bartrem et al., 2014; Hruba et al., 2012; Ohlander et al., 2013). Clinical 

symptoms of chronic mercury intoxication can be observed (Bose-O'Reilly et al., 2008a). 

Increased levels of mercury can be found in breast-milk, contributing to an additional exposure 

pathway for breast-fed infants (Bose-O'Reilly et al., 2008b). There are concerns, that mercury in 

breast-milk does have a negative effect on the breast-fed child (Al-Saleh et al., 2013; Dórea, 

2004; Dórea, 2014).  There is a complete lack of studies to investigate the possibility that 
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mercury exposure during pregnancy in ASGM areas might have a negative effect on the 

pregnancy outcome.

Mining activities do have a negative effect on the health of miners and the community members. 

Mercury is a serious environmental pollutant and health hazard in ASGM areas. Data for human 

biomonitoring results show increased levels of mercury in certain mining areas (Baeuml et al., 

2011; Kristensen et al., 2013). Data for health effects are rare (Gibb and O'Leary, 2014). Other 

possible health hazards due to mining are accidents in tunnels, shafts, and open pits, available 

data is rare (Calys-Tagoe et al., 2015; Hentschel et al., 2002). The use of cyanide is not 

controlled or monitored, even so possible negative health effects are likely (Donato et al., 2007; 

Obiri et al., 2006). Other hazards are noise and dust, cadmium, lead and arsenic (Amedofu, 2002;

Bartrem et al., 2014; Basu et al., 2015; Basu et al., 2011; Burki, 2012; Chadambuka et al., 2013; 

Dooyema, 2010; Greig et al., 2014; Lkhasuren et al., 2007; Ono et al., 2012). The baseline data 

for these hazards is insufficient to estimate the real risk for the health of miners and community 

members in ASGM areas. To obtain more data integrated assessments are necessary (Basu et al., 

2015). To analyze mercury laboratories with appropriate equipment and trained staff are needed. 

Health care providers, including doctors, nurses, pharmacists and community health workers, 

need the training to be able to diagnose and treat chronic mercury intoxication (Bose-O’Reilly et 

al., 2008c). Intoxicated people need proper treatment with detoxifying medication (chelating 

agents). The available drugs need to be licensed and made available by the respective national 

authorities. Appropriate health care centers in ASGM areas have to be set up and funded. Health 

data from ASGM areas requests to be collected, analyzed and consequences of the results need to

be taken by stakeholders and policymakers. Screening programs for pregnant women, children 
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and miners are needed to identify intoxicated people. Regular human-biomonitoring should be 

established to be able to identify hot spots, and to evaluate intervention programs. To reduce 

knowledge gaps studies are needed - accidents, noise, dust, cyanide, cadmium, arsenic and lead 

need to be urgently assessed. Studies to assess the specific risk for children and infants are 

needed, like birth cohorts to improve the knowledge of per- and postnatal effects of mercury. The

awareness, that mercury is a serious health hazard, is the key to required urgent actions and 

needs to be increased on all levels, from national policymakers, regional stakeholders, to health 

experts and the population in mining areas. 

Effects of Dental Amalgam

There remains significant concern worldwide about the potential health effects of exposure to 

mercury vapour (Hg0) that may be released from dental amalgam restorations.  This form of 

restoration has been used for over 100 years, and most standard formulations contain 

approximately 50% elemental Hg.  Expert panels from across Europe, United States, Canada, 

and Australia among others have concluded that there is no strong scientific evidence to make a 

causal link between dental amalgam restorations and adverse health outcomes except for some 

rare cases of hypersensitivity in some people (Brownawell et al., 2005).  Nonetheless research 

continues in this area.   Foremost is that Hg exposures have been steadily declining among dental

professionals in many regions.  For example, through a biomonitoring program run by the 

American Dental Association on their membership, researchers have shown a decrease of nearly 

10-fold in the urinary Hg values between 1975 and 2012 (Goodrich et al., 2015).  In addition to 
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continued biomonitoring efforts, in recent years, a number of new paradigms in the Hg mercury 

sciences have been applied to studies of dental professionals that are briefly reviewed here.

Stable isotopes of Hg have emerged as an analytical tool to better track Hg in the ecosystem and 

people as well as distinguish between exposure to MeHg and Hg0.  Characterization of mass-

independent fractionation of Hg stable isotopes in human biomarkers (blood, hair, urine) can be 

used to differentiate between exposure to MeHg derived from seafood (with high positive mass-

independent fractionation; i.e., Δ199Hg values) and geologically derived Hg such as Hg0 inhaled

from dental amalgams (exhibits no mass-independent fractionation).  In contrast to mass-

independent fractionation, mass-dependent fractionation of the isotopes can be used to 

understand processes occurring in the body such as MeHg demethylation.  Sherman et al. (2013) 

characterized Hg stable isotopes in hair and urine samples from a small group of 11 dental 

professionals and drew two main conclusions.  First, the stable isotope results confirmed that Hg 

measured in hair largely originates from seafood ingestion, which is an observation made by 

many others. Second, a large percentage of Hg in urine may be derived from the ingestion and 

demethylation of MeHg that is derived from seafood.  This contradicts a widely held assumption 

that Hg in urine is derived from exposure to inorganic sources of Hg.  This assumption held true 

from those individuals who had more than 10 personal amalgams but for participants with less 

than 10 personal amalgams, >70% of the urinary Hg was estimated to be derived from seafood.  

This finding raises important questions about how Hg exposure assessments are performed in 

dental populations but also the general public.  Since the publication of this work by Sherman et 

al. (2013), other stable isotope studies have been performed with human populations that are 

deepening our understanding of how people handle Hg (Li et al., 2014; Sherman et al., 2015).
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Genetic polymorphisms have emerged to help us better identify biomarkers, sensitive sub-

groups, and life stages.  This is particularly important for research on dental amalgams given the 

rare cases of hypersensitivity that occur.  It begs the question whether genetic susceptibilities to 

Hg exist thus rendering some individuals hypersensitive.  Studies involving dental professionals 

have documented a role of genetics in terms of modifying the relationship between Hg exposure 

and adverse health outcome for the following: 1) a polymorphism in CPOX4 and altered 

porphyrin excretion (Woods et al., 2005); 2) a polymorphism in BDNF and performance on 

neurobehavioral tests such as hand steadiness and finger tapping, both of which are critical to 

dental professionals (Echeverria et al., 2005); 3) a deletion in the SLC6A4 promotor on finger 

tap and hand steadiness tests (Echeverria et al., 2010); and 4) a polymorphism in BDNF with 

indicators of anxiety and memory (Heyer et al., 2004).

Effects of Hg in cosmetics and in Thimerosal-containing vaccines

Exposure to mercury occurs by inhalation (metallic Hg vapor/ionized mercury), ingestion 

(methylmercury-MeHg), through the skin in cosmetic products (skin-lightening creams), and 

injection (ethylmercury-EtHg). Skin-lightening creams are used by pregnant and lactating 

mothers (Al Saleh, 2016) and Thimerosal-containing vaccines are given to pregnant mothers, 

newborns, neonates, and children (Marques et al, 2016) in less developed countries.  We do not 

have established criteria for neurologic diagnosis due to low doses of these types of Hg exposure.

Because of the vulnerability of young humans to the intellectual disabilities provoked by MeHg 

(Cohen et al, 2005) and EtHg (Geier et al, 2015), concerns are justifiably heightened (Dórea, 

2015). When combined exposures to MeHg and EtHg are evaluated, increases in 

neurodevelopmental delays may occur (Marques et al, 2016). Currently, only less developed 
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countries use pediatric Thimerosal-preserved vaccines. In these populations, the exposure to both

forms of organic Hg is associated to fish (MeHg in an important food source) and vaccine (an 

essential item of modern medicine to prevent infectious diseases). Concerns about any one single

chemical form of exposure are compounded when we consider the cumulative total Hg load. 

Therefore, to safeguard neurological development in children, it is important that all forms of 

Hg, inorganic or organic (not only environmental MeHg but also iatrogenic EtHg) exposure be 

identified and reduced.

Nutrients reported to modulate MeHg toxicity

Research on the developmental effects of MeHg exposure from fish consumption with 

background contamination has been extensive albeit, there is still substantial scientific 

uncertainty about the consequences, if any, of low-level MeHg exposure and the safety or risk of 

fish consumption. It is, however, clear that metabolism and/or toxicity of MeHg are modulated 

by intake of dietary nutrients including those concomitantly eaten with fish (Gagné et al, 2013).  

The mechanisms underlying the potential protective effect of foods on mercury exposure and 

toxicity are not fully understood albeit is an area of growing scientific interest (Donaldson et al., 

2010; Deroma et al, 2013, Choi et al, 2014, Strain et al, 2015).

Several nutrients and foods have been associated with modulating MeHg including n-3 

polyunsaturated fatty acids (PUFA), selenium, iodine, tomatoes fruit and antioxidants such as 

lycopene proanthocyanidins and tea polyphenols (Liu et al., 2014; Yang et al., 2012; Gagné et al, 

2013). More recently the impact of the GUT microbiome has received attention for its role in the 

excretion of MeHg (Rothenberg et al, 2016; Rand et al, 2016). With respect to inorganic 
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mercury, animal studies have identified antioxidants, including lycopene, as potential protective 

factors against toxicity induced by MeHg (Deng et al., 2012). 

The primary route of MeHg in the human diet is from consumption of fish with the species and 

age of the fish impacting on the amount of MeHg. Fish is an important source of nutrition 

worldwide being the primary source of protein for approximately four billion people (FAO 

2012). While the recently-ratified Minamata Treaty will reduce future anthropogenic releases of 

mercury and mercury compounds (Landrigan et al. 2013), about 70% of atmospheric Hg 

emanates from natural sources and re-emissions (UNEP 2013). Therefore, exposure to MeHg 

from fish consumption will continue to pose a potential risk to child development. Contrary to 

this, the ALSPAC study reported that the contribution of seafood (white fish, oily fish, and 

shellfish) accounted only for an estimated 6.98% of the variation in blood mercury levels in the 

pregnant women included in the analysis (Golding et al, 2013). In this study, herbal teas were 

unexpected dietary predictors of total blood mercury. It must be noted that self-reported dietary 

data is challenged by misreporting and care should be taken when using such data to inform 

health policy (Hebert et al, 2014). Furthermore, that this study does not take into account 

variability in absorption or the metabolism of Hg. More recently exposure to MeHg from foods 

sources other than fish has received much-needed attention. Exposure to MeHg from the 

consumption of rice contaminated as a result of inorganic mercury pollution has given concern as

rice is a stable food for billions especially in East and Southeast Asia (Barrett, 2010; Lin et al, 

2012). In some Hg mining regions of China, the MeHg concentrations of rice is much higher 

than the national limit of Hg in food (Meng et al., 2014). Similarly, vegetables and meat 

produced in these regions have been shown to contribute largely to the total mercury exposure. 
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Rice lacks the nutrients which are proposed to offset the neurotoxicity of MeHg (Barrett, 2010) 

therefore research is needed to determine the effects of consuming rice and other foods 

contaminated with MeHg on health effects especially during pregnancy and child development. 

Balancing the benefits of fish intake with the detriments of low-level mercury exposure has 

provided a challenge to researchers when devising dietary recommendations in pregnancy (Teisl 

et al. 2011). Fish contain nutrients essential for maternal and fetal health, including long-chain 

polyunsaturated fatty acids (PUFA), selenium, vitamin E, and other nutrients (Myres et al, 2007).

Fish are the primary source of docosahexaminic acid (DHA) which is a major lipid in the brain 

and essential for normal brain function (Kuratko et al. 2013) therefore limiting fish consumption 

during pregnancy could adversely affect child development.  Guidelines from Australia, Europe, 

and the USA all encourage pregnant women, those who may become pregnant, breastfeeding 

mothers and young children to eat more fish and to eat a variety of fish from a choice that is 

lower in mercury.  A recent joint report from the FAO/WHO recommended that the 

neurodevelopmental benefits of consuming fish be explicated (FAO/WHO, 2010). Nevertheless, 

it has been proposed that the present fish consumption advisories have led to a decline in fish 

intake by pregnant women with no clear indication that this trend has benefitted children’s health

(Bloomingdale, 2010). Uncertainty about possible developmental effects continues to represent a

challenge for devising public policies on fish consumption. As previously discussed mercury is a 

powerful neurotoxin harmful to the developing brains of the fetus and young children. The 

Environmental Working Group (EWG) in the USA recommend that more advice is needed for 

pregnancy women on the type of fish they should consume as the current advice may result in 

exposure to high mercury and low omega-3 fatty acids (Lunder, 2016). The EWG conducted a 
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study on pregnant women who were frequent consumers of seafood and observed that some 30%

and 60% had hair mercury concentrations >1ppm and >0.58 ppm respectively; values reported to

be associated with negative outcomes to the developing fetus (Grandjean et al, 2012). 

Furthermore, few of the pregnant women within this study met the dietary intake 

recommendations for omega-3 fatty acids despite being frequent seafood consumers. Several 

studies have now shown that the benefits of seafood consumption during pregnancy are apparent 

when mercury concentrations are low (Oken et al, 2008; Sagiv et al, 2012). The EWG propose 

that pregnancy women should be provided with more advice by the FDA and EPA on seafood 

which is a rich source of omega-3 fatty acids and low in mercury.  Studies have revealed that the 

association between maternal fish consumption and child development outcomes is far more 

complex than initially thought. Results from prospective mother-child cohorts in the United 

Kingdom, Spain and the Republic of Seychelles have shown no adverse associations between 

prenatal MeHg exposure and children’s subsequent development (Davidson et al, 1998; Myres et

al, 2003; Daniels et al, 2004; Davidson et al, 2008; Strain et al, 2008; Strain et al 2015; Llop et 

al, 2012) whilst studies from New Zealand, the Faroe Islands, and the United States have 

reported adverse developmental influences of prenatal MeHg exposure (Crump et al, 1998; 

Grandjean et al, 1997; Sagiv et al, 2012; Debes et al, 2016). Variability in study designs, 

populations, genetic susceptibility and nutrition may explain some of the inconsistencies between

studies. Research on fish consumption during pregnancy indicates that allowing for PUFA 

present in fish in statistical analysis may influence whether or not neurocognitive associations 

with MeHg are found (Budtz-Jørgensen et al., 2007; Strain et al 2012; Strain et al, 2015). The n-

3 PUFA in fish has been increasingly identified as having health benefits (Karimi et al, 2014). 
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The toxic effects of MeHg on the developing brain is considered to be mediated by oxidative 

damage, which in turn causes inflammation (do Nascimento et al, 2008). Maternal PUFA status, 

a putative indirect marker of inflammation, is suggested to modify MeHg associations with 

psychomotor development (Strain et al, 2012). The relative amounts of n-3 PUFA available in 

the diet are important for determining the physiologic n6/n3 balance and the maternal 

inflammatory milieu. Incorporation of the less pro-inflammatory n-3 PUFA, may reduce any 

possible inflammatory insults following MeHg exposure in the brain and subsequently benefit 

child development ( Janssen et al, 2013; Strain et al, 2015).

It is well known that fish are also rich in a number of micronutrients such as selenium and iodine

which are nutrients known to enhance neurodevelopment. Selenium (Se) is an essential nutrient 

that is required for normal function of enzymes that protect brain and endocrine tissues from 

oxidative damage (Rayman, 2012). Selenium has received attention as a potential protector from 

methylmercury toxicity in populations with high fish consumption (Berr et al, 2009; Ralston & 

Raymond, 2010; Carocci et al, 2014; Bjørklund, 2015). It is proposed that the toxicity of MeHg 

is related to the amount of selenium where the formation of MeHg-selenocisteine compounds is 

proposed to reduce the bioavailability of selenium and thus interferes with the synthesis of the 

selenium-dependent antioxidant enzymes that provide antioxidant protection to the brain 

(Raymond & Ralson, 2009). Nevertheless the role of Se in MeHg intoxication remains to be 

confirmed due to inconsistencies in animal studies along with a lack of evidence from 

epidemiological studies (Farina et al, 2011). Fish is also the major dietary source of iodine which

is a component of the thyroid hormones, thyroxine (T4) and tri-iodothyronine (T3) and essential 

for neurodevelopment (Pearce, 2013). Mercury has been found to be inversely associated with 
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thyroid hormone concentrations in adults and immunotoxic mechanisms have been suggested 

(Chen et al, 2012). Dietary iodine is taken up by the thyroid for synthesis of these hormones, 

stimulated by thyroid stimulating hormone (TSH) in a pathway which also requires selenoprotein

iodothyronine deiodinase (DIO) enzymes (Skeaff, 2011). It is proposed that Hg accumulates in 

the thyroid, reduces iodide uptake at the sodium/iodide symporter and inhibits DIO activity 

(Chen et al, 2011). Furthermore, insufficient selenium can impair thyroid hormone production 

and reduce antioxidant status, which can exacerbate iodine deficiency. Consequently, there is 

believed to be interdependence between selenium and iodine in their effects on thyroid function 

and neurodevelopment and these nutrients may modify the effects of MeHg albeit much research

is needed to fully elucidate these relationships. 

Research carried out in the Brazilian Amazon identified fruit consumption as having a protective 

effect against MeHg exposure (Passos et al., 2007) and propose that the soluble dietary fibre and 

prebiotic nutrients found in fruit could be impacting on MeHg metabolism in the GUT. The gut 

flora plays a predominant role in the excretion of methylmercury through demethylation and the 

release of inorganic mercury (Clarkson and Magos, 2006). A study of Inuit preschool children 

reported an inverse relationship between the consumption of tomato products and blood mercury 

concentrations (Gagné et al, 2013). Along with having putative effects on the GUT microflora 

impacting on demethylation rates, they also suggest that a good supply of dietary antioxidants, 

including lycopene in tomatoes, would preserve glutathione enabling it to bind MeHg and 

contribute to its secretion into bile as glutathione–mercury complexes (Clarkson and Magos, 

2006). Silva de Paula et al. (2016) found protective effects of niacin (rich in fish) against MeHg-

induced genotoxicity and alterations in antioxidant status in rats. It is clear that some nutrients 
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consumed concomitantly with MeHg in the diet may ameliorate its toxicity albeit much more 

research is needed to fully investigate the mechanisms of action. 

Genetic factors

Over the past decade, scientific studies have emerged to document that genetic and epigenetic 

factors may influence mercury exposure and associated health risks (reviewed by Basu et al., 

2014; Llop et al., 2015).  The results of these studies are helping to increase our understanding of

Hg’s mechanisms of actions, and in turn, this knowledge is expected to help us better identify 

biomarkers, sensitive sub-groups, and life stages.  Further, the outcome of these studies may help

reduce uncertainty in our risk assessments and thus improve decision-making. 

As background, several biological pathways (e.g., DNA repair, chemical biotransformation) have

evolved to help protect the human body from environmental insults. The genes in these pathways

are often referred to as environmentally responsive genes, and these genes may have variant 

forms to help living organisms cope with a  changing environment.  Environmentally responsive 

genes important to how the human body handles Hg can include those involving glutathione 

(e.g., glutathione s-transferases), proteins that bind and transport Hg (e.g., metallothioneins), and 

xenobiotic transporters (e.g., solute carriers). Polymorphisms in these environmentally 

responsive genes are ubiquitous across populations, and thus may influence the absorption, 

distribution, metabolism, and elimination of Hg.  

Cross-sectional, hypothesis-driven studies from across the world are beginning to show that 
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genetic polymorphisms in selected environmentally responsive genes can be associated with the 

main effect (i.e., carriers of wildtype and variant forms have different Hg biomarker levels) and 

gene-environment interactions (i.e., exposure-biomarker relationships are different between 

carriers of the wildtype and variant form).  Such observations have been made on studies 

involving, for example, dentists (Goodrich et al., 2011; Yang et al., 2012; Parajuli et al., 2016), 

students (Gundacker et al., 2007; Gundacker et al., 2009), riverine populations (Barcelos et al., 

2013; Barcelos  et al., 2015) and gold miners (Custodio et al., 2005; Harari et al., 2012; 

Engstrom et al., 2013).  The work to date has largely focused on adults and much less is known 

about early-life exposure situations. Further, most of the studies have focused on populations 

exposed mainly to inorganic sources of Hg, and the MeHg exposures are generally within 

background levels.

Moving beyond the influence of genetic polymorphisms on Hg exposure biomarkers (i.e., 

toxicokinetics), there are a handful of studies showing that genes are important in the 

toxicodynamics of Hg.  A study from Korea documented that the Hg-associated risk of low birth 

weight in newborns was greater in carriers with deletion polymorphisms of GSTM1 and GSTT1 

(Lee et al., 2010).  A series of studies involving dental professionals documented the importance 

of considering genetic polymorphism information when address exposure-outcome relationships 

(Woods et al., 2005; Echeverria et al., 2006; Echeverria et al., 2010), and these are elaborated 

upon later in this paper.  There are relatively few health studies that have considered genetics and

much more work is needed in this area particularly in terms of expanding the number of 

polymorphisms studied and how they are selected, and involving cohort studies with large 

sample sizes.
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Early life mercury exposure was found to increase the ethnic risk of developing Kawasaki 

disease (KD), a condition that causes inflammation in the walls of medium-sized arteries 

throughout the body, including the coronary arteries, which supply blood to the heart muscle. 

East Asian children are 20 times at risk to develop KD (Mutter & Yeter 2008). A study conducted

in the US showed that African, Asian, Caucasian, and Hispanic children in the US having 

increasing low-dose exposure to Hg may induce KD or contribute to its later development in 

susceptible children (Yeter et al. 2016). More research is needed to study this disease caused by 

gene-environmental interactions. 

Epigenetics refers to heritable factors that affect gene expression but occur outside of direct 

changes to the DNA sequence (Head et al., 2012). Such epigenetic factors can be influenced by 

stimuli such as contaminants but also by psychosocial stress and nutritional status.  Epigenetic 

marks (e.g., DNA methylation, histone modification) left by such stimuli can persist in the 

absence of the initial stressor, and this supports the notion that exposures to stressors in early life 

can lead to adverse health outcomes later in life.  Epigenetic mechanisms are likely very relevant

for Hg (reviewed by Basu et al. 2014 ) as the contaminant is an established developmental 

toxicant that can have a long latency period between exposure and disease.  There is some 

emerging evidence from both animals (Pilsner et al., 2010; Basu et al., 2013) and humans (Hanna

et al., 2012; Goodrich et al., 2013) to suggest that Hg is epigenetically active, and these studies 

provide a foundation to explore the matter deeper.

The risk assessment of Hg is challenged because of great inter-individual variability that can 
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exist in its exposure and health effect, and the latencies exposure and health effect can range 

from weeks to years (Canuel et al., 2006; Basu et al., 2014).  Variation has largely been 

addressed by trying to account for biological or environmental factors such as age, sex, accuracy 

of dietary surveys, and the measurement of other toxicants and nutrients yet the inclusion of such

factors has been met with limited success.  There is growing evidence that consideration of 

genetic polymorphisms and epigenetic processes may help better resolve underlying 

mechanisms, identify susceptible sub-populations, and ultimately improve risk assessments and 

decision making.  Genes recommended for future studies are outlined in recent reviews by Basu 

et al. (2014) and Llop et al. (2015).

Risk communication and Policy

It is expected the global inventory of Hg will decrease and will subsequently lead to a reduction 

in Hg exposure and health risk when the Minamata Convention is ratified and implemented.  

However, Sunderland & Selin (2013) stated that most future emissions scenarios project a 
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growth or stabilization of anthropogenic mercury releases relative to present-day levels. Analyses

that only consider changes in primary anthropogenic emissions are likely to underestimate the 

severity of future deposition and concentration increases associated with growth in mercury 

reservoirs in the land and ocean as mercury already in the environment can be re-emitted via 

processes in the natural cycle, resulting in a longer lag time before pollution reduction can have a

demonstrable effect on the food chain.  (Bender et al. 2014; Elsie M Sunderland & Selin 2013). 

Seawater mercury concentration trajectories in areas such as the North Pacific Ocean that supply 

large quantities of marine fish to the global seafood market are projected to increase by more 

than 50% by 2050 (Sunderland et al. 2009). Therefore, much research is needed to characterize 

the physical-chemical-biological interactions in the environment, as well as impacts of 

environmental management before a direct relationship between anthropogenic emission and 

exposure among human populations, can be established. Chan & Jacobs (2013) used a dynamic 

model to simulate such a complex problem in a stream basin in Kentucky, USA.  This example 

illustrates that it is possible to manage the environmental issues at a local scale if sufficient 

scientific data are available.

In the near term, health professionals need to implement effective risk management and risk 

communication programs to minimize exposure risks. The importance of including the 

nutritional benefits in the risk assessment of Hg exposure from fish consumption is discussed in 

the earlier section.  The FAO and WHO held an Expert Consultation workshop in 2011

(FAO/WHO 2011) to address the dilemma of fish consumption and proposed an integrative 

approach that balances the benefits of n-3 polyunsaturated fatty acids with the risks of Hg among

women of childbearing age.  Similar risk assessment model has been applied at the national level
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in the US and Europe (Rheinberger & Hammitt 2012; EFSA Scientific Committee 2015) and at 

regional levels such as the Canadian Arctic (Laird et al. 2013).   

However, issuing dietary advisory may not necessarily lower Hg exposure.  One of the reasons is

because of the complicated message of different consumption rate for different species of fish

(Wenstrom 2014).  The message may not be easily communicated to the target population.  (Ser 

& Watanabe 2012) reported that the public awareness of the fish advisory was very low in both 

USA.  Herdt-Losavio et al. (2014) conducted a cross-sectional study with 421 adults and 207 

children (171 adult-child pairs) examining the generational differences in fish consumption and 

knowledge of benefits/warnings of fish consumption among parents and children. They found 

that in 71% of parent-child pairs, both the parent and the child knew of benefits of consuming 

fish; but only 31% knew of warnings. Parental consumption of high or moderately-high-mercury 

fish was related to the child's consumption of fish in the same category. Parents and children 

need additional education to make better choices about fish consumption. Education should 

target the family and include specifics about benefits and risks.

On the other hand, one must caution that there is a possibility that a strong emphasis on mercury 

toxicity may drive the general population towards a trend of lower fish consumption.  This may 

lead to an unnecessary loss of nutritional benefits among the portion of populations that were not

at risk of over Hg exposure.  A delicate balance and clear communication messages need to be 

developed. The challenge on issuing fish consumption advice was comprehensively discussed by

Nesheim & Nestle (2014) including the importance to consider the sustainability of fishery 

stocks globally. Successful cases have been demonstrated in Greenland and Faroe Island that 
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with effective communication programs/messages, dietary advisory can result in lowering Hg 

burden among pregnant without causing unwarranted anxiety and loss of nutrition benefits

(Bjerregaard & Mulvad 2012; Weihe & Joensen 2012).

Conclusion

This critical review has made an attempt to highlight the most important findings in the 

understanding of health issues related to Hg exposure.  A number of knowledge gaps have been 

identified in each of the areas discussed.  Researchers and health professionals need to work 

closely together to conduct strategic research to address these knowledge gaps so that policy 

makers can formulate intervention policy based on the best science. Extra efforts are needed to 

harmonize the research design and methodology so that integrated data can be generated to 

provide more conclusive evidence.   Finally, more resources are needed to devote to knowledge 

synthesis.

The following is a summary of recommendations from the Panel members:

● Using unvalidated instruments for dietary assessment often resulted in high degree of

uncertainty in exposure assessment. Improvement on the accuracy of dietary exposure,

for example, using stable isotopes, are needed.
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● Potential new sources of exposure such as rice consumption and skin cream use have not

been fully assessed. Research results from multiple countries are needed to assess the

scope of the problem nationally and internationally.
● Combined  effects  of  co-exposure  with  other  contaminants  e.g.  MeHg  and  PCBs,

MeHg  and  Pb,  MeHg  and  As,   EtHg  and  Al,  from  seafood  consumption,  will  be

important for future studies.
● Continuing research efforts on effects of low-dose MeHg exposure on children’s health is

needed.  Future studies need to make an effort to harmonize the parameters measured, for

example, the biomarkers used for dose and the neuro-performance assessment tools used

for effects.
● Effects of Hg on metabolic syndrome and delayed long-term effects among adults need to

be characterized.
● Hg  exposures  in  ASGM  communities  are  amongst  the  highest  worldwide  though

relatively few health studies have been conducted, and of these, few have accounted for

the multiple public health hazards that exist in such communities.
● Potential effects of nutrient interactions needed to be considered in all Hg health studies

and  more research is needed to quantify the protective effects  of food or nutrients to

establish effective public health guidelines. 
● Genetic  research  is  beginning  to  show  that  polymorphisms  may  help  explain  inter-

individual differences in exposure and health effects, though only a handful of genes have

been investigated thus far and thus more work is needed to expand the number of targets

studied.
● Effective communication messages need to be developed to increase awareness and lower

exposure among the seafood consumers, and the ASGM communities.
● Researchers and health professionals should assist policy makers at the national level to 

implement the Minamata Convention to restrict the use of Hg and establish national 

policy based on precautionary prevention strategy. 

44



● National monitoring programs to ensure the safety of food and nutritional and health 

surveillance to ensure healthy diet and lifestyles among vulnerable groups.
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