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ABSTRACT
Privacy-preserving range queries allow encrypting data while
still enabling queries on ciphertexts if their corresponding
plaintexts fall within a requested range. This provides a data
owner the possibility to outsource data collections to a cloud
service provider without sacrificing privacy nor losing func-
tionality of filtering this data. However, existing methods
for range queries either leak additional information (like the
ordering of the complete data set) or slow down the search
process tremendously by requiring to query each ciphertext
in the data collection. We present a novel scheme that only
leaks the access pattern while supporting amortized poly-
logarithmic search time. Our construction is based on the
novel idea of enabling the cloud service provider to com-
pare requested range queries. By doing so, the cloud service
provider can use the access pattern to speed-up search time
for range queries in the future. On the one hand, values that
have fallen within a queried range, are stored in an interac-
tively built index for future requests. On the other hand,
values that have not been queried do not leak any informa-
tion to the cloud service provider and stay perfectly secure.
In order to show its practicability we have implemented our
scheme and give a detailed runtime evaluation.

Keywords
Encrypted Database; Secure Computation; Searchable En-
cryption

1. INTRODUCTION
Cloud computing allows a data owner to outsource her

data while enabling her to access this data collection with
arbitrary devices anytime. Even devices with small compu-
tation power can be used to access an enormous data collec-
tion. This is possible by delegating computational expensive
operations like searching to the cloud service provider. Then
only a small subset matching the search query is processed
directly by the client’s device.

In order to preserve data privacy, the outsourced data
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must be encrypted. However, standard encryption schemes
are not suitable for this scenario since they prevent process-
ing encrypted data. As a result, the complete encrypted
data collection must be transferred to the client’s device
and decrypted and processed locally. Advanced encryption
schemes allow the cloud to perform search operations like
exact pattern matching or range queries on ciphertexts. In
more detail, the data owner can encrypt his files augmented
with additional information (e.g. keywords, timestamps).
The data owner transfers the ciphertexts created by this
scheme to the cloud service provider. Using the secret key
the data owner can create a search token (e.g. for exact
pattern matching of a keyword, for a range the timestamp
should fall within) and pass it to the cloud service provider.
Using this search token the cloud service provider can filter
for all ciphertexts that match with the search token.

All previous schemes providing this functionality, either
have linear search time or leak the complete order of all out-
sourced values thus are vulnerable to simple yet effective at-
tacks presented recently on property preserving encryption
by Naveed et al. in [25]. In this paper we present a novel
approach for implementing privacy-preserving range queries
with poly-logarithmic searchtime that only leaks the access
pattern, hence prevent such powerful attacks. In our scheme
we enable the cloud service provider to compare range tokens
that have already been queried in previous search requests.
This enables the cloud service provider to decrease its amor-
tized search time for range queries. While initial search time
for a range query is linear in the number of indexed files we
can speed up future queries as follows: In the first, initial
search the cloud service provider learns the result set of the
range query; given a range query in a second search request
that is a subrange of the already queried range in the first
step, it is sufficient to scan this previously learned result set.
This downscaling of the possible search space results in a
tremendous speed-up for the search operation. Furthermore,
using this approach for every new range query the cloud ser-
vice provider can construct and update an encrypted search
index in an interactive protocol between the client and the
server. As a result, the scheme achieves decreased search
time. In addition, ciphertexts that have never fallen within
any queried range are not contained in any access pattern,
hence, using a suitable encryption scheme, these unqueried
ciphertexts do not leak any information at all.

By implementing a prototype in Python 3 we demonstrate
the performance benefits of our construction after a short pe-
riod of queries. Furthermore, by changing parameters that
influence how our index is organized we can decrease com-



putational effort for the client, but increase it on the server
side. This combination of different trade-off parameters al-
lows suitable deployments for different use cases. We con-
tribute a new encryption scheme for privacy preserving range
queries, whose properties can be summarized as follows:
secure: We define and proof security using a simulation-
based approach in a widely accepted formal model. In more
detail, we define leakage functions that give an upper bound
for information that is leaked by our construction.

efficient: Our scheme has amortized poly-logarithmic run-
time. This is achieved by interactively building a search in-
dex. The implementation shows the benefits of this change
already after a short period of queries.

modular: We build our scheme on a black box interface for
functional encryption for secure inner product evaluation.
Hence, we can profit from any performance improvements
in this active research area. To evaluate this approach we
have implemented our scheme based on different functional
encryption schemes.

This paper is structured as follows. We give an overview of
related work in Section 2. In Section 3 we give a definition
of the problem, present two naive solutions with their draw-
backs and define the security we want to achieve. Then we
present the actual implementation including a proof for its
security in Section 4. We go on with a practical evaluation
in Section 5 and conclude in Section 6.

2. RELATED WORK
The problem of secure data outsourcing while still en-

abling computation can be addressed using fully homomor-
phic encryption [11]. However, due to performance short-
comings of this universal solution, a variety of algorithms
and protocols for specific use-cases have been published, e.g.,
benchmarking [16, 17, 22], RFID tracking [20], reputation
systems [18], e-commerce [7].

In this work we focus on search over encrypted data as
first proposed by Song et al. in [29]. A scheme for a si-
miliar scenario in the public key setting was presented in
[5]. Although deterministic encryption can be used and the
same functionality has been proposed in [2], searchable sym-
metric encryption provides better security properties. The
main reason why implementations of encrypted databases
like CryptDB [26] nevertheless use deterministic encryption
is the low deployment overhead. Especially, indexing tech-
niques provided by the database engine can result in huge
search time speed-up. Goh published the first scheme using
indexing techniques for searchable encryption in [12]. Fur-
ther improvements for indexing searchable encrypted data
are presented in [8, 9]. Recently an idea has been published
by Hahn and Kerschbaum in [14] where the index for ex-
act pattern matching is constructed in an incremental way
by using information of already searched tokens. From a
high level perspective we extend their idea from privacy-
preserving exact pattern matching to range queries.

For the functionality of range queries a similar trade-off
between security and processing time is possible by building
search indexes or additional information leakage. The idea
of order-preserving encryption was introduced by Agrawal
et al. in [1]. In more detail, this kind of encryption has the
following characteristic: given two plaintexts x and y with
property x ≥ y, the same property Enc(x) ≥ Enc(y) holds
for their corresponding ciphertexts. A first concrete imple-
mentation of order-preserving encryption was introduced by

Scheme
Sublinear

Index Leakage
Search Time

Boneh, Waters [6] no n/a
Shi et al. [28] no n/a
Shen et al. [27] no n/a
Lu [23] yes Order
Wang et al. [30] yes Bucketization
Wang et al. [31] yes Distance
Demertzis et al. [10] yes -
This paper yes -

Table 1: Comparison of different schemes for privacy-
preserving range queries.

Boldyreva et al. in [4] and optimized in [21]. However, pri-
vacy properties of such encryption schemes might be ques-
tionable for highly sensitive data. Although addressed by
work like [19], recent work published by Naveed et al. [25]
demonstrate concrete attacks on order-preserving encrypted
values with low entropy in practice.

The paradigm of searchable encryption for exact pattern
matching, i.e. hide as much information as possible by only
unveiling tokens corresponding to requested predicates, can
be transferred into encryption schemes supporting secure
range queries. One solution in the secret key setting has
been published in [27]. Solutions for the public key set-
ting exist and have been published in [6, 28]. In [10] this
construction has been revisited and realized with searchable
encryption for exact pattern matching. This leads to faster
execution time but leakage from queries increases e.g. infor-
mation about the covered subranges is unveiled. The first
approach of building search indexes for range queries has
been introduced by Lu in [23], however, this index reveals
the order of all indexed elements. A trade-off between pri-
vacy and performance for range queries is proposed in [15]
by using bucketization of indexed ciphertexts. Other tree
index approaches have been published by Wang et al. in
[30], however, again bucketization of indexed ciphertexts is
leaked. In [31] an encryption is used that leaks the rela-
tive distance of all indexed ciphertexts to build an R-tree as
index for ciphertexts. The leakage of all these indexes re-
sults in the vulnerability to the before mentioned attacks as
those published by Naveed et al. A comparison of different
approaches for secure range queries is presented in Table 1.

3. DEFINITIONS
Let N denote the set of natural numbers. We denote [i, j]

with i ≤ j and i, j ∈ N as the set of integers starting at
i and including j, i.e., the set {i, . . . , j}. The output z of
a (possible probabilistic) algorithm A is written as z ← A.
Throughout, λ denotes the security parameter. A function
f : N → R is called negligible (in x) if for every positive
polynomial p(·) there exists a x0 such that for all x > x0

it holds that f(x) < 1/p(x). Given matrix M , we denote
M [i] as the i-th row, and M [i][j] as the j-th element in
the i-th row. Further on, message m consists of a tuple
(f, v) where f is an arbitrary file (i.e., a document or image)
and a value point v for indexing purpose. We assume each
message m has a unique identifier ID(m) and each file f
can be accessed given the associated identifier ID(m). This
allows us to decouple the actual file f from the value point v
and identifier ID(m): one can encrypt f using an arbitrary

encryption scheme, e.g. AES. For range Q = [q(s), q(e)] we



define IDQ as the set of file identifiers indexed under values
v with v ∈ Q, i.e., IDQ = {ID(m) : m = (f, v) with q(s) ≤
v ≤ q(e)}

3.1 Problem description
A scheme for secure and efficient range queries is com-

posed of the following (partly probabilistic) polynomial-time
algorithms: SRQ-Setup, SRQ-Enc, SRQ-IndexFiles, SRQ-Token,
SRQ-Search. In the initial step, the data owner creates pub-
lic parameters and a master key for a desired value domain
by running SRQ-Setup. We assume the public parameters are
known by all parties and omit them for the sake of simplicity
in the remainder of the work. In the next step a message col-
lection is encrypted and indexed under given value points by
running SRQ-Enc; each value point has to lie in the value do-
main used in the initial setup step. The result consisting of
a encrypted index and a ciphertext collection is transferred
to a server using SRQ-IndexFiles. From this moment on
the data owner holding the master key mk is able to create
range tokens by calling SRQ-Token. Given this range token
to the server he can run SRQ-Search to filter all (encrypted
and indexed) messages associated with value points falling
within the requested range.
Definition 1. The scheme SRQ for secure range queries con-
sists of the following (probabilistic) polynomial time algo-
rithms:

mk ← SRQ-Setup(1λ, [0, D − 1]): is a probabilistic algo-
rithm that takes a security parameter 1λ and value domain
[0, D − 1] as input and outputs a master key mk.

c ← SRQ-Enc(mk,m): is a probabilistic algorithm that
takes a master key mk and message m as input. Mes-
sage m is a tuple m = (f, v) of file f and value point
v ∈ [0, D − 1]. A ciphertext c is output.

γ,C ← SRQ-IndexFiles(
(
ID(m), c

)
[1,n]

): is a determin-

istic algorithm that takes n tuples
(
ID(mi), ci

)
as input.

A secure search index γ and a ciphertext collection C is
output.

τQ ← SRQ-Token(mk,Q): is a probabilistic algorithm that

takes master key mk and range [q(s), q(e)] = Q ⊆ [0, D − 1]
as input and outputs a search token τQ for range Q.

IDQ ← SRQ-Search(τQ, γ): is a deterministic algorithm
that takes a range token τQ for range Q and index γ as
input and outputs IDQ.

3.2 OPE and RPE
In the following we describe two solutions for building an

encrypted search index that supports range queries as de-
scribed before: i) sorting all indexed ciphertexts beforehand
with order-preserving encryption allows logarithmic search
time or ii) scan all indexed ciphertexts linearly using range
predicate encryption.

In more detail, the first solution utilizes a scheme OPE =
(OPE-Setup, OPE-Enc, OPE-Dec) where OPE-Enc(x) ≤ OPE-Enc(y)
if and only if x ≤ y. All index entries of the form ci =(
OPE-Enc(vi), ID(mi)

)
are sorted by the OPE encrypted val-

ues. For search queries for range [q(s), q(e)] a range token is

implemented as a tuple τQ =
(
OPE-Enc(q(s)), OPE-Enc(q(e))

)
.

Given τQ to the server storing the search index she is able
to obtain the set {

(
OPE-Enc(vi), ID(mi)

)
: OPE-Enc(q(s)) ≤

OPE-Enc(vi) ≤ OPE-Enc(q(e))} in logarithmic time by run-
ning binary search. However, even indexed but not queried

points can be compared with all other indexed (queried and
not queried) points. This can be exploited for concrete at-
tacks and result in a total data breach in the worst case as
demonstrated by Naveed et al. in [25].

One approach mitigate this attack vector, i.e. to hide the
information about the order is Range Predicate Encryption
(RPE) introduced by [28] in the public key setting. Later
RPE has been transformed to the private key setting by [23]
using techniques from [27]. In our work we utilize the ap-
proach of range predicate encryption, hence we describe its
design and security properties in more detail in this para-
graph. An RPE scheme consists of the following algorithms.

• k ← RPE-Setup(1λ, [0, D − 1]) on input of a security pa-
rameter 1λ and a domain range [0, D − 1] outputs a key
k.

• c ← RPE-Enc(k, v) on input of a key k and an attribute
value v outputs a ciphertext c.

• tkQ ← RPE-Token(k,Q) on input of key k and range Q
outputs range token tkQ.

• {0, 1} ← RPE-Match(tkQ, c) on input of range token tkQ
and ciphertext c = RPE-Enc(k, v) outputs 1 if v ∈ Q and 0
otherwise.

Security for an RPE scheme guarantees plaintext privacy
(cf. Definition 2) on the one hand, and predicate privacy
(cf. Definition 3) on the other hand.
Definition 2. Let RPE be a range predicate encryption
scheme. Consider the following security game between at-
tacker A and a challenger consisting of the phases described
below:

Init: A submits two values v0, v1 ∈ [0, D − 1] where it
wishes to be challenged.

Setup: The challenger generates a secret key k by running
RPE-Setup(1λ, [0, D − 1]).

Query Phase 1: A adaptively issues queries, where each
query is one of two types:

1. Token query: On the i-th query, A submits query Qi ⊂
[0, D − 1] with the following condition: either (v0 /∈
Qi ∧ v1 /∈ Qi) or (v0 ∈ Qi ∧ v1 ∈ Qi). The challenger
generates a token by running tkQi ← RPE-Token(k,Qi)
and outputs it.

2. Ciphertext query: On the i-th query, A submits a value
zi. The challenger value point zi by running RPE-Enc(k, zi)
and returns the output.

Challenge: The challenger flips a random coin b← {0, 1}
and outputs RPE-Enc(k, vb).

Query Phase 2: A adaptively issues further queries with
the same restrictions as in Phase 1.

Guess: A outputs a guess b′ of b.

We say RPE has selective secure plaintext privacy, if for
all probabilistic polynomial-time attackers A runnig this se-
curity game, it holds that∣∣∣∣Pr

[
b = b′

]
− 1

2

∣∣∣∣ ≤ ε
where ε is negligible in λ.
Definition 3. Let RPE be a scheme for range predicate en-
cryption. Consider the following security game between at-
tacker A and a challenger consisting of the phases described
below:



Init: A submits two ranges R0, R1 ⊂ [0, D − 1] where it
wishes to be challenged.

Setup: The challenger generates a secret key k by running
RPE-Setup(1λ, [0, D − 1]).

Query Phase 1: A adaptively issues queries, where each
query is one of two types:

1. Token query: On the i-th query, Qi ⊂ [0, D − 1] is
submitted. The challenger generates a token by running
τQi ← RPE-Token(k,Qi) and outputs τQi .

2. Ciphertext query: On the i-th query, value point zi is
submitted such that zi ∈ R0 ∧ zi ∈ R1 or zi /∈ R0 ∧ zi /∈
R1. The challenger encrypts value point zi by running
RPE-Enc(k, zi) and returns the output.

Challenge: The challenger flips a coin b ← {0, 1} and
outputs RPE-Token(k,Rb).

Query Phase 2: A adaptively issues further queries with
the same restrictions as in Phase 1.

Guess: A outputs a guess b′ of b.

We say RPE has selective secure predicate privacy, if for
all probabilistic polynomial-time attackers A runnig this se-
curity game, it holds that∣∣∣∣Pr

[
b = b′

]
− 1

2

∣∣∣∣ ≤ ε
where ε is negligible in λ.

Given an RPE scheme with such security properties one
can construct a scheme with small leakage but linear run-
time. More particular, for message mi = (fi, vi) the at-
tribute vi is encrypted to ci = RPE-Enc(vi) and the tuple
(ci, ID(mi)) is indexed. For a range query of range Q a to-
ken tkQ is created by the data owner holding the master key
using RPE-Token. Given this token, the server creates IDQ
by return all entries ID(mj) with RPE-Match(tkQ, cj) = 1.
Note that it is necessary to scan the complete index, hence
runtime is linear in the number of all indexed files.

3.3 Security definition
In order to increase search speed, messages have to be

indexed in a suitable way but we want this index to leak as
little information as possible. In the next definition present
a framework to formalize leakage using the simulation-based
definition as introduced by Curtmola et al. in [9].
Definition 4. Given a scheme for secure range queries SRQ =
(SRQ-Setup, SRQ-Enc, SRQ-IndexFiles, SRQ-Token, SRQ-Search)
and security parameter λ ∈ N, we consider the following
probabilistic experiments with adversary A, simulator S and
leakage functions L1,L2:

RealA(λ) : the challenger runs SRQ-Setup(1λ, [0, D− 1]) to
generate a master key and an empty search index γ.
First the adversary sends an f-tuple of messages M =(
m1, . . . ,mf

)
where mi = (fi, vi) with vi ∈ [0, D − 1]

and fi is a file for all i ∈ {0, . . . , f} and a q-tuple of
queries Q =

(
Q1, . . . , Qq

)
with Qi ⊂ [0, D − 1] for all

i ∈ {1, . . . , q} to the challenger. The challenger returns
a tuple C =

(
SRQ-Enc(mk,m1), . . . , SRQ-Enc(mk,mf )

)
together with a tuple TK =

(
SRQ-Token(mk,Q1), . . . ,

(SRQ-Token(mk,Qq)
)

to the adversary. Finally, A re-
turns a bit b that is output by the experiment.

IdealA,S(λ) : the simulator sets up its internal environment
for domain [0, D − 1]. The adversary A sends an f-
tuple of messages M =

(
m1, . . . ,mf

)
where mi =

(fi, vi), vi ∈ [0, D − 1] and fi is a file for all i ∈
{0, . . . , f} and a q-tuple Q =

(
Q1, . . . , Qq

)
with Qi ⊂

[0, D − 1] for all i ∈ {1, . . . , q} and the simulator is
given the appropriate leakage L1(M) for message tuple
and L2(Q) for query tuple. Simulator S returns an f-

tuple C̃ and a q-tuple T̃K to the adversary. Finally,
A returns a bit b that is output by the experiment.

We say SRQ is
(
L1,L2

)
-secure against non-adaptive chosen-

range attacks if for all probabilistic polynomial-time algo-
rithms A there exists a probabilistic polynomial-time simu-
lator S so that advantage of A defined as∣∣∣Pr

[
RealA(1λ) = 1

]
− Pr

[
IdealA,S(1λ) = 1

]∣∣∣
is negligible in λ.

4. DESIGN
Now we are ready to describe how to organize the search

index in order to increase search speed but minimize the
leakage of the indexed encrypted values. We tackle these
contradictory requirements by updating the index every time
the server learns new information. This knowledge, leaked
in form of the access pattern and the corresponding search
token is then used to refine the encrypted search index for
future searches. First, we explain our ideas and design deci-
sion on plain data and transfer this on encrypted values in
the upcoming section.

4.1 Searching on plaintexts . . .
Search index γ consists of the following two components:

The point list denoted as P is a linear list of all indexed
points. This list enables the server to answer all queries
in linear time.

The tree list denoted as T is a list of search trees, each
tree covering one coherent and already searched range.
Whenever a new search is executed, existing trees are up-
dated or a new tree is added to the list. This enables
the server to answer range queries that are subranges of
already queried ranges in logarithmic time.

Tree list T contains R-trees [13]. Each R-tree Γ covers one
coherent range completely. More particular, each inner node
holds up to t entries. Each entry has the form

(
p,R

)
, where

R is a range and p is a pointer to another node (either an
inner node or a leaf) covering this range; hence pointer p
points to a subtree. We denote Γ[p] as the subtree of Γ
pointed to by p. For simplicity we write Γ ⊂ S for a range
S, if the covered range of Γ is a subset of S and vice versa
S ⊂ Γ. In addition, for any two entries

(
p1, R1

)
and

(
p2, R2

)
of the same node it holds that R1 ∩R2 = ∅, i.e., the ranges
in one node do not overlap. For every entry

(
p,R

)
it holds

that the subtree rooted at the node pointed to by p covers
range R, i.e., Γ[p] = R. Furthermore, all leafs consist of
up to t entries, every entry has the form

(
obj, R

)
, where

R is a range and obj points to IDR. Queried range Q =
[q(s), q(e)] the server holding a R-tree Γ covering a superset
of Q (i.e. Q ⊂ Γ) can calculate IDQ by using Algorithm 1
in logarithmic time.

A example is given in Figure 1: The initial search index
γ consisting of point P and tree list T contains one tree Γ



(
5, A

) (
14, E

) (
7, B

) (
8, C

) (
22, F

) (
8, D

) (
1, G

)
. . .

(a) Point List P[9, 16] [4, 8]

[9, 16]

(
14, E

)
[8, 8] [4, 7]

(
8, C

)
,
(
8, D

) (
5, A

)
,
(
7, B

)
(b) Initial R-Tree Γ

[9, 23] [4, 8]

[17, 23] [9, 16]

(
22, F

) (
14, E

)
[8, 8] [4, 7]

(
8, C

)
,
(
8, D

) (
5, A

)
,
(
7, B

)
(c) Updated R-Tree Γ after query [17, 23]

Figure 1: Example of plain search index γ consisting of P and T

Algorithm 1: How to search a tree for range queries.

SearchForRange

Input: Tree Γ, Range Q
Output: IDQ
Initialize temporary result list L;

for all ei =
(
pi, Ri

)
in root of Γ do

if Ri ⊆ Q then
Add all values indexed by Γ[pi] to L

end

if q(s) ∈ Ri or q(e) ∈ Ri then
if pi points to another node then

Add output of SearchForRange(Γ[pi], Q) to
L

end
if pi points to a list IDRi then

Add all values with v ∈ Q
end

end

end
return list L

covering [4, 16] as depicted in Figure 1a and 1b. Lets assume,
the next query is range [17, 23]. In the initial step, the server
checks if there exists a tree Γ ∈ T that covers the queried
range [17, 23] ⊂ Γ to search in logarithmic time. Since this
is not the case, the server scans all entries in P linearly to
construct ID[17,23]. This new information is then added to
the search index for future queries and results an updated
version of Γ covering [4, 23] as depicted in Figure 1c.

4.2 . . . and doing so on encrypted values
Note that all functionality needed for such range queries

is the following: first, checking if range R and range Q in-
tersect and second, checking if range Q is a subrange of
range R. This functionality can be provided by a slightly
modified RPE scheme and hence every range query can also
be answered over trees that consist of ranges encrypted by
this modified RPE scheme. Every token for range Q created
by RPE-Token must be augmented with encrypted limiting
points (that is start and end point) encrypted using RPE-Enc
additionally. This modified version of RPE combined with
the idea presented in the previous Section can define an SRQ

scheme with poly-logarithmic runtime formally analyzed in
Section 4.4 and small leakage formally defined in Section 4.5
as follows:

Given an RPE scheme consisting of algorithms
(
RPE-Setup,

RPE-Enc, RPE-Token, RPE-Match
)
, an IND-CCA secure scheme

Π1 =
(
GenIND−CCA, EncIND−CCA, DecIND−CCA

)
and a sec-

ond encryption scheme Π2 =
(
Gen,Enc,Dec

)
we construct

an SRQ scheme as follows:

• mk ← SRQ-Setup(1λ, [0, D − 1]) on input of security pa-
rameter and value domain [0, D − 1] create keys k1 ←
RPE-Setup(1λ, [0, D − 1]) and k2 ← GenIND−CCA(1λ) and
k3 ← Gen(1λ); set mk = (k1, k2, k3). Output master key
mk.

• c← SRQ-Enc(mk,m): on input of master keymk = (k1, k2, k3)
and message m =

(
f, v
)

do the following:

– Encrypt c1 ← RPE-Enc(k1, v).

– Encrypt c2 ← EncIND−CCA(k2, f).

Finally, output c =
(
c1, c2

)
.

• γ,C← SRQ-IndexFiles(
(
ID(mi), ci

)
i∈[1,n]

): Initialize an

empty search index γ = (P,T) that contains an empty
point list P, an empty tree list T and an empty cipher-
text collection C. For each i ∈ [1, n]: parse ci = (ci1 , ci2)
and add tuple

(
ID(mi), ci2

)
to C. Furthermore, add tuple(

ID(mi), ci1
)

to point list P. Output ciphertext collec-
tion C and secure search index γ.

• τQ ← SRQ-Token(mk,Q): on input of master key mk =(
k1, k2, k3

)
and range Q = [q(s), q(e)] flip a coin b← {0, 1}

and use RPE-Enc for encrypting the limiting points c
(b)
Q =

RPE-Enc(k1, q
(s)) and c

(1−b)
Q = RPE-Enc(k1, q

(e)). Further-
more create range token tkQ = RPE-Token(k1, Q). In addi-
tion, encrypt Q to cQ = Enc(k3, Q) to enable the client to

decrypt this range token. Output τQ =
(
c
(0)
Q , c

(1)
Q , tkQ, cQ

)
as range token.

• IDQ ← SRQ-Search(τQ, γ) given index γ and range token

τQ =
(
c
(0)
Q , c

(1)
Q , tkQ, cQ

)
for range Q check for all index

trees in T if they cover the queried values completely or

partly. Initialize a list T̂ = {Γi|Γi ⊆ Q} of trees that lie
completely in the queried range Q. Then do the following

for the boundary points c
(0)
Q and c

(1)
Q :

1. Check if there exists one tree Γi ∈ T containing c
(0)
Q and

c
(1)
Q . If this is the case, get IDQ by calling Algorithm 1

and set Γ(s) = Γ(e) = Γi.

2. Otherwise, check if there exists a tree covering the
queried range partly. In more detail, set tree Γ(s) ∈ T

with c
(0)
Q ∈ Γ(s) and Γ(s) = ⊥ otherwise. Do the same

with c
(1)
Q and Γ(e).

3. Else set Γ(s) = Γ(e) = ⊥.

If case 1 does not occur scan all ciphertexts (IDfi , ci1) ∈
P using RPE-Match(tkQ, ci1) = ri and store IDfi in the
result set IDQ iff ri = 1. In order to maintain logarith-
mic search time for future queries that are a subrange
of already queried ranges call an interactive procedure



SRQ-UpdateIndex(τQ, IDQ,Γ
(s),Γ(e), T̂) (described in Sec-

tion 4.3). Finally, output IDQ as result.

Given these algorithms it is possible to outsource encrypted
data but still support range queries: The initial algorithm
SRQ-Setup creates a master key and defines a possible value
domain. Next the data owner encrypts his file collection
by calling SRQ-Enc, each file is indexed under a value point.
The encrypted files and value points are transferred to the
server and added to the index via SRQ-IndexFiles. Later,
the data owner holding the master key can create search to-
kens for ranges by calling SRQ-Token. Note that the server
can compare different range tokens without knowing the
master key. The server can profit from this capability to
speed-up future requests by storing previously queried range
tokens together with the corresponding result set in an en-
crypted index structure. More precisely, given two tokens

τQ =
(
c
(0)
Q , c

(1)
Q , tkQ, cQ

)
and τR =

(
c
(0)
R , c

(1)
R , tkR, cR

)
the

server is able to check for the following properties:

1. ranges R and Q intersect if RPE-Match(tkQ, c
(i)
R ) = 1 or if

RPE-Match(tkR, c
(i)
Q ) = 1 for i ∈ {0, 1}.

2. range R is a subrange of range Q if RPE-Match(tkQ, c
(0)
R ) =

1 and RPE-Match(tkQ, c
(1)
R ) = 1.

3. Ranges are equal if R is a subrange of Q and Q is a
subrange of R.

Using SRQ-Search the server getting a range token τQ for
range Q = [q(s), q(e)] searches for all files associated with
values falling within the range Q. In the initial step the
server checks if he has extracted enough information from
previous queries to answer the current query and if that is
not to case decides how to update the search index; each
tree Γi ∈ T is tested for being a subrange of Q or inter-
secting with Q: All entries

((
p1, τR1

)
, . . . ,

(
pmi , τRmi

))
con-

tained in the root of any tree Γi are compared with range
Q, where Γi ⊂ Q if all R1, . . . , Rmi are subranges of Q. A

list T̂ = {Γi|Γi ⊂ Q} of all trees covering a subrange of Q
is created. Γi intersects with Q if at least one range Rj in-
tersects range Q. So partial intersections of indexed search
trees and the new queried range are computed: Denote Γ(s)

as the tree containing range R̂ covering c
(0)
Q , i.e., R̂ ∈ Γ(s)

so that RPE-Match(R̂, c
(0)
Q ) = 1. If no such tree was found

set Γ(s) = ⊥. The same is done for the encrypted end value

c
(1)
Q resulting in a tree Γ(e) ∈ T and Γ(e) = ⊥ otherwise.

Depending on the result the are multiple update strategies
for SRQ-UpdateIndex described in Section 4.3 in more detail:

1. One tree covers the complete queried range Q, that is
Γ(s) = Γ(e), so Q ⊂ Γ. If this is the case, the server does
not need to perform a search over the complete point list
P but searching over the value points indexed by Γ(s) is
sufficient. This is done by Algorithm 1.
Finally, SRQ-UpdateIndex has to refine indexed ranges by
using information gained from the current range query.

2. No intersection of the current range query and previously

queried ranges, so Γ(s) = Γ(e) = ⊥ and T̂ = ∅. If this
is the case, the server does not know anything about the
current range query. As a result, the server has to scan
all points indexed in point list P.
Finally, SRQ-UpdateIndex has to create a new search tree
that is added to tree list T covering the queried range.

3. Only a part of the queried range is covered by indexed
search trees. Either Γ(s) = ⊥ or Γ(e) = ⊥. If this is the

case, the server cannot know if there are values in point
list P falling within Q but are not covered by Γ(s) resp.
Γ(e). As a result, the server has to scan all points indexed
in point list P.
Finally, SRQ-UpdateIndex has to extend the one tree cov-
ering the queried range partly (the tree that is not ⊥).

4. The values fall within different trees, that is c(0) ∈ Γ(s),
c(1) ∈ Γ(e) where Γ(s) 6= Γ(e). If this is the case, the
server cannot be sure that there is no “not indexed gap”
between the two trees, i.e., there could be values in P
falling neither within Γ(s) nor Γ(e) but that fall within
range Q. As a result, the server has to scan all points
indexed in point list P.
Finally, SRQ-UpdateIndex has to merge these two trees
Γ(s) and Γ(e) since the gap has been closed by the current
range query.

4.3 Updating the encrypted index
From a high-level perspective, a new range token contains

new information given to the server, namely the result set
IDQ and the set relation to all previous result sets. This
newly gained information is implicit in the search token and
access pattern. Note that all efficient searchable encryption
schemes leak this information and we use this leakage to
update the encrypted search index for accelerating future
queries. For a formal security analysis of this additional
knowledge given to the server we refer to Section 4.5.

As noted in previous Section 4.2 four different update sit-
uations SRQ-UpdateIndex can occur, where the server has to
either refine one tree, create a new tree, extend one tree, or
merge trees. In addition, trees that are covered completely

by Q (i.e., contained in T̂) are composed using a combina-
tion of tree extension and tree merges.

Algorithm 2: Rebalancing a tree.

RebalanceTree

Input: Tree Γ, modified leaf l
Output: Rebalanced tree Γ′

Set cur node = l;
while cur node > t do

Send all ei =
(
pi, τRi

)
of cur node to client;

c©: Sort {ei} according to Ri, create two tokens

τU , τV where U =
⋃dn

2
e−1

i=0 Ri, V =
⋃n
i=dn

2
eRi and

set nodes NU = {ei|Ri ⊆ U}, NV = {ei|Ri ⊆ V };
c©: Send back NV , NU , τV , τU to server;
if cur node is not root then

Replace cur node with LV , LU indexed with
tokens τV , τU in parent of cur node;
Set cur node to parent of cur node;

end
else

Replace cur node with LV , LU ;
Create new root consisting of tokens τV , τU
pointing to LV , LU ;

end

end

Since most operations make it necessary to create new
range tokens for encrypted trees and this creation is only
possible with the master key, these updates are interactive



Algorithm 3: Refining a tree.

RefineTree

Input: Tree Γ, token τQ
Output: Refined Tree Γ
for q ∈ {q(s), q(e)} do

Search leaf that contains token τR with q ∈ R in Γ;
Send τR and τQ to the client;
c©: Calculate Q1 = R ∩Q and Q2 = R \Q;
c©: Send back τQ1 , τQ2 ← SRQ-Token;

Divide the list IDQ that is pointed to by obj into
new lists IDQ1 , IDQ2 covering Q1 resp. Q2;
In leaf replace (obj, τR) with two new entries
(obj1, τQ1), (obj2, τQ2);
RebalanceTree (Γ, leaf);

end

protocols between server and data owner. We denote steps
performed at the client side as c©: client_operation;. This
could be necessary because the operation must be performed
on plaintext or the creation of new range tokens is neces-
sary. Furthermore, most operations add new entries to one
or more existing trees, these operations require a rebalanc-
ing step (cf. Algorithm 2) to guarantee every node’s size
is lower than threshold t afterwards. Again, rebalancing a
tree requires the creation of new range tokens, so this also
requires to be an interactive protocol.

Refine a tree: The server sends the new range token
and previous range tokens that intersect with this new token
to the data owner asking for help. The data owner decrypts
the range tokens creates (up to) four not intersecting, but
more refined ranges and sends back their tokens generated
by SRQ-Token. Now the server can replace the old range
tokens with the new, more refined tokens and the indexed
file lists are segmented according to these new tokens. For
a formal description see Algorithm 3. Since this replace-
ment increases the entries in a node, the server finally runs
RebalanceTree.

Create a new tree: If Γ(s) = Γ(e) = ⊥ and T̂ is empty
the server has to create a new tree: The server creates a
new, tree Γ with one entry τQ and indexed item IDQ. This
tree Γ is added to tree list T.

Extend a tree: A tree should be extended if a new range
token intersects partially with a tree, i.e., the range token
intersects with the tree, but at least one limiting point of this
newly queried range does not. This is started by the server
sending the newly learned range token and the root node
to the data owner. The data owner decrypts all ranges to
reconstruct the whole range currently covered by this tree.
A new range token for the gap between the range covered
by the tree and the boundary points of the new range token
lying outside the tree range is created and added to the tree’s
leaf. Furthermore, the tree’s inner nodes (up to the root) are
updated, that is, the indexed range of all inner nodes must
be replaced by an extended version. See Algorithm 4 for a
formal description. The resulting tree must be rebalanced
after tree extension since at least one leaf got a new entry, t

Merge two trees: Two trees should be merged if they
both intersect with the newly queried range. Note that these
two trees must not have a value gap between them. In more
detail the end point covered by one tree must be directly
followed by the start point covered by the other tree. This
can be achieved using tree extension as described before.

Algorithm 4: Extending a tree with a new range.

ExtendTree

Input: Tree Γ, extension token τQ (intersecting with at
least one range in the tree).

Output: Updated tree Γ now also covering τQ
completely.

Send root node n and token τQ to client;

c©: Given entries
(
pi, Ri

)
∈ n set [r1, r2] = R =

⋃
iRi;

for i ∈ {1, 2} do
c©: Ask server for node-set Ni = {nj |ri ∈ nj};
for nj ∈ Ni do

c©: Set τR′ to token with lowest resp. greatest

range R′ = [r′
(s)
, r′

(e)
];

if nj is not a leaf then
c©: Create new token τQ′

i
where

Q′1 = [q(s), r′(e)] resp. Q′2 = [r′
(s)
, q(e)];

Replace τR′ with τQ′
i
;

end
else

c©: Create new token τQ′
i

where

Q′1 = [q(s), r′
(s) − 1] resp.

Q′2 = [r′
(e)

+ 1, q(e)];

Add new entry
(
τQ′

i
, IDQ′

i

)
to nj ;

Set leaf = nj ;

end

end
RebalanceTree (Γ, leaf);

end

In order to be able to merge trees in logarithmic time we

integrate the tree Γ̃ with the lower height into the tree Γ
with greater height. So, a new entry in an inner node of

Γ is created pointing to the root of Γ̃. This newly covered
range must then be propagated through the inner nodes up
to the root. See Algorithm 5 for a formal description. Again,
rebalancing the resulting tree is the final step.

Merge multiple trees: If a range token has been queried
where multiple trees fall within, we combine the steps of
tree extension and tree merging. In more detail, all roots
in T̂,Γ(s),Γ(e) and the newly queried range token τQ are
sent to the client. The client decrypts all roots and gets

ranges Ri = [r
(s)
i , r

(e)
i ] covered by tree Γi, sorted according

to their range start point r
(s)
i . Now the client chooses two

trees Γj ,Γj+1 she wants to merge. Without loss of generality
lets assume Γj has greater height, so we extend Γj to cover

[r
(s)
j , r

(s)
j+1 − 1] using Algorithm 4. Now Γj and Γj+1 can be

merged using Algorithm 5 and the number of different trees
is reduced by one. This is done repeatedly until exactly one
search tree is left covering the complete queried range.

4.4 Runtime
For simplicity we have assumed a range is not queried

multiple times so far. As a result, every token contains new
information the server can use for updating index γ. Given
a value domain with D elements and n indexed items, there

exist
∑D
i=0 i = D+D2

2
= O(D2) different coherent ranges

that can be queried1. So after D2 different queries all pos-

11 range of size D, . . . , D ranges of size 1.



Algorithm 5: Merging two trees.

MergeTrees

Input: Two trees Γ1,Γ2.
Output: One merged tree.
Set Γ ∈ {Γ1,Γ2} to higher tree with height h and

Γ̃ ∈ {Γ1,Γ2} to lower tree with height h̃;

Send the root of both trees Γ, Γ̃ covering R resp. R̃ to
client;

c©: if r(s) > r̃(s) then

Set v = r(s);
end
c©: else

Set v = r(e);
end
c©: Send back τR̃ and cv ← RPE-Enc(k, v) ;

Set i = h and cur node to root of Γ;

while i > h̃ do
Send entry ei =

(
pi, τRi

)
in cur node with v ∈ Ri

and τR̃ to client;

c©: Send back token τU with U = Ri ∪ R̃;
In entry ei replace τRi with τU ;
Set cur node to node pointed to by pi;

end

Insert entry
(
p̃, τR̃

)
in cur node, where p̃ points to tree

Γ̃;
RebalanceTree (Γ, cur node);

sible ranges have been queried and γ consists of exactly one
tree containing all possible ranges.

Obviously, in this state any repeated range query can be
answered in logarithmic time. However, assuming repeated
queries before γ contains exactly one tree, these repeated
queries may raise problems. Furthermore, these repeated
queries do not contain new information, so the server is not
able to update index γ. As a result, there are search pat-
terns that result in linear search time: First, O(n) different,
not coherent ranges are queried and indexed (e.g. n

2
differ-

ent queries – each of size 1). Now these ranges are repeat-
edly queried – in average half of all indexed queries must be
checked before an answer.

By implementing a cache for already queried ranges we
can reduce the search time for such cases. In more detail,
using a hash table keyed with deterministic range identifiers
(e.g. we let Π2 =

(
Gen,Enc,Dec

)
be a deterministic en-

cryption that is part of every search token) we reduce search
time for repeated range queries to constant time O(1).

The runtime for one search operation is the sum of the ac-
tual search time ts and the update time tu. The height of the
tree is bound by log(D) and the size of an operation on one
predicate-encrypted ciphertext is also O(log(D)). Hence,
merging two trees, extending one tree, refining one tree or
rebalancing one tree can be done in O(log2(D)). Conse-
quently, r trees can be merged in O(r · log2(D)). Further-
more, since any update operation adds at least one new
boundary element, there can be at most n trees. As a result,
the expected update time is bound by tu = O(n · log2(D)).

Search time depends on the newly queried range Q, i.e., if
the newly queried range Q is covered by exactly one tree
completely. We denote the probability of this event by
Pr [Q ⊆ Γi]. If this is the case, search can be performed in

O(log2(D)), because searching one tree is sufficient for learn-
ing the result set. Otherwise, the complete point list must be
scanned and potentially updated, resulting in search time of
O(n log2(D)). As a result, the expected search time is ts =
Pr [Q ⊆ Γi] ·O(log2(D)) + (1− Pr [Q ⊆ Γi]) ·O(n log2(D)).

Any time a range is not completely covered by a single
tree at least one element in D is added to a search tree.
Hence, the size of the set Γi increases by at least 1. Conse-
quently, we can have at most n times a search complexity
of O(n log2(D)). The maximum total time spent for these
searches is n ·n log2(D) This time can be amortized over the
events Q ⊆ Γi. Let x be the total number of searches until
amortization occurs. Then we have

n · n log2(D)

x
= log2(D)

We conclude that latest after n2 searches we have achieved
amortized poly-logarithmic search time.

4.5 Security
In this section we give a rigorous security analysis for our

protocol. We can decouple encryption of the payload from
the encrypted attribute value by using an arbitrary semantic
secure encryption scheme. First, the security of tokenized
queries using SRQ-Token is examined. Finally, we analyze
the whole protocol in a simulator-based framework as intro-
duced in [9].

Before we give a security proof according Definition 4 we
define the leakage functions L1,L2 as follows

L1(M) =
(
(ID(mi), len(fi))

)
i∈[1,f ]

L2(Q) =
(
IDQ = (IDQ1 , . . . , IDQq ), RR(Q)

)
where RR(Q) is a q × q range relation matrix, each element
is in the set {∅,∩,=,⊂,⊂=,⊃,⊃=}. Here an element in
row i and column j indicates the relation of ranges Qi and
Qj given in queries i and j. ∅ denotes no intersection, =
denotes the equality of two ranges, ∩ denotes a intersection
but no range is a subrange of the other. ⊂ denotes that
range Qi is a subset of Qj but no limiting points are in
common, ⊂= denotes a subset relation with one limiting
point in common, and the other way round ⊃ denotes that
range Qi is a superset of Qj , i.e., if ⊂ is at positon (i, j)
than ⊃ is at position (j, i). These range relations can be
formulated as inequations, as shown in Table 2. Note that
this information can be extracted from the access pattern,
namely if IDQ intersects with IDR,then Q intersects with
R as well.

We emphasize, that only encrypted values that fall within
a queried range do leak information, while encrypted values
that have not been queried stay semantically according to
Definition 2. Furthermore, by shuffling the encrypted bor-
ders contained in the range tokens we hide the order relation
of overlapping queried ranges. As a result, we do not leak
the order relation of queried values but only a bucketization
of these values.

In Definition 2 of selective secure plaintext privacy, the
challenger does only accept challenges v0, v1 that both occur
in the same subset of the access pattern. In more detail, if
file fi indexed under vi is in IDQj it must hold that f1−i
indexed under v1−i is also in IDQj for i ∈ {0, 1} and all
token queries. Otherwise it would be trivial for attacker A
to win the security game.



= ∩ ⊂ ⊂= ∅
R

Q

R

Q

R

Q

R

Q

R

Q

r(s) = q(s) ∧ r(e) = q(e) r(s) < q(s) ∧ r(e) ≥ q(s) ∧ r(e) < q(e) r(s) > q(s) ∧ r(e) < q(e)

r(s) = q(s)∧ r(e) < q(e)

or

r(s) > q(s)∧ r(e) = q(e)

r(e) < q(s)

Table 2: Illustration and formal representation of different relationships between ranges.

Informal, we remove these restrictions by giving the sim-
ulator access to this information in form of the access pat-
tern and the range relation matrix. This is needed to show
security of a real whole protocol run, where fulfilling the re-
strictions of the security games cannot be guaranteed. On
the other hand, given two range token sequences with the
same range relation matrix (for their ranges), no attacker
can distinguish between these range token sequences.
Theorem 1. Assume SRQ that is built upon an RPE scheme
with selective secure plaintext privacy (cf. Definition 2) and
selective secure predicate privacy (cf. Definition 3). Given
a domain [0, D − 1], two query sequences (Q1, . . . , Qn) =
Q 6= R = (R1, . . . , Rn) with Qi ⊂ [0, D − 1], Ri ⊂ [0, D −
1] and RR(Q) = RR(R) the probability for any master key
mk ← SRQ-Setup(1λ, [0, D − 1]) the corresponding token
tuples TKQ =

(
SRQ-Token(mk, q1), . . . , SRQ-Token(mk, qn)

)
and TKR =

(
SRQ-Token(mk, r1), . . . , SRQ-Token(mk, rn)

)
|Pr [A(TKQ) = 1]− Pr [A(TKR) = 1] |

is negligible for any distinguisher A.

Proof. Denote εΠ as the probability of an attacker A break-
ing the used IND-CCA secure encryption scheme, denote ε1

as the probability of an attacker A winning the RPE plain-
text privacy security game and ε2 as the probability of an
attacker A winning the RPE predicate privacy game. Given
negligible εΠ, ε1 and ε2 it is possible to extend, shrink and
move the ranges, so that the probability of any attacker A
to distinguish between a token τQ and token τQ̃ that is a
extended, shrunk or moved version of Q is negligible.

First, given a range token τQ = (c
(0)
Q , c

(1)
Q , tkQ, cQ), it is

possible to extend range Q to range Q̃ as long as there is no
other range R for which a token τR is known, with R∩Q = ∅
but R∩Q̃ 6= ∅. In a first step, assume no such range R exists,
we later show how to move this range R. We present a series
of games, and show that the probability of any attacker A
to distinguish two games is negligible.

In G0 the original token τQ is given.

In G1 replace cQ with encryption cQ̃ = EncIND−CCA(Q̃).
A can distinguish between G0 and G1 with probability εΠ.

In G2 we replace tkQ with this new RPE token tkQ̃ =

RPE-Token(Q̃). Note that q(s) ∈ Q̃ and q(e) ∈ Q̃ still holds.
Hence, attacker A can distinguish between G1 and G2 with
probability ε2.

In G3 we move the limiting point c
(i)
Q that encrypts q(e):

Replace c
(i)
Q = RPE-Enc(q(e)) with c̃

(i)
Q = RPE-Enc(q̃(e)). A

can distinguish between G2 and G3 with probability ε1.

After G3 we have a valid token τQ̃ for the new range Q̃.
Putting it altogether, attacker A can distinguish between
these tokens with probability ε̃ = εΠ + ε2 + ε1.

Shrinking a range Q to a range Q̃ can be done in a similar
way, as long as there is no other range R for which token

τR is known, with R ∩Q 6= ∅ but R ∩ Q̃ = ∅. We only have
to swap G3 and G2. As a result, attacker A can distinguish
between a token τQ and a token for a shrunk range τQ̃ with
probability εΠ + ε1 + ε2 = ε̃.

Combining these two techniques we can move a range Q =

[q(s), q(e)] to a new range Q̃ = [q(s) + x, q(e) + x], as long

as there is no other range R with r(s) > q(s) but r(s) <
(q(s) + x) (otherwise, this range R must be moved before).

First, extend Q to a range Q′ = [q(s), q(e) + x], then shrink

Q′ to range Q̃ = [q(s) + x, q(e) + x].
Finally, we can proof Theorem 1: w.l.o.g. first assume

maxQi∈Q(q
(e)
i ) < maxRi∈R(r

(e)
i ). First extend the token for

Qi with the greatest limiting point q
(e)
i to a token for range

[q
(s)
i , r

(e)
i ] (using the techniques described before). Repeat-

ing this technique for all ranges in descending order of their
end point, the complete range sequence Q is modified to
an extended range sequence Q’ with the same end points
as R. Last, all ranges in the extend range sequence Q’ are
shrunk to be identical to range sequence R. As shown be-
fore, an attacker can distinguish each of these extending an
shrink modifications with probability ε̃ which is negligible.
Hence, a combination of polynomial many modifications is
still negligible.

Given this Theorem we are now ready to prove the se-
curity of our protocol in a formal way using leakage based
Definition 4 as it has been introduced by [9] together with
the defined leakage functions L1,L2 at the beginning of this
section.
Theorem 2. If the used RPE scheme has selective secure
plaintext privacy based on an RPE scheme with selective
secure predicate privacy and Π1 is an IND-CCA secure en-
cryption scheme, then SRQ as described in Definition 4.2 is(
L1,L2

)
-secure against non-adaptive chosen-range attacks.

Proof. We present a PPT simulator S for which the advan-
tage of any PPT adversary A to distinguish between the
RealA and IdealA,S experiments from Definition 4 is neg-
ligible. For this, we describe S setting up the environment

and simulating range tokens T̃K and ciphertexts C̃ using
leakage L1 and L2.

Setting up the environment: S internally runs setup
algorithm SRQ-Setup(1λ, [0, D−1]) and receives a master key
mk.

Simulating T̃K: S extracts clusters of ranges that form
one big coherent range using Algorithm 6.

Each cluster is a separate R-Tree in the implementation
presented in Section 4.2. For every cluster S simulates ranges
with the same range relation matrix as the actual given
range relation matrix RR(Q). In more detail, for every clus-
ter simulator S transforms the range relation matrix RR(Q)



Algorithm 6: Algorithm for extracting range clusters.

Init empty list of lists clusters;
Init empty list of used indexes U ;
while |U | < q do

Init two empty lists N,G;
Add random index from [0, q] \ U to N ;
while N not empty do

choose random row index i from N ;
for 0 < j < q do

if RR(Q) 6= ∅ and j /∈ U then
Add j to N ;

end

end
Add i to U and G;
Remove i from N ;

end
Add G to clusters ;

end
return clusters;

into a linear program that is solved. Every relation is for-
mulated as inequations according to Table 2. Doing this for

all clusters, S gets simulated ranges Q̃ with RR(Q) = RR(Q̃).

Now S sets T̃K = (SRQ-Token(mk, Q̃i)i∈[1,q]) which is indis-
tinguishable by Theorem 1. Note that S can restore the sim-

ulated range Q̃i given a range token SRQ-Token(mk, Q̃i) since
a component consists of a ordinary IND-CCA encrypted
value that can be decrypted.

Simulating C̃: Simulator S creates a set of leafs L. More
particular, S divides IDQ in a set L consisting of disjoint
sets, where L covers the same values as IDQ. Two sets
IDQi and IDQj with IDQi ∩ IDQj = IDQij are divided in
IDQi \IDQij , IDQj \IDQij and IDQij . For every simulated
leaf Li ∈ L simulator S stores the indexes of all range queries
that contain Li as result set: L(i) = {j|Li ⊆ IDQj ∧IDQj ∈
IDQ}. Given the set L of simulated leafs, S can simulate

the ciphertexts C̃ = (c̃1, . . . , c̃f ) as follows: S iterates over
all tuples (ID(fi), len(fi)) and:
• if there is an simulated Lj ∈ L with ID(fi) ∈ Lj , S sets

choses randomly a simulated value point ṽi ←
⋂
k∈L(j) Q̃k

Set c̃i,1 = RPE-Enc(k1, ṽj), c̃i2 = EncIND−CCA(k2, 0
len(fi))

and add tuple c̃i = (c̃i1 , c̃i2) to C̃.

• Otherwise, there is no simulated leaf Lj ∈ L with ID(fi) ∈
Lj the encrypted file has no match with any queried ranges.
Then S sets c̃i1 = RPE-Enc(k1, r) with random value out-

side of all simulated ranges: r ← [0, D̃ − 1] ⊂
⋃q
i=1 Q̃i.

Simulator sets c̃i2 = EncIND−CCA(k2, 0
len(fi)) and adds

c̃i = (c̃i1 , c̃i2) to C̃.
Due to IND-CCA security of Π1, selective secure plaintext
privacy of SRQ and Theorem 1 the probability for A to dis-

tinguish between C and C̃ generated by S is negligible.
Simulating update protocols: As seen before it is pos-

sible for S to simulate range queries Q̃ from given leakage
L2(Q). Simulator S is able to simulate all update proto-

cols on these tokens T̃K. Since decrypting range token τQ̃i

is possible for the simulator, S can run all update queries

on the simulated ranges Q̃. Note that these update proto-
cols do not contain new information, but all information is
already covered by L1(M) and L2(Q).

5. EVALUATION
For evaluating our SRQ scheme we implemented a proto-

type in Python 3 using bindings for the PBC library (version
0.5.14) [24]. The runtime benchmarks are executed on a ma-
chine running Ubuntu 14.04 with 8GB RAM and an Intel
Xeon 1230v3 CPU 3.30GHz.

We count the average number of comparisons for one range
query, i.e., how often the server must run RPE-Match. All files
are indexed under random value points distributed among
the complete value domain. In addition, every range query
is generated randomly with a size between 1 and a defined
upper limit, starting from an arbitrary point in the domain.
The upper limit is given as a factor of the complete domain
size, for example given a domain size 1000 and a query factor
10−1 the range for one query may have a length between 1
and 100. By varying the range size we can modify the proba-
bility for two ranges to intersect, hence we can influence the
probability of merging and extending trees. Furthermore,
we analyzed the number of trees our index consists of.

Next update costs on the client side are analyzed. For this
we counted the number of range decryption operations and
range creations.

Finally, we present micro benchmarks for encrypting one
data point by running SRQ-Enc, creating a search token by
SRQ-Token and checking two tokens generated for intersec-
tion depending on the domain size and security parameter.
Since we use range predicate encryption as a black box, we
can change the underlying implementation without modi-
fying our construction. For our demonstration we imple-
mented the schemes for secure inner-product evaluation from
[27] and [3] and utilized them for RPE as described in [23].

Searching and updating trees: All measurements pre-
sented here are repeated five times and we use the mean
values. For this section we assumed a domain D = 226 and
a number of index files of 220. Furthermore we grouped 50
values for one data point, e.g., 50 successive search queries
are represented by one data point in Figure 2a. By modify-
ing the maximum size of one range query we also modify the
probability for range intersections. As a result, the number
of merge operations vary, hence, also the number of trees are
stored in the search index vary. This trade off is summarized
in Table 3, where the number of indexed trees is given as a
function of the number of already searched ranges and the
query factor. These trees index a smaller average range,
hence the server must scan the complete file list more often
resulting in more RPE-Match calls, as depicted in Figure 2a.
Here it does not matter if RPE-Match is called for comparing
two range tokens or checking if an indexed file falls within
the queried range. In the worst case, there is a huge amount
of trees, each covers only a small range. Now given a new
small range token, all these indexed trees must be searched.
If no match was found, the complete point list must me
scanned additionally, resulting in even more searches than a
linear scan of all files would.

Number of preceding searches
100 1000 5000 20,000 40,000

query
factor

2−8 82.2 144.6 1 1 1
2−11 98.8 784.2 1467 149.4 3.2
2−16 100 993.2 4213.8 17133.2 29448

Table 3: Mean number of trees after five runs.

Furthermore, the number t of entries one node holds, in-
fluences the number of RPE-Match calls: A greater threshold
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Figure 2: Mean number of different operations for one search.

t results in more RPE-Match calls per node and consequently
in the overall number of RPE-Match calls as depicted in Fig-
ure 2b. On the other hand, we can decrease the probability
of calling the interactive protocol RebalanceTree by increas-
ing the number t of entries one node can hold. As a result,
the server asks for help less often, hence the number of token
generations can be decreased as presented in Figure 2c.

Microbenchmarks: In our SRQ implementation we used
the construction from [28] utilizing functional encryption for
inner products. For the secret key setting such a scheme was
presented in [27] based on pairings and already used in [23].
In addition, we implemented schemes providing such func-
tionality that have been published recently in [3]. We denote
our implementation using the scheme from [27] as SRQSSW

and the scheme from [3] as SRQBJK. Note that SRQABCK

avoids pairings, however, this construction leaks the actual
range R given a range token τR. Two parameters affect the
runtime: the used security parameter benchmarked in Ta-
ble 4; the possible domain size, benchmarked in Table 5.
In SRQ-Enc we omitted the actual file encryption operation
using an IND-CCA secure encryption scheme. Its runtime
depends on the file size and the used encryption scheme is a
well studied problem.

80 bits 128 bits 256 bits

SRQ-EncBJK 18 ms 41 ms 141 ms
SRQ-TokenBJK 385 ms 854 ms 2466 ms
BJK Token intersection 210 ms 531 ms 1897 ms

SRQ-EncSSW 381 ms 1147 ms 5898 ms
SRQ-TokenSSW 9660 ms 34045 ms 143173 ms
SSW Token intersection 1553 ms 40625 ms 144512 ms

Table 4: Microbenchmarks for domain size 232.

212 220 232

SRQ-EncBJK 16 ms 26 ms 141 ms
SRQ-TokenBJK 114 ms 363 ms 2466 ms
BJK Token intersection 58 ms 220 ms 1897 ms

SRQ-EncSSW 943 ms 945 ms 1147 ms
SRQ-TokenSSW 11685 ms 15071ms 34045 ms
SSW Token intersection 11685 ms 14301 ms 40625 ms

Table 5: Benchmark for fixed security paramter 128 bits.

Putting it all together: Finally, we present 5 runs of
real searches. We implemented the RPE-scheme using the
BJK with 80 Bits security parameter. Here were encrypted
216 files and indexed them under value points, sampled ran-
domly out of domain D = [0, 212 − 1]. Figure 3 shows the
mean values of all runs, where five searches are aggregated
in one bar. We measured the pure search time that is per-
formed merely on the server side. Additionally, the needed
update time was measured; here the index is updated in the
interactive way, hence the client and the server are involved.
By adding these times we get the complete execution time
for one search. Furthermore, the duration of one linear scan
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Figure 3: Mean time for five searches.

of all files is depicted as a dashed line. As we can see, already
after 5 search operations the execution time that includes
building an index is lower than the linear search time, so we
can profit from this index construction.

6. CONCLUSION
In this paper we proposed a novel approach for perform-

ing range queries. The server can decrease search time for
future queries by updating a search index using the access
patterns learned from past queries. We analyzed this ef-
fect on the runtime theoretically and empirically and have
presented a simulation based security proof as it is state of
the art for searchable encryption. Our leakage is tremen-
dously smaller compared with previous schemes for privacy-
preserving range queries with polylogarithmic runtime. Fur-
thermore, our construction utilized functional encryption for
inner product evaluation as a block-box functionality, so one
can exchange the underlying algorithm without modifying
our scheme. As a result, our construction profits from all
future improvements in this research area. By implement-
ing our scheme we demonstrate its feasibility and point out
different parameters to adjust search time and complexity
on the client side. This adjustment enables us to deploy our
scheme in varying scenarios.
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