Published May 1, 2018 | Version v1
Journal article Open

Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations.

  • 1. Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
  • 2. Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Soil Science, Faculty of Pharmacy, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Catalonia, Spain.
  • 3. Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
  • 4. Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain. Electronic address: joseluis.domingo@urv.cat.

Description

Particulate matter (PM) composition has a key role in a wide range of health outcomes, such as asthma, chronic obstructive pulmonary disease, lung cancer, cardiovascular disease, and death, among others. Montcada i Reixac, a municipality located in the Barcelona metropolitan area (Catalonia, Spain), for its location and orography, is an interesting case- study to investigate air pollution. The area is also characterized by the presence of different industrial emission sources, including a cement factory and a large waste management plant, as well as an intense traffic. In this study, PM10 levels, trace elements, ions, and carbonaceous particles were determined for a long time period (2013-2016) in this highly polluted area. PM10 samples were collected during six consecutive days in two campaigns (cold and warm) per year. A number of elements (As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, K, La, Li, Hg, Mg, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Th, Ti, Tl, U, V, W, Y, Yb, and Zr), ions (Cl-, SO42-, NO3-, and NH4+), and carbonaceous content (total carbon, organic plus elemental carbon, and CO32-), were analysed. These data were used to identify the PM10 main components: mineral matter, sea spray, secondary inorganic aerosols, organic matter plus elemental carbon, trace elements or indeterminate fraction. Although a clear seasonality (cold vs. warm periods) was found, there were no differences between working days and weekends. Obviously, the cement plant influences the surrounding environment. However, no differences in trace elements related with the cement plant activity (Al, Ca, Ni and V) between weekdays and weekends were noted. However, some traffic-related elements (i.e., Co, Cr, Mn, and Sb) showed significantly higher concentrations in weekdays.

Files

Rovira_et_al_2018_Environ_Res_Manuscript.pdf

Files (1.5 MB)

Name Size Download all
md5:e00e296ac49710a6791373c9a152688c
1.5 MB Preview Download

Additional details

Funding

HEALS – Health and Environment-wide Associations based on Large population Surveys 603946
European Commission