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Abstract—The paper presents quantitative results of a pre-
liminary study undertaken as part of Decision Support and
Information Management System for Breast Cancer (DESIREE).
DESIREE is a European-funded project to improve the manage-
ment of primary breast cancer through image-based, guideline-
based, experience-based, and case-based information systems. In
this study we explore the use of ensemble deep learning for breast
mass classification in mammograms. The proposed method is
based on AlexNet with some modifications in order to adapt it
to our classification problem. Subsequently, model selection is
performed to select the best three results based on the highest
validation accuracies during the validation phase. Finally, the
prediction is based on the average probability of the models.
Experimental evaluation shows that accuracy from individual
models ranges between 75% and 77%, but combining the best
models (ensemble networks) results in over 80% classification
accuracy and aura under the curve.

I. INTRODUCTION

A recent report in [1] estimated that approximately 252,000
new cases of invasive breast cancer would be diagnosed in
the United States in 2017, and every year around 11,400
women die from breast cancer in the United Kingdom [2].
Mammography is the most common imaging technology used
for screening breast cancer to find early signs of abnormality.
In current clinical practice, radiologists have to examine the
whole mammogram of a patient and doctors require biopsy test
to decide whether a tumour is benign or malignant. Although
the overall current clinical methods have improved greatly in
the last two decades, there are still a number of deficiencies
such as variability among radiologists and that procedures are
time consuming and invasive.

Computer-aided diagnosis (CAD) systems can assist clin-
icians in terms of efficiency, effectiveness and consistency.
CAD systems can assess lesions uninvasively and make predic-
tions as to whether a lesion is benign or malignant. However,
developing a CAD system that is able to replicate radiologists’
knowledge requires a significant amount of time and effort.
Machine learning is a branch of Artificial Intelligence which
enable machines to learn from experience and make predic-
tions for future occurrences. In the last few years, the success
of deep learning in many classification problems has attracted
computer scientists, particularly in the medical imaging do-
main. As a result, hundreds of papers about deep learning for
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medical image analysis have been published according to the
studies by Litjens et al. [3] and Hamidinekoo et al. [4].

In this paper, we present our preliminary results using
ensemble Convolutional Neural Networks (CNNs) for breast
mass classification in mammograms taken from the Curated
Breast Imaging Subset of Digital Database for Screening
Mammography (CBIS-DDSM) [5]. This work is part of the
European funded project Decision Support and Information
Management System for Breast Cancer (DESIREE) which ap-
plies computer vision techniques in several problem domains
such as breast segmentation [6], breast density classification
[7], [8], breast mass [9] and micro calcification cluster [10]
classification.

II. LITERATURE REVIEW

This section reviews some of the existing methods in the
literature, which we divide into two categories: (a) Based
on conventional machine learning methods which use hand
crafted features and feature selection phase and (b) Based
on deep learning methods bypassing feature extraction and
selection phases.

A. Conventional machine learning methods

Muramatsu et al. [11] extended local ternary patterns (LTP)
into radial LTP, which takes account of the pattern orien-
tation with respect to the lesion centre making the local
patterns robust for differentiating between circumscribed and
spiculated margins. Several classifiers and patch dimensions
were investigated and the Artificial Neural Network (ANN)
produced the highest area under the curve (AUC) value of
0.90 at patch size 200 x 200. Narvdez and Romero [12] used
continuos (Zernike) and discrete (Krawtchouk) orthogonal
moments to characterise breast masses. A k-nearest neighbours
strategy was employed as a classification approach and they
reported an accuracy of up to 90% and AUC = 0.93. Reyad
et al. [13] made a quantitative comparison between first-order
statistical, local binary patterns (LBP) and multi-resolution
wavelet-based features using a support vector machine (SVM)
classifier and reported above 98% accuracy when fusing all
features. Choi and Ro et al. [14] used a multiresolutioin LBP
approach and proposed a variable selection technique to select
a subset of discriminant features to maximise the separation



between breast masses and normal tissues. The proposed
method was evaluated on false positive reduction and over
90% accuracy was achieved. Despite high accuracies reported
in the literature, recent studies of Rampun et al. [9], [10]
showed that conventional machine learning methods may not
be useful enough when it comes to it’s actual implementation
in a real clinical environment. This is due to many cases
classified correctly (high accuracy) but most of them are
classified with probability outputs between 0.5 and 0.7 (low
confidence). In a real clinical environment, CAD systems is
used as a ‘second reader’ opinion, hence a system with high
confidence measure and high accuracy is more useful to assist
radiologists in diagnostic decision making.

B. Deep learning methods

For deep learning based methods, CNN been widely ap-
plied to breast mass classification. Levy and Jain compared
the performance of GoogleNet [16] and AlexNet [17] and
reported 89% and 92.9% accuracy, respectively. Jiao et al.
[19] developed a CNN architecture to classify benign and
malignant masses of breast cancer by utilising the combination
of low and high level deep features from two different layers.
Arevalo et al. [20] evaluated their CNN framework against
the histogram of oriented gradient and the gradient divergence
methods, which extracted the features from the histogram. In
2015, Dhungel et al. [21] developed an algorithm using a
cascade of deep learning and used a random forest classifier
to detect suspicious regions in mammograms. Their algorithm
consisted of a multi-scale deep belief network (DBN) to detect
all potential suspicious masses, a CNN to keep the correct
candidates of those regions, and a random forest classifier
to reduce false positives. Shen [22] develop an end-to-end
training algorithm for whole-image breast cancer diagnosis
which has the advantage of training a deep learning model
without relying on cancer lesion annotations. A model aver-
aging technique was used to make a final prediction, producing
AUC scores of 0.91 and 0.96 on two different datasets.

III. METHODOLOGY

Figure 1 shows an overview of the work flow in our study.
Firstly, our CNN model is trained with 50 epochs. Once the
training is completed, we select the best three CNN models
based on top three highest validation accuracies. Subsequently,
each selected CNN model was evaluated based on the testing
set. The final prediction is based on the average prediction of
the three models.

A. Materials and Dataset

The dataset used in this study is taken from the CBIS-
DDSM [5]. In total it contains 1593 masses (829 benign
and 764 malignant) of both mediolateral oblique (MLO) and
craniocaudal (CC) views from 838 patients. Each case is
a biopsy proven ‘benign’ versus ‘malignant’ annotation by
expert radiologists. Each mass contour is provided by an
expert radiologist. The dataset is randomly split by patient into
training (70%), validation (20%) and testing (10%) sets. Figure
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Fig. 1. Work flow overview of our study.

2 shows examples of malignant and benign breast masses taken
from CBIS-DDSM.

Fig. 2. Top and bottom rows represent samples of malignant and benign
masses, respectively.

For the implementation, the proposed CNN was trained,
validated and tested on an Intel Xeon E5-1620 v3 processor,
using Nvidia Corporation’s Deep Learning GPU Training
System (DIGITS) based on Caffe, with Nvidia’s GeForce
GTX1080 8GB GPU on Intel Core i7-4790 Processor with
Ubuntu 16.04 operating system.

B. Data Augmentation

Since most deep learning based methods require a large
number of images to learn the characteristics of different
classes, a data augmentation process is an essential step in
this study. To address the need for training deep learning with
large sets of labelled data, for each bounding box mass (P;)
we performed the following data augmentation techniques:

¢ Double the dimension of P; (F»). This captures the
surrounding texture information around the mass.

o Take the mass region only in P;, removing the surround-
ing background (Ps). This enables the network to learn
the shape and margin of the mass.

o Take only 50% the dimension of P; for a zoom-in effect
of the mass (Fy).



o Take only 70% the dimension of P; for a zoom-in effect

of the mass (Ps).

o Double the dimension of P, to capture the texture infor-

mation around the mass (Fg).

o For each mass patch (P4, ..., Ps), we perform five random

rotations 0 < 6 < 360.

Hence, this phase generates 30 images in total for each
breast mass patch. Figure 3 shows results of data augmentation
of P;. It can be observed that there are six main patches.
These patches are further augmented via random rotation
0 < 6 < 360. Finally, all images are resized to 224 x 224.

Fig. 3. Examples of breast mass after data augmentation. Note that each of
these main patch will be randomly rotated five times.

C. Network Architecture

The proposed network is similar to AlexNet [17] and we
have changed the last fully connected layer into two outputs
representing malignant and benign classes. Figure 4 shows a
visualisation of the proposed network architecture. The batch
sizes are 128 and 64 for training and validation, respectively,
and 50 epochs. Furthermore, we employed the Adaptive Move-
ment Estimation (Adam) [23] as an optimisation scheme with
base learning rate= 0.0001 and a step-down learning policy,
momentum= 0.9, weight decay= 9.9 x 107 and drop out rate
is 0.5. We also performed mean image subtraction during the
training of the network and used a small learning rate of 0.1
in each convolution layer.

To adapt the AlexNet architecture to our problem, we made
the following modifications:

o AlexNet uses Local Response Normalisation (LRN)
whereas in our network we use the Batch Normalisation
(BNorm) technique.

o To avoid over-fitting we applied BNorm for every convo-
lutional layer whereas in AlexNet LRN is applied only
the first two convolution layers.

e Our network uses the Parametric Rectified Linear Unit
(PReLLU) [24] activation function, whereas AlexNet uses
the Rectified Linear Unit (ReLu) [25].

o We applied dropout and PReLu at every fully connected
(FC) layer, whereas AlexNet avoids over-fitting only at
the last two FC layers.
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Fig. 4. The architecture of the proposed network.Note that ks, s, p represent
kernel size, stride and padding, respectively.

AlexNet’s weights are initialised based on the ImageNet
dataset, and we fine-tuned it with our training dataset con-
sisting of over 36,000 images. In this study we made an
assumption that by using the knowledge of ImageNet dataset



features, the network is expected to classify breast masses with
fewer samples and shorter training time. Once the training is
completed, we perform model selection by taking the models
which have the best three validation accuracies. Subsequently,
each model is tested with unseen images and the final decision
result is based on the average prediction probability of the
three chosen models.

IV. EXPERIMENTAL RESULTS

In this section we present experimental results based on the
classification accuracy of the original AlexNet, the accuracy
for each of the best three selected models and the accuracy
for the ensemble model. Table I shows the experimental results
of our study based on classification accuracy (AC'C) and area
under the curve (AUC).

TABLE I
QUANTITATIVE EXPERIMENTAL RESULTS. NOTE THAT MODEL A, B AND C
ARE THE BEST THREE MODELS WITH THE HIGHEST VALIDATION
ACCURACY DURING TRAINING.

Networks ACC (%) AUC

Original AlexNet [17] 65.5 0.71
Best model A 77.8 0.80

Best model B 76.5 0.78

Best model C 75.9 0.78
Ensemble model A, B and C 80.4 0.84

It can be observed that our proposed network (a modifi-
cation of AlexNet) performed significantly better the original
AlexNet by at least 10% in terms of classification accuracy and
0.07 in area under the curve. The original AlexNet produced
ACC = 65.5% and AUC = 0.71. The proposed ensemble
network produced ACC = 80.4% and AUC' = 0.84, which is
over 2% better than the accuracy of the best performing single
model. Testing the performance of each best model resulted in
accuracies of 77.8%, 76.5% and 75.9% for model A, B and C,
respectively. In terms of AUC, model A produced 0.80, and
model B and C each produced 0.78. The proposed network
took approximately two hours to complete the training phase,
covering over 36,000 images.

V. DISCUSSION

Combining prediction results of several classifiers is a
common approach in machine learning [26], [27]. The main
advantage of this approach is that it prevents a single model
from being exploited by outliers/noise/complicated cases. For
example, the model might be prone to false positive/negative in
some cases such as masses with lobulated shape which tend to
be benign but in some cases are found to be malignant. More-
over, this approach prevents biased decisions from a single
model, hence giving the opportunity of the system to consider
other decisions from the other models. Therefore, the final
decision boundary is based on a collection of models which
is more noise tolerant. Figure 5 shows validation accuracies
of the proposed network at different epochs (¢) during the
training phase. The best three models A, B and C produced

validation accuracies 83.5% (¢ = 49), 82.2% (¢ = 40) and
81.8% (e = 46), respectively.

In comparison to the other studies in the literature, several
studies achieved around 90% accuracies. For example, Levy
and Jain [15] reported that they achieved 89% and 91%
classification accuracy for AlexNet and GoogleNet, respec-
tively. Using their own netweork (LevyNet), they achieved a
maximum of 60% accuracy. In another study, Hamidinekoo et
al. [28] reported accuracy of 89% using different parameter
settings on AlexNet and evaluated the effects of different data
augmentation techniques. Shen [22] and Dhungel ef al. [21]
reported over 0.90 area under the curve value whereas the pro-
posed method produced AUC' > 0.84. Although the proposed
method produced lower results, the purpose of our study is
to initiate the use of deep learning approach in breast mass
classification problem in DESIREE project. In medical image
analysis, many studies [28], [3] have successfully used deep
learning approach in disease classification such as prostate
cancer, breast cancer and lung cancer. Therefore, with the
following directions we are optimistic that we will achieve
similar performance to radiologists.

o Modifying other existing networks such as VGGNet
[29], GoogleNet [16] and ResNet [30]. As mentioned
earlier, this paper presents our preliminary results in the
DESIREE project using a deep learning based approach
for breast mass classification which we started with
Alexnet [17]. Many studies have reported that VGGNet,
GoogleNet and ResNet outperformed Alexnet. This is due
to deeper and more robust architecture which enables the
network to learn more details of the image, resulting more
discriminant features.

o Using a more robust ensemble network such as com-
bining networks which are fine tuned based on different
training datasets or combining different network architec-
tures. For example a combination of modified AlexNet,
GoogleNet and ResNet. Generally, the behavior of deep
learning methods depend on their network architectures.
This means, its architecture plays an important role in
learning image representation and extracting important
features of the object that can maximise the class bound-
ary. Ensambling different network architectures such as
AlexNet, GoogleNet, ResNet and VGGNet gives the
opportunity to the system to extract more robust and
diverse information from the breast mass, hence a greater
opportunity to improve the performance of the classifica-
tion results.

« Using different data augmentation techniques to increase
the amount of data, hence exposing the network to
learn more class characteristics. For example the study
of [28] found that different augmentation techniques
have significant effects on deep learning performance.
Data augmentation increases the amount the data hence
enriches obvious features that distinguishes one class
from another. Moreover, it helps our network to be
invariant to translation, viewpoint, size or illumination
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Fig. 5.

(or a combination of these). This means, the network is
robust in recognising the same/similar objects that are
taken at different translations or viewpoints, which could
help the system to reduce false positives/negatives. Fur-
thermore, performing data augmentation can also prevent
our network from learning irrelevant patterns, essentially
boosting overall performance.

e Our preliminary studys show that we achieved good
results by performing simple modifications on AlexNet.
We plan to increase the number of datasets using other
publicly available datasets such as MIAS and InBreast
as well as our own dataset from our clinical partners in
DESIREE. This will provide diversity of the data in terms
of feature representation and characteristics which can
improve the overall architecture and performance of the
network.

VI. CONCLUSION

In conclusion, we have presented our network which is
a modification of AlexNet. Experimental results suggest that
good results could be achieved with simple modifications. In
this study we did not make significant architecture modifi-
cations to AlexNet but used different parameters with more
sophisticated functions such as PReLu rather than ReLu.

Loss (green) and accuracy (amber) in the validation phase and loss (blue) in the training phase taken from DIGITS.

Although the performance of our proposed network does not
yet outperform radiologists, we are optimistic that with further
development the proposed model will achieve similar perfor-
mance to radiologists. For example, the study of Levy and
Jain [15] claimed that with few modifications on GoogleNet,
they achieved recall rate 0.92 which is similar to radiologist
performance.
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