receiving no antitoxin and those receiving type B antitoxin will die, while those receiving type A antitoxin will survive. On the other hand, if the food contains toxin of the type B organism only those receiving type B antiserum will live. In this way both the presence and the type of toxin may be determined in from four to six hours.

I. The Occurrence of Tularemia in Nature as a Disease of Man.—Francis (Public Health Reports, xxxvi, 1731) has adopted the name tularemia for infections with Bacterium tularense. The infection is popularly known as deer-fly fever. The clinical histories of a number of natural infections are given. The disease is initiated by the bite of a blood-sucking horse-fly, Chrysops discalis, which has previously bitten an infected jack-rabbit. A local lesion, suppurated, often occurs at the site of the bite and in the lymph glands which drain the area. "The fever is of a septic type, lasting from three to six weeks, and convalescence is slow." II. Experimental Transmission of Tularemia by Flies of the Species Chrysops Discalis.—Francis and Mayne (Public Health Reports, 1921, xxxvi, 1738) succeeded in experimentally conveying tularemia by flies, and give in detail the laboratory data. Flies may remain infected at least fourteen days. III. Experimental Transmission of Tularemia in Rabbits by the Rabbit Louse, Hemodipus Ventricosus (Denny).—Francis and Lake (Public Health Reports, 1921, xxxvi, 1747) succeeded in transmitting tularemia by the bite of the rabbit louse in a large percentage of attempts. The lice may remain infected as much as three days. It was shown, incidentally, that the urine and the nasal secretions of rabbits are infective.

The Difficulty in Making Differential Diagnosis Between Encephalitis Lethargica and Botulism.—Geiger (Public Health Reports, 1921, xxxvi, 1663) calls attention to the possibility of confusing the two diseases mentioned on clinical grounds, but insists on their non-identity. A case is reported in which the botulinus organism was isolated from the central nervous system.

Reactions of the Nasal Cavity and Postnasal Space to Chilling of the Body Surface. I. Vasomotor Reactions.—Mudd, Goldman and Grant (Jour. Exp. Med., 1921, xxxiv, 11) state that chilling of the body surface causes reflex vasoconstriction in the nasal cavity and nasopharynx, as it does also in the oropharynx, palate and tonsils. Rewarming is closely followed by partial, though, except in the tonsils, incomplete recovery of normal blood supply. Irritation of the nasal mucosa by the experimental procedure caused pain and discharge of clear mucus, sometimes also laceration and sneezing. The rhinorrhea occurred both on the side directly irritated and on the opposite side, although on the former more abundantly, and was apparently little if at all affected by the diminished blood supply and shrinkage of the mucous membrane incident to chilling the body surface. Discharge from the nose has been at most a rare occurrence in experiments in which the nasal mucosa was not directly irritated. The thresholds of the chilling vasoconstrictor reflex to the mucous membranes of the upper respiratory tract and to the skin of the trunk have been found to be lower than the threshold of the like reflex to the skin of the forehead.