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THE APPLICATION TO DIRICHLET'S SERIES OF BOREL'S

EXPONENTIAL METHOD OF SUMMATION

By G. H. HARDY.

[Received August 29th, 1909.—Read November 11th, 1909.]

1. The series

(1) 2 a , < r v ,

where Xn+1 > X,,, Xn -+ oo,

is called a generalised Dirichlet's series.* If \n = n, it is a power series
in x — e~": if \n = log n, it is an ordinary Dirichlet's series

(2) 2ann-\

The series (1) possesses two lines of convergence

(3) B(s)=s0, B(s) = l,

where s0 ^ s : the series is convergent to the right of the first and abso-
lutely convergent to the right of the second. Thus the series

(4) 2(—I)*"1?*-',

which represents the function

(5) (l-2

is convergent for B(s) > 0, and absolutely convergent for B(s) > 1. On
the other hand, for the series *2n~% we have s0 = s = 1. It is evident
that in the case of any ordinary Dirichlet's series 0 ^ s—s0 ^ 1. We
may, of course, have s0 = s = — oo, the series then converging abso-

* The literature which concerns Dirichlet's series in general, considered as functions of
a complex variable s, is rather scattered. The theory was first attacked seriously by Cahen :
"Sur la fonction ((s) de Riemann et sur des fonctions analogues," Annales Sc. de Vi'cole
Nonnale Superieure (se"r. 3), t. xi, p. 75. See the dissertation of W. Schnee (Berlin, 1908),
and his article in the Rendiconti del Circolo Mat. di Palermo, t. xxvn, where numerous
references are given to papers by Landau and others who have contributed to the theory ; a
later dissertation by H. Bohr (Copenhagen, 1910); and Landau's Handbuch der Lehre von der
Verteilung der Primzahlen. The general theory has been rather overwhelmed in the mass of
its applications to the problem of the distribution of primes and to the general analytical
theory of numbers.
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lutely all over the plane, as in the case of the series I,ann~s (| a | < 1);
or, we may have s0 — s = oo, the series being never convergent (as in
the last example when | a | > 1). In the general case the inequality
s-~5o ^ 1 need not hold: we may even have s0 = — oo, s = oo, as in
the case of the series

2(-1)*"1 re* (log n)~s (0 < a < 1),

which converges conditionally for all values of s.
When \n = n, s0 and s are necessarily equal, and the function repre-

sented by the series has necessarily at least one singular point on its
line of convergence. No such result holds in the general case.*

The series 2nr s has the one singular point s = 1, which lies on the
line of convergence: and Landaut has shown that, when a n > 0 , the real
point on the line of convergence is always a singular point of the function
represented by the series. On the other hand, the function (5) is an
integral function of s. The line of convergence may also be a line of
essential singularities, across which the function cannot be continued:
Landau I has given as an example the series

2. These circumstances make the problem of the summation of a
Dirichlet's series, even in the narrower sense, more difficult and at the
same time more interesting than the corresponding problem for power-
series. In this connection some very interesting results have been stated
in three recent notes in the Comptes Bendus, by MM. Bohr and Riesz.

M. Bohr§ considers the application to Dirichlet's series of Cesaro's
method of summation by mean values, j He begins by proving the
following general theorem :—

If Han is summable or finite (Ck),T\ and /«,-> 0 as ?i-> oo , and the
series

2 | A/, |, I»

* It is easy to see, however, that s0 = s in all cases in which the increase of \,, is suffi-
ciently rapid to ensure the convergence of 2e"x''" for all positive values of s.

t Math. Annalen, Bd. LXI, p. 537.
X Sitzungsberichte der Akademie zu M-Unchcn, Bd. xxxvi, p. 191.
§ Comptes Rendus, Jan. 11, 1909.
|| Bromwich, Infinite Series, pp. 310 et seq.
•j Summable (Ck) means summable by Cesaro's &-th mean: see Proc. London Math. Soc,

Ser. 2, Vol. 6, p. 257. By saying that 2a,, infinite (Ck), we mean that, in the notation of the
paper just referred to, £»/<4n oscillates finitely as n->oo .
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are convergent, then the series 2anfn is summable (Ck), arid its sum is
equal to that of the series

which is absolutely convergent.

This theorem is substantially the same as one which I proved in a
paper t which I communicated to this Society in 1907, and which M. Bohr
had not seen at the time of the publication of his note. It includes,
as my theorem did not, the case in which Xon is only finite {Ck).
On the other hand the conditions are less simple than they may be
made, in that [as Dr. Bromwich {Math. Annalen, Bd. 65, p. 861) has
proved] the convergence of S?tfc | Ak+1fn | involves that of all the other
series mentioned in the final condition.

* The notation is that of the paper referred to in the preceding footnote.
t Referred to in the two preceding footnotes.
[This paper unfortunately contains several inaccuracies, which have been pointed out to

me by M. Bohr himself (see Bohr, Bidrag til de Dirichlet'ske Rackkcrs Thcorie. Copenhagen,
1910) and by Mr. J. E. Littlewood. The fact is that, finding the whole difficulty of the in-
vestigation to lie in the algebraical work (pp. 258-261), I was careless in writing pp. 261-3,
which do not involve any point of very serious difficulty.

In the first place, it should have been explicitly stated that, throughout the proof of
Theorem I, the condition /,,-*0 is assumed to be satisfied: this is, of course, implied in
calling/,, a " convergence factor " (p. 264). §§ 8, 9, 10 should be modified as follows. We
consider first the terms in T* for which i = 0. These give

n

>-0

In this expression/,,, is to be replaced by zero when m > n. But we may imagine this con-
vention abandoned without affecting the limit of 0T*/.4*. For this introduces a set of new
terms in number depending only on k; for these terms we have n—j < K, and so

and also I SJ/4J | < K.

And, as each of them involves a factor /,„ which tends to zero as n -*• oo , their sum also tends
to zero as n -*• oo .

Again,

is negative and numerically less than Knk (0 ^ , ; ^ n). Also since

_ / --Ux + l)(x + 2) ...(x + k)},
dx l '
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From this theorem M. Bohr deduces the existence of a line of summa-
bility (Ck) for the series (2), viz.,

R(s) = sk= lim" |(S*ft!n-")/lognj.
n—>co

The series is summable {Ck) if B(s) > s/-, and not so summable if
B(s)<sk. Also 1

and the function represented by the series is regular for B(s) > s*. Thus
for the series (4), sk = — k} and the series is summable, by one or other
of Cesaro's means, all over the plane.

For the general series (1) there are wider possibilities as to summa-
bility. Thus, if Xn = n, s^ = s0 = s for all values of k. On the other
hand, the series ^>. ,xn_i an \-s n t ^ ^ i\

2(—l)n 1na(\ogn) s (k—l<a<«)

where n-j < x < n, it follows that fn 3 + \ —A* is numerically less than

Kvnk-X (0 ̂ j < v < n).

Hence °-?' = f.. + 2 S ;A* + 1 /> + i?U)

where | Bo | < ^ 2 j * | A* + 1 / | + K 2 / | A*+'/> | :
nn

and by choosing first v and then n sufficiently large we see that RQ -> 0.

It follows that MA' -* I S*Ak + ' / j .
o '

Next we consider

Since /n - j -» + fc\ = (n_y + 1)(w_y + 2j (n_j + k-i)/(k-i)! <

I iTk

it follows that }'
I Ak.

By dividing the range of summation into the two parts (0, v), {v + 1, n), and choosing first v
and then n sufficiently large, we see that

-*£ !L i o i - . i » i . i i i _ K '1. _•!•

2 ( ^
V

This completes the proof of Theorem A, the statement of which requires no correction. The
theorem, as M. Bohr points out, remains true when /„-•!> ( L ^ 0), provided that the ex-
pression for the sum of the series is modified by the addition of a term SL, where S is the
sum of the series 2a,,. This follows at once from Theorem A on replacing/,, by/,,—L.

Theorem B requires modification only in the replacing of SSĵ A**1/̂  by 2SJ*A* • 7)i where
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is Bummable (Ck) all over the plane, but never summable (C, A;—1), so
that sic = — ao, sk-i = oo : the sum represents an integral function of s.

8. I propose now to consider the application to the ordinary Dirichlet's
series of Borel's method of summation. It is easy to see, by the con-
sideration of two simple examples, that it either may or may not be
possible, by the use of Borel's method, to continue a function partially
represented by a Dirichlet's series outside the region of convergence of
the series.

Suppose first that the series is 2w~s, which converges for B(s) > 1,
and represents the function £(s), whose only singularity is a simple pole
for s = 1. Then Borel's integral is

(6) e~xu(x)dx,
Jo

S'k is defined as in the text. Then | S'k \ < tAk for j ^ wfy> and so

for m' > m ^ ?rao ; whence the truth of the theorem follows.
The corollaries remain valid : but the first of them requires a few words of proof. The

sum of the series a'0fo + a{fi + ••• is 2SjkAk+lfj<, and is therefore continuous ; and the sum of
+ ... differs from this by Sf0, and is therefore also continuous.

It is to be observed that the series

is, in general, neither uniformly convergent nor continuous. Suppose, e.g., that

ao = l, ai = - l , 03 = 1, ...,

so that k = 1, S = §, a'o = 1 - -£ = \ ; and that /„ is a function, such as x", that has the limit 0
for 0 < x < 1, and the limit ,1 for x = 1, the interval of values of x under consideration
being 0 ^ x ^ 1. Then for x < 1, we have

the last series being a uniformly convergent series whose limit as x -> 1 is plainly zero. Thus
2a,,/» and 2JSJA2/,- have the limit £. But the last series is discontinuous. For x = 1 its sum
is zero, but then

These facts, I may point out, are clearly recognised in my earlier paper in Vol. 2, Ser. 2, of
these Proceedings (pp. 247 et seq.).

The genesis of the inaccuracies that I have explained is to be found in a momentary con-
fusion, more natural than excusable, between the relations

SkJAk->S, S*->S.

It is remarkable that so careless a blunder should not have led to more serious error in my
results.—Added, February, 1910.]
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where* u(x) = 2 —^——.
i n'(n—l)\

Since t u(x) ~ arses,

it follows that (6) is convergent (and then absolutely) if, and only if,
R(s) > 1, when the original series is convergent.

Secondly, consider the series (4), which represents an integral func-
tion of s. Heret

Hence (6) is absolutely convergent for all values of s. It is easy to
see that the same is true of

(7) f e-*uw(x)dx,
Jo

and so the series is absolutely summable all over the plane.§

4. I shall now prove that, if the series 1>an is summable, so is Xann~s,
where R(s) >• 0.

We are given that the integral (6) is convergent when

U{x) = L — .

i (n—l)\

It follows|i that the integral

r
(8) e-vu(xy)dx

Jo
is uniformly convergent for 0 <; y <! 1. We have therefore, if R(s) > 0,
(9) P -flog (—) J-S * dy \ e~xu(xy)dx = \ e~xdx P I log (—) \'~X u{xy)d\j.

Jo ( \'U' ' Jo Jo Jo v \y I)

* We are applying Borel 's method to al + a2 + a3+... and not to 0 + a t 4 a a + •••• The
equation would in the lat ter case be

u{x) = 2 - — .
] n'n\

The summability of 01 + 03+... implies that of 0 + o1 + a2+.. . , whereas the converse is not
true : see Bromwich, Infinite Series, p. 273, and a paper by the present writer in the Quarterly
Journal, there referred to.

I Proc. London Math. Soc, Ser. 2, Vol. 2, p. 402.
X Ibid. The formula fails if s is zero or a negative integer ; then u (x) tends expo-

nentially to zero as x -> QO .
§ Borel, Legons sur Us series divergentes, p. 99.
II Bromwich, Infinite Series, pp. 433 et seq.
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This follows from the following general theorem, which is in substance due to De la
Vallee-Poussin.* He considers only the case in which the variables x, y are both real (which
is all that is wanted here, the contour C being the line 0 ^ y ^ 1). We shall require the
more general form of the theorem in § 9.

If f(x, y) is a continuous function of tlte real variable x and the real or complex variable y,

and f(x, y)dx is uniformly convergent for all values of y lying on a finite contour C, and
Jo

I <P (y) I I dy I *s convergent, then
Jc

f </' (y)dy f f(x, y)dz = i dx\ <t> {y)f(x, y) dy.
Jc Jo Jo Jf

The following proof is an adaptation of the proof given by Dr. Bromwich (Infinite Series,
p. 448) of an analogous theorem for series.

Since I fdx is a continuous function of y, the integral on the left hand is certainly con-
Jo

I f* I
vergent. Given e, we can choose X, so that fdx ^ t for Xi ^ X. Also, in virtue of

I Jx, I
the continuity of / ,

f <pdy f 'fdx = [' dz[ fydy.
Jf Jo Jo Jc

Hence I <p dy I f d x - f ' dx I f<p dy = I I <p dy [ fdx < e I | <p \ \ dy \,
U C Jo Jo JC I JC irt JC

for x ^ X, and so

f dx f f<pdy = lim {' dx\ fydy = f <pdy\ fdx.
Jo Jc ',—>« Jo Jc Jc Jo

Now 1 \ log (—) \ u(xy)dy = S f"'x .,., I j log (—),-. if1 ldy
Jo I \ y } J i [n—1)! Jy ( \ y I)

TVoN y Q'n^ J.

The last series represents the integral function associated with the series
l.ann~s; and so this series is summable. Incidentally we have proved
that its sum is -, ri ,.

where \}r(y) is the sum of the series 2aw?/'1.
We notice further that the sum of the series Xan7i~s represents a func-

tion of s regular for all values of s ivhose real part is positive. This
follows I at once from the fact that

f1 3 f / 1 \ I s~l f1 I / 1 \ i s~1 / 1 \

].si108Wi ^)*=joi
i°8(7).- '"g^y

* Aniuui.es ae t,a oocieta Scientifique de uruxeLles, 1. x \ i .
"f The justification of the term-by-term integration presents no difficulty.
% Bromwich, Infinite Series, p. 438.
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is uniformly convergent throughout any continuous region, in the plane
of 5, which lies entirely to the right of the imaginary axis.

We have thus established the existence of a line B (s) = <r0, such that
a Dirichlet's series is summable everywhere on its right and nowhere on
its left. In other words, the region of summability is a half plane : it
may, of course, include the whole plane (<r0 = — oo), or none of it
(<r0 = QO ) .

5. I shall now prove further that, if the series Saw is absolutely
summable, so is 2,an?i~s, where B(s) > 0 : i.e., that the region of absolute
summability is also a half plane.

We are assuming now that
C/ | Id ybj I UtJj

0

is convergent for X = 0, 1, 2, ..., and we have to show that

C"
(11) | e~x\u^(x)\ dx

Jo

where u,(x) = 2 -jf—-r-.,
i n*(n— 1)!

is convergent. Now

ico

e~x | u (xy) j dx
o

is uniformly convergent for 0 ^ y <; 1; and this enables us to show, by
an argument precisely similar to that employed in the preceding section,

*na^ f00 fi c / 1 \ ) *<«)-i
e-*dz\ logf—) \u(xy)\dy,

Jo Jo ^ \y')

(
00

e~x \us{x)\ dx,
o

is convergent. Again,
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and, using this equation in exactly the same way, we can show that the
remainder of the integrals (11) are convergent.

We thus establish the existence of a line of absolute summability

B(s) = *:

and clearly <r0 < <r.

6. It is evident that the same reasoning might have been applied to
the more general series

provided only that we could find an expression of {<j>(ri)\ ~* in the form

\<f>(n)\-s = f e-nw^s(iv)dw = P >/,. {log (—) \ yn~l dy,
Jo Jo \ ^ y''

where yjss is a function such that

f1 f / 1 \ )
i ^s", log I —) - dy
Jo ' ^ y''

is convergent.
Suppose, for example, that

= 0(n+a) = i

the number of factors being finite, log2??, log3n, ..., denoting log log »,
log log logn, .:., and a, a0, alt ... being real, and a and a0 positive.

Then it may be deduced from a formula given by Pincherle* that

\$(k)\-s= f e-kw\lrs(w)dw,
Jo

1 fA+ico

where \f,s(w) = ^ e-wt \d(-t)\-'dt;

the path of integration being a straight line, and ê _i < — \ < k, where p
is the number of logarithmic factors of 6(k), and e0, elt e2, e3, ... denote
the numbers 1, e, ee, ee\ . . . .

Hence we deduce

<f>(n)\-s=\
JO

* Mem. di Bologna (4), t. 8, pp. 125 et seq.
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for all values of n greater than a definite n0. It may further be proved
that as w -> 0,

- * » •

and, using these facts, we are able to extend the conclusions of §§ 4, 5
to the more general series

On the other hand, it is by no means true that the regions of summa-
bility or of absolute summability of the general series (1) are necessarily
half planes. It is sufficient to consider the series

= K-ir-v- —
' ~ 1+x'

This series is summable (absolutely) if B(x) > — 1. If s = (-\-iij, this
condition is

e~* cos TJ > — 1;

and the region of summability is obtained by cutting out of the plane of s
an infinite succession of curvilinear areas whose general shape is easily
sketched.

7. The series (4) is a simple example of a series summable by Borel's
method all over the plane. For it Borel's method is more effective than
any of Cesaro's: later on I shall define a large class of series, all of which
resemble (4) in this respect. But it must not be imagined that Borel's
method, even as applied to ordinary Dirichlet's series, is always as
effective as even the simplest of Cesaro's; or that, even when the function
represented by the series is regular all over the plane, it can always be
continued by exponential summation.

Consider, for example, the series

(12) l-s+0+0+...-8-s+0+...+27-s+0+--.,

in which an = (—l)k~\ when n = k3, and &„, = 0 otherwise. I shall
prove that this series is summable ivhen, and only when, it is convergent,
absolutely swnimable when, and only when, it is absolutely convergent.
Thus the function
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represented by the series when R(s)>0, although an integral function
of s, cannot be continued by the use of Borel's method.

It is convenient to consider instead of (12) the series

which is certainly summable (absolutely summable) if (12) is summable
(absolutely summable). Then

I have considered elsewhere* the asymptotic properties of functions of
this type, but it will be necessary now to obtain rather more precise
information.

We divide the range of integration into two sets of intervals iv, j v ,
iv being the interval {v—Sf < x <; (i/+<J)3, where S is a small fixed
positive number. We shall consider first whether the series

(18) 2 f e~xu(x)dx

is convergent.

we may write u(x) in the form
/v— 1

u(x) = (—1)"~1^+ ( 2 -J-
\ 1 v+l

say. It is easy to see that, when x lies iniv, vv is, to a first approximation,
of the order of e*: a more precise approximation will be obtained later. A
stvaightforward application of Stirling's theorem gives the formula

)*- 8 ' 1 ' - 8 - 1 exp j(9

where e,t -> 0 as n -> oo . If n ^ v, we have

exp \ - —

• Proc. London Math. Soc, Ser. 2, Vol. 2, pp. 335 et seq.; Messenger of Math., Vol. 39,
pp. 28 et seq.
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and, accordingly, vn/vn+1 > Ke(i~i)n > ein:

and it follows that

(14) IS^KKe-^lv^.

Again, S, = ( 2 + 2

say. We choose nQ, once for all, so as to justify the application of Stirling's
theorem to the terms for which n > n0. Then, if nQ<n<v, we have

x-Sn*-9n-l

i e Xp

and so vn/vn+1 < #<?-<*-*>" < e"4n.

It follows that

(15) \S[l\<Ke-*"\vr\.

Also Sj' is a polynomial in n, of degree n\, while vv is (roughly) of order ex

or e1 .̂ Hence, when v is large

From (14), (15), and (16) it follows that, in ivi

(17) u{x) = (-ly^vA

where \pv\ < Ke~4v.

. . p-^x"* )/-*Again, vv = - ^ - =

exp

where | rv \ < K/v8.

We easily deduce that

(18) i

where |ev| < K/v.

From this it follows that

\e-*{u(x)-(-iy-1vp\\< K

which is obviously, whatever the value of s, even when multiplied by the



1009.] APPLICATION OF BOREL'S EXPONENTIAL METHOD OF SUMMATION. 289

length of the interval iv, the general term of an absolutely convergent
series. Hence the convergence of (18) depends entirely upon that of the
series

(19) 2(—I)""1! e-rv,.dx,

or of

a-«

1(v+&y rs

e->tidx = S\ {v
(»-sy J -s= 6 [V

Jo

Jo

where | nv \ < Klv*

Hence the series (19) may be written in the form

(21) 1 3

and this series is absolutely convergent if B(s) > ^, and conditionally
convergent if 0 < B(s) ^ ^.

It remains to consider the series

(22) 2 e-vu{x)dx,

where jv is the interval ( ^ + ^ ) 8 ^ ^ ^ (i/+l—$3« But it follows at once
from the work in my note in the Messenger of Mathematics quoted above
that, in Jv, | e_Xu{x) |

where Klf K2, K3 and K^ are constants : and from this it follows that the
series (22) is absolutely convergent for all values of s. And this com-
pletes the proof of the assertion made at the beginning of this section.

The same conclusions may be extended to the series

where k is any integer greater than 2.

* A smaller limit may be assigned for | T\V \, but this one is sufficient for our present purpose.

st?B. 2. VOL. 8. NO. 1054. U
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8. The series considered in the last section are interesting as examples
of the possibility of Borel's method proving less powerful than Cesaro's.
For it follows from investigations of Cesaro and myself* that the summa-
bility (Cl) of the series

involves that of all the series

a1+0+0+0+0+0+0+a2

in which av occurs respectively in the i/2-th, i/3-th, ... position. Hence, for
example, the series (12) is summable (Cl) for — \ < B(s) < 0 : it may be
proved to be summable (Gk) for — $k < B(s) ^ — §(k — 1); and so
summable by one or other of Cesaro's means all over the plane.

9. Let us call

(23) 2a,,n-s

the Dirichlet's series associated with the power series

(24) 2a,,xn.

If (24) has a radius of convergence greater than unity, (23) is absolutely
convergent for all values of s, and represents an integral function of s.
If the radius of convergence of (24) is less than unity, (23) is never con-
vergent. If the radius of convergence of (24) is unity, (23) may converge
for none or for some or for all values of s ; examples are given by the
series y ,,„_ _, y _s v _^H _s

I shall assume only that the radius of convergence of (24) is positive:
the series then possesses a circle of convergence and a polygon of summa-
bility. t And I shall now prove the following theorem :—

If the point x = 1 lies within the polygon of summability of the series
(24), the associated Dirichlet's series is suimnable by Borel's method for
all values of s, and represents an integral function of s.

• See Quarterly Journal, Vol. 38, pp. 2G9 ct scq. : i3rom\vich, Infinite Series, pp. 386
et seq.

| Borcl, Legons nur les series divcrgentcs, p. 126 ; Biomwich, Infinite Series, p. '295.
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Borel's sum is given by the integral

r
(25) e-xtis(x)dx,

Jo
where
(26) «.(*) = 2-J^""1

7 ns(n— 1)!
Now

(27) JH,2TT

where (—w)s~l = exp )(s—1) log(—in)},

the logarithm being real when w is real and negative, and where W repre-
sents a contour beginning and ending at the infinitely distant end of the posi-
tive real axis and surrounding the positive real axis by a counter-clockwise
circuit. We shall suppose that the point of W, where R(iu) has its
algebraical minimum, is its point of intersection with the negative real
axis, where w = — S, S being a positive number as small as we please.

The equation (27) holds for all values of s save s = 1, 2, 3, . . . : values
which we shall at present omit from consideration.

From (27) we at once deduce

(28) us(x) - ^ -
2TT

__ iT(l — s)
2TT

where T is a loop from the origin in the plane of T round the point t=l,
as shown in the figure. The term by term integration here employed is
of a type whose justification presents no difficulty.

We shall now prove that

(29) I e-xdx\ {\ogty-1u(xt)dt=\ (\og t)"ldt\ e~xii(xt)dx;
Jo JT JT Jo

or, in other words, that the integral (25) is convergent, and may be
calculated by an inversion of the order of integration.

The integral

(80) I e-':n{xt)(lx
Jo

* Whittaker, Modern Analysis, p. 182.

u 2
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is uniformly (and absolutely) convergent throughout any region in the
plane of t which lies entirely inside the polygon of summability of
the series 2,ant

n. If t = 1 lies inside the polygon it is evident (see the
figure) that we can draw W so that T lies entirely in the polygon, and

then (30) is uniformly convergent for all values of t on T. Our conclusion
then follows at once from the auxiliary theorem of § 4.

The proof that the " sum " of the series represents an analytic func-
tion regular all over the plane may now be supplied as in § 4. Inci-
dentally we see that the sum is

2TT
f (log

where <j>(t) is the function represented by 2,ant
n and its continuation by

Borel's integral.
So far we have assumed that s is not a positive integer: if it is we

replace (27) by the equation

ws-le-nwdw,

and argue in precisely the same way.
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10. The conclusions of the last section may be extended (cf. § 6) to
more general series of the type 2an {<f>(n)\~\ such as

{\og(n+a)\a>s...'

It is to be observed that they are quite independent of any assumption
that the Dirichlet's series is ever convergent: thus they apply to such
series as ^t 4\«_i »• _ xy/ <\«_i

where a is any positive number, however large. But certainly the most
interesting case of the theorem is :

If *Zanx
n is convergent for \x\ < 1, and the function represented by

the series is regular for x = 1, then the associated Dirichlet's series is
summable for all values of s, and represents an integral function of s.

The last assertion (having no reference to summability) is easily
established directly. As examples of series which satisfy these condi-
tions, we may mention
/O1v v cos n# vsinw#
(31) *—rf-' *"1T'

v 1 e^
np

o(\ogn)Pl... n* '

where 6^0 (mod 27r).

With the help of the remarks made at the beginning of this section the
conclusion may be extended to such series as, e.g.,

11. It is instructive to verify the results of §§9, 10 in the case of the
simple series (31). Writing 2TT0 for 6, and using Hurwitz's formula*

(82) £(s,0) = 2r(l-s)(27r)s-1 2w-(1-s)sin j(2w^+^s)7r(,

where 0 < <f> < 1, R(s)<l,

and f (s, <f>) is the generalised Eiemann ^-function defined by the series

* Lindelof, Le. calcul des residus, p. 107.
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and its continuations, we see that

sin

The functions £(s, 0), £(s, 1 — 0) are each regular save for a simple pole,
with unit residue, at s = 1. It is clear that the only possible singularities
of C and S are simple poles at the points 5 = 0, —2, —4, ... and
s =• — 1, —3, —5, ... respectively. To verify that C and S aie in fact
regular at these points, we have to show that

£( -2* . 0 + f ( - 2 f t , 1-0) = 0, ? ( - 2 * - l , 0) = f ( - 2 * - l , 1 - 0 ) :

and these equations are easily verified by the help of known results in the
theory of the Zeta and Bernoullian functions.*

12. If 2,<inXn is regular for \x j < 1, and has a simple pole for x = 1,
then Xann~' is regular all over the plane except for a simple pole at
s = 1. If Hanx

n, at x = 1, behaves like

where 0(#) is regular, then Sa-n«~s has simple poles for

s = — a , —1—a, —2 —a, ...,

unless a is integral. If a is a positive integer, there are no poles; if a
negative integer, the poles are

1, 2, ..., - a .

These results follow at once from the consideration of the equation

where x(e~w) i8 a function regular for IO = 0. I do not imagine that they
are new: but they are worth stating here in connection with the results
of §§ 9-11.

* See Barnes, Messenger of Mathematics, Vol. xxix, pp. 74 et seq, 88 et seq.


