This article was downloaded by: [Virginia Tech Libraries] On: 27 February 2015, At: 01:50 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Geologiska Föreningen i Stockholm Förhandlingar

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/sgff19</u>

# Post-glacial marine shell-beds in Bohuslän

Ernst Antevs Published online: 04 Jan 2010.

To cite this article: Ernst Antevs (1917) Post-glacial marine shell-beds in Bohuslän, Geologiska Föreningen i Stockholm Förhandlingar, 39:4, 247-425, DOI: <u>10.1080/11035891709444845</u>

To link to this article: http://dx.doi.org/10.1080/11035891709444845

# PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <a href="http://www.tandfonline.com/page/terms-and-conditions">http://www.tandfonline.com/page/terms-and-conditions</a>

# Post-glacial marine shell-beds in Bohuslän.

By

ERNST ANTEVS.

### Contents.

| Introduction                                   |                                 |
|------------------------------------------------|---------------------------------|
| Some molluscs immigrated in the latest fini-s  | lacial time                     |
| On the division of the post-glacial age and t  | the determination of the time   |
| of formation of the shell-beds                 |                                 |
| Changes of level                               |                                 |
| The climatic testimony borne by the molluse-   | -fauna                          |
| On characteristic species                      |                                 |
| Shell-beds from the primo-post-glacial regress | ion and the post-glacial trans- |
| gression.                                      | ••                              |
| 1. Shell-beds below post-glacial clay          |                                 |
| Otterö                                         | Torseröd                        |
| Fjällbacka                                     | Fjälla                          |
| Rössö-Långö                                    | N. Holt                         |
| 2. Shell-beds not superimposed by clay.        |                                 |
| Nyckleby                                       | Löndal                          |
| Mörhult I                                      | Hvalö                           |
| Summinge                                       | Mörhult II                      |
| Lunnevik J                                     | Smittmyren 291                  |
| Shell-beds from the post-glacial transgression | maximum                         |
| Medvik                                         | Tofterna                        |
| Lunnevik II                                    | Uppsikt                         |
| Rössö 296                                      | Håfve                           |
| Hällan                                         | Stare                           |
| Hälle I                                        | Sandbogen                       |
| Nötholmen                                      | Efvenås                         |
|                                                |                                 |

Shell-beds from the sero-post-glacial regression.

| 1. Shell-beds above post-glacial clay         |                             |
|-----------------------------------------------|-----------------------------|
| Kilarna 306                                   | Nötholmen 310               |
| Torseröd                                      | Rössö-Långö                 |
| Tofterna 308                                  | Otterö 315                  |
| 2. Shell-beds not superimposed on post-gla    | cial clay 315               |
| Lund 315                                      | Svälte                      |
| Holkedalskilen 316                            | S. Öddö 326                 |
| Skälleröd                                     | Kjellviken                  |
| Prästängen                                    | Kebal                       |
| Vintermyren                                   | Baggeröd                    |
| Lejonkällan 320                               | Mörhult II                  |
| Daftö                                         | Furuholmen                  |
| Hälle II                                      | Nordkoster                  |
| Sydkoster                                     | Nöddö                       |
| Grandalen                                     | Karholmen                   |
| Kile                                          | Brattskär                   |
| Tânga                                         |                             |
| Recent shell-beds.                            |                             |
| Gullmaren                                     |                             |
| Herföl                                        |                             |
| Shell-beds of indeterminable age.             |                             |
| Strömstad                                     |                             |
| Hälle III                                     |                             |
| Tables                                        |                             |
| List of sub-fossil molluses, etc., in Western | Sweden, according to GERARD |
| DE GEER and the author                        |                             |
| The position of the shell-beds examined       |                             |
| Bibliography                                  |                             |
| • • •                                         |                             |

#### Introduction.

Professor GERARD DE GEER made in Bohuslän, especially in the years 1889, 1890, and 1893—95, extensive collections of late-Quaternary marine shell-gravel for the purpose of studying, in accordance with a new stratigraphic-statistical method (DE GEER 1910, p. 1187), the history of immigration, etc., of the molluse-fauna, the changes of level, and the climatic conditions.

In 1910 he discussed in Quaternary Sea-bottoms» the most important glacial shell-beds and, preliminarily, some of the post-glacial, but time not allowing him an opportunity, within any proximate future, of elaborating all the rich material he had gathered, he placed in the writer's hands, in the autumn of 1914, the post-glacial shell-gravel, with which there is here included that (not late-glacial) shell-gravel which lies on and below the limits of the post-glacial transgression. The receding shore-line's passing the level of the above-mentioned transgression limit is, of course, an arbitrary but, until a connecting-point with the exact chronology has been obtained, a certainly suitable boundary between glacial and post-glacial times.

Thanks to a travelling-scholarship from the Swedish Royal Academy of Science, I was given in the summer of 1915 an opportunity of myself collecting material and studying the occurrence and formation of the shell-beds.

If, in all cases, the writer has followed Professor DE GEER's

#### ERNST ANTEVS.

arduous methods of investigation, this has been done, because another method with a claim to exactitude is hardly imaginable, and as such an investigation is as good as worthless unless the very greatest exactitude be observed. However, an examination, in accordance with the method mentioned, of a sufficient number of shell-beds ought to lead to a satisfactory solution of the problems in hand. It has, consequently, been found possible to utilize the perfectly unique opportunity presented in the shell-beds of countries which, during the Quaternary age, were covered with ice, of studying the immigration of an animal group and its later fate in a new-born sea-district, questions, too, of very great zoogeographical and biological interest. It has been found possible to throw a light on these important changes of level and to make contributions to the solution of the question of climate which ought to be of special weight in consequence of the relatively very exact determinations of time.

For the determination of the molluses, use has been made of the collections of the Geological Institution of the Stockholms Högskola, W. C. BRÜGGER'S excellent illustrations, and the works of G. O. SARS and J. G. JEFFREYS. With respect to nomenclature and the like, the writer has mainly followed SARS.

The writer desires to express his deep and heart-felt thanks to Professor DE GEER for the generous gift of the very valuable investigation-material, and for the excellent advice and great goodwill shown by him to the writer during his years of study at the Stockholms Högskola. It also gives the writer great pleasure to be able to express here his heartiest thanks to his other esteemed teachers and favourers who during his scientific studies in palaeobotany, botany, and geology, have assisted him with advice and practical help or who have, in any other way, shown their interest in the writer's efforts. Among these the writer wishes to name Professor A. G. NA-THORST, Professor G. LAGERHEIM, Professor O. ROSENBERG, State geologist Dr. HENR. MUNTHE and Dr. T. G. HALLE.

The writer is specially indebted to Dr. NILS ODHNER for his determinations of divers molluses, and to Fil. Lic. RICHARD Hägg for literary indications.

The writer's best thanks are also due to the Governors of the Geological Association for the opportunity they have given the writer of publishing his paper.

Miss KARIN BUSCH, Fil. Kand. FOLKE FOLKESON, Fil. Kand. ERIK GRANLUND, and Fil. Kand. GÖSTA LUNDQVIST, undergraduates at the Stockholms Högskola, have each carried out the chief part of the work of sorting one sample.

The translation has kindly been carried out by Mr. E. ADAMS-RAY of Stockholm.

**N** 

#### Some molluscs immigrated in the latest fini-glacial time.

First may be given, with Professor DE GEER's kind permission, a list of species found among the fauna of the socalled transitional-beds and which were new occurrences there; in other words, a list of forms that immigrated immediately before the time when the shell-beds treated of in this paper began to be deposited.

There have been examined the shell-beds, the collections from which have chiefly been made by Prof. DE GERR, at Skärjedalen (12 km N of Strömstad; according to Hägg 63 m above the sea), Lursäng (16 km SSE of Strömstad; cc. 59 m above the sea), Oxtorp (9 km SE of Strömstad; c. 48—49 m above the sea), Gudebo (13 km ESE of Strömstad; 48 m above the sea), Skärbo (3.5 km N of Gräbbestad; cc. 46 m above the sea), the lowest sample (27.6 m above the sea) at Evenås (1.5 km E of Fiskebäckskil; see DE GEER 1910, p. 1172), as well as pickings from the shell-bed at Bredhult (9 km N of Strömstad; c. 71 m above the sea).

#### ERNST ANTEVS.

The shell-bed at Skärjedalen is evidently the same that was previously examined by Hägg (1910, p. 473; see, too, SERNAN-DER 1910, p. 227<sup>1</sup>), and whose time of formation was given by him as the post-glacial transgression maximum. This agedetermination has, as is well-known, been questioned by MUNTHE (1910, p. 1208), and Prof. DE GEER was inclined, as he informed me, after a slight examination to consider the bed as late fini-glacial, a supposition which has now been found to be correct.

When the shore-line, in early post-glacial time, during the course of its retreat, passed the limit of the post-glacial transgression, the following species had, according to the writer's analyses of the beds mentioned, already made their appearance on the scene in addition to those included by DE GEER in his tables A and B in »Quaternary Sea-bottoms»:

| Lepidopleurus cinereus    | Montacuta bidentata   |
|---------------------------|-----------------------|
| Craspedochilus marginatus | Abra cf. alba         |
| Anomia aculeata           | Solen ensis           |
| Ostrea edulis             | Thracia villosiuscula |
| Nucula nucleus            | Patella vulgata       |
| Cardium echinatum         | Gibbula cineraria     |
| > cf. nodosum             | Lunatia intermedia    |
| > cf. exiguum             | Onoba aculeus         |
| > cf. minimum             | Rissoa interrupta     |
| Laevicardium norvegicum   | Skenea planorbis      |
| Cyprina islandica         | Parthenia spiralis    |
| Tapes aureus              | Clathurclla linearis  |
| > virgineus               | Nassa reticulata      |
| Lucina borealis           | > incrassata          |
| Lepton nitidum            | Utriculus umbilicatus |
| -                         |                       |

<sup>1</sup> In consequence of a printing error there stands here Skönjedalen».

## On the division of the post-glacial age and the determination of the time of formation of the shell-beds.

The value of such an investigation as the present, lies, of course, mainly in the degree of exactitude with which the time of formation of the different shell-beds is determined.

An unsought norm for such determination is found in the changes of level, which, as Prof. DE GEEN pointed out a long time ago, most certainly form the most suitable startingpoints for a division of the post-glacial age.

In order to conveniently distinguish the oldest post-glacial regression from that occurring at a later date, the writer proposes the use of the terms *primo-post-glacial* and *sero-post-glacial*.<sup>1</sup>

»The post-glacial transgressional time», »the time of the postglacial maximum subsidence», and the like, also appear to the writer to be suitable expressions, while the terms »Tapestime», »Litorina-time», and the like, which, in addition to the unfitness pointed out by DE GEER (1912, p. 260), are also unsuitable in consequence of their indefiniteness in point of time, could not be used in the present paper.

By »recent time» is understood in the following pages the time after the cessation of the upheaval of the land.

Below, within and above different shell-beds there occur clays, which, as the conditions of bedding or the faunas show, are undoubtedly derived from the time for the post-glacial transgression maximum.

These clays have served as the first starting-points in the determination of the time of formation of the shell-beds.

In order to obtain an objective view of the composition of the faunas there have been employed BRÖGGER'S (1901, p. 570)

<sup>&</sup>lt;sup>1</sup> The Latin adverbs > primo > and > sero > signify > at the beginning >, > first >, and > late >.

division in accordance with the existing geographical extension into arctic (a), boreal (b), and lusitanic-mediterranean (l) species, as well as a division in accordance with the time of immigration into Bohuslän. According to the latter, the molluses have, naturally, been divided into as many categories as the shell-beds, which, up to the present, it has been found, can suitably be divided into six groups. The mollusc-groups are, consequently: 1. (gothi-glacial regressional and) fini-glacial transgressional immigrants, which may be distinguished by ofto; 2. fini-glacial regressional immigrants (ofro); 3. primopost-glacial regressional and post-glacial transgressional immigrants (which should properly be marked pprpt, but which, for the sake of simplicity, are distinguished by sprts); 4. forms immigrated during the post-glacial transgression maximum (»ptm»); 5. sero-post-glacial regressional immigrants (»spr»), and, 6. recent immigrants (»rec.»).

For each shell-bank there have been calculated the specific and individual percentages of the a-, b-, and l-molluscs and of the ft-, fr-, etc.-species found in them. As consideration must, at the same time, be paid both to the specific and individual conditions, it has proved suitable to take the means of the specific and the individual percentages.

These percentage-means for the post-glacial shell-beds which are *superimposed by* clays and examined here find the following expression:

|               | a    | b    | 1        |
|---------------|------|------|----------|
| Otterö A      | . 19 | 2 54 | 34       |
| • B           | . 10 | ) 35 | 55       |
| Fjällbacka    | : 8  | 3 63 | 29 .     |
| Rössö-Långö A | . :  | 9 28 | 63       |
| • C           | . 9  | 9 28 | 63       |
| Torseröd      |      | 7 59 | 34       |
| Fjälla        | . !  | 9 50 | -41      |
| N. Holt       | . :  | 9 52 | 39       |
| · · ·         | 9    | 9 46 | 45 means |

÷

|               |       |           |      | ft fr | $\mathbf{prt}$ |
|---------------|-------|-----------|------|-------|----------------|
| Otterö A      |       |           |      | 23 46 | 31             |
| » В           |       |           |      | 16 33 | 51             |
| Fjällbacka .  |       |           |      | 28 49 | 23             |
| Rössö-Långö A | · · · | · • • • • | •••• | 17 28 | 55             |
| > C           |       |           |      | 18 28 | 54             |
| Torseröd      |       |           |      | 27 45 | 28             |
| Fjälla        |       |           |      | 25 24 | 51             |
| N. Holt       |       |           |      | 20 45 | 35             |
|               |       |           |      | 22 37 | 41 means       |

while, for the beds which are *superimposed* on post-glacial clays we have the following percent averages:

|               |   |   |           |   |          |   |   |     | a              | Ъ    | 1   |       |
|---------------|---|---|-----------|---|----------|---|---|-----|----------------|------|-----|-------|
| Kilarna       |   |   |           |   |          |   |   |     | 9              | 45   | 46  |       |
| Torseröd      |   |   |           |   |          |   |   | . • | 7              | 46   | 47  |       |
| Tofterna A    |   |   |           |   |          |   |   | •   | 11             | 59   | 30  |       |
| » C           |   |   |           |   |          |   |   |     | 8              | 39   | 53  |       |
| Nötholmen A . |   |   |           |   |          |   |   |     | 8              | 23   | 49  |       |
| <b>,</b> В.   |   |   |           |   |          |   |   |     | 9              | 31   | 60  |       |
| Rössö-Långö A |   |   |           | • |          |   |   |     | 8              | 29   | 63  |       |
| • B           |   |   |           | • |          |   |   |     | 6              | 31   | 63  |       |
| Otterö B      |   | • |           |   |          |   | • |     | 7              | . 30 | 63  |       |
|               |   |   |           |   |          |   |   |     | 8              | 37   | õõ  | means |
|               |   |   | ft        |   | f        | r |   |     | $\mathbf{prt}$ | ptm  | spr |       |
| Kilarna       |   |   | 20        |   | 4        | 1 |   |     | 39             | -    |     |       |
| Torseröd      | • |   | 19        |   | 4        | 1 |   |     | - 38           | 1    | 1   |       |
| Tofterna A    |   |   | 18        |   | 4        | 7 |   |     | 25             | 3    | 7   |       |
| » C           | • | • | 20        |   | 3        | 1 |   |     | 49             |      |     |       |
| Nötholmen A . |   |   | 17        |   | 3        | 2 |   |     | 46             | 2    | 3   |       |
| <b>у</b> В.   |   |   | 18        |   | 3        | 1 |   |     | 50             |      | 1   |       |
| Rössö-Långö A |   |   | 20        |   | 1        | 9 |   |     | 61             |      |     |       |
| • B           |   |   | 16        |   | <b>2</b> | 7 |   |     | 57             | —    | ·   |       |
|               |   |   |           |   |          |   |   |     |                |      |     |       |
| Otterö B      |   |   | <b>21</b> |   | 1        | 8 |   |     | 61             |      |     |       |

As will be seen, within each group, with the exception of a couple of beds, the composition of the faunas is fairly similar, especially if respect be paid to the fairly different time of formation of the individual beds. Exceptions in the first group are, of course, formed by Otterö B and Rössö-Långö and in the latter group by Tofterna A. On the other hand, the two groups, compared with each other, present a not unessential difference, consisting chiefly in the greater rôle played by the 1- and prt-forms in the latter group. In order to elucidate this there have been calculated the means of the percent averages given.

On the basis of these conditions, by height above the sealevel, by conditions of formation, by frequency and variation of frequency of the shallow-water forms, by stratigraphy, etc., it has been found possible to determine the time of formation of the other shell-beds with, the writer thinks, a relatively high degree of accuracy.

#### Changes of level.

It is an absolutely indispensable condition, on making the fundamental study of the changes of level of a country, to start from the sea-level and not from more or less hypothetical lake-levels. It is, therefore, on the west coast of Sweden that we have mainly to search for the solution of the questions, of such importance for our geology, of the vertical movements of Sweden during the late-Quaternary age. Here, in Bohuslän, where these movements are best known, their sequence has been as follows:

The receding ice-border was closely followed by an intensive upheaval of the land, which almost had the character of a wave. In consequence of this, the sea-bottom in central Bo huslän, in which district the highest marks of the sea can be traced up to 141 m, was uplifted, so that shell-deposits with mostly littoral species could accumulate where the water had previously been more than 100 m deep. (DE GEER 1910, p. 1145).

In fini-glacial age this gothi-glacial upheaval was succeeded by a subsidence, during which the shore-line in the same tract was displaced to 102 or, possibly, 110 m above the sea (DE GEER 1910, p. 1170).

This was followed by a new upheaval of the land. When, in primo-post-glacial times, central Bohuslän had reached its greatest height, the shore-line, according to the conditions shown at Otterö (see p. 274) and Fjällbacka (see p. 278), was between the approximate figures of 8 and 17 m above the sea.

But a second and final subsidence, the post-glacial, began to make itself felt. On this occasion the central part of Bohuslän came to lie about 37 m (Sandbogen; see p. 304) and the most northerly part of the district about 45 m lower than they are at present.

Finally came the sero-post-glacial land-upheaval, which came to an end during the latter part of the bronze-age (O. FRÖDIN 1906, p. 33).

After Professor DE GEER has proved the above-mentioned fini-glacial subsidence in Western Sweden, and after the duration of the period that has elapsed since Sweden began to be released from the last ice-covering has become known and has been found to be considerably less than has previously been supposed, some of the previously-existing opinions concerning the late-Quaternary changes of level in Scandinavia and problems connected with this question can hardly be maintained.

Here, in passing, attention may be directed to the possibility of explaining the Ancylus-transgression in the Baltic which, in the opinion of the writer, lies in the fini-glacial subsidence mentioned above.

Fenno-Scandia consisted, as regards the changes of level, of a uniform district, and undulating movements of the crust of the earth propagated themselves from every point in the 19-17010S. G. F. F. 1917. direction of its centre. At all the different points on each isobase there occurred, as a rule, similar changes of level; an upheaval in Bohuslän was contemporaneous with an upheaval in Västergötland, Östergötland, etc. From a known change of level in the West of Sweden it is, therefore, extremely probable that one can deduce a contemporaneous change of level in the East of the country.

The fini-glacial subsidence in Bohuslän must, consequently, have had its correspondence in the districts on the Baltic, which, at the fini-glacial age, was in its Ancylus-period.

According to MUNTHE (1910, pl. 46 B) the transgression of the Ancylus-Lake extended in the Omberg-district to 75 mand, somewhat north of Lake Vättern, to 100 m above the sea.

As the isobases in this tract and at the period in question probably ran from W to E, or somewhat SW and NE, the figures nitherto available from the fini-glacial transgression at Uddevalla (see p. 257) and those from the Ancylus-transgression at Lake Vättern, correspond fairly well to each other, if the surface of the Ancylus-Lake, when the limits of the transgression in the district in question were registered, is brought to sea-level, but, preferably, not higher.

The changes of level in Scania, Denmark, and northern Germany, which were of such importance for the Baltic inlandsea, are, unfortunately, very imperfectly known, as the marks of these changes lie, partly or entirely, below the level of the sea.

It is probable that the *first* movement of change of level after the release from the covering of ice, in relation to which the other movements are merely reactional or continuations, has always taken place in that direction which is given by the final result, and that the German north coast took up its highest position, for which DE GEER'S (1896, p. 106) approximate figures of 25 to 30 m appear theoretically acceptable, just at the time of release from the ice. Lying outside the Fenno-Scandic upheaval-district, and forming a portion

of the stable continental block, in whose outermost portions alone the masses, pressed out by the weight of the land-ice, had been able to bring about a disturbance of the isostatic conditions, the coast in question, ever since Scandinavia began to rise, probably found itself in an almost incessant state of slow subsidence.

Within a zone somewhat north of the north coast of Germany there faded out both upheavals and subsidences. From this tract the amount of the rise of the various points grew within a wave-crest until the latter lost itself in the unbroken elevation in the central part of the upheaval-district, while the amount of subsidence within a wave-valley reached its greatest value in the longitude of Halland or Bohuslän in order, surpassed by the intensive upheaval, to run out towards the central of the rising.

When, at the beginning of the gothi-glacial epoch, a mighty upheaval followed the retreating ice-border, this affected central Denmark too (but not the north coast of Germany). When the upheaval attained its maximum, the southern part of the Öresund most certainly assumed the highest position it reached during late-Quaternary time, and then there existed across the Danish islands a land connection between Sweden and Germany. The southern part of the Baltic basin formed, during this period, an ice-lake.

But this upheaval was soon replaced by the fini-glacial subsidence. This land-subsidence is, as is well known, only proved in Bohuslän and in northernmost Jutland (see DE GEER 1910, p. 1149), but, with the knowledge we possess of the changes of level its 0-isobase is theoretically to be expected between the 0-isobases for the dani- and the post-glacial subsidences, and nearest to the former. The Belts, and the district between Rügen and Falster were still probably raised that approximately 10 m which, in the present day, the thresholds here lie below the surface, so that the Baltic was connected with the Cattegatt only by means of the Öresund.

Then a change of level in an opposite direction began to make itself felt. The district surrounding the Öresund was once more raised, although to a lesser extent than during gothiglacial time, and the 0-isobase retreated again towards the north — and this time further than during the gothi-glacial upheaval — as is shown by peat-bogs and river-channels below the existing shore-line. The Falsterbo-district was raised to about 8 m above sea-level, as is shown by a peat-bog containing oak and hazel with the bottom at a corresponding depth (HOLST 1895, p. 21; see, too, DE GEER 1896, p. 119). The thresholds in the south of the Öresund seem, consequently, to have been upheaved to sea-level.

On the other hand, it is probable that a connection between the Baltic and the Western Ocean was formed by means of the Belts, for here the land-subsidence had gone on so far that the thresholds, now lying about 10 m below the surface, were lowered beneath the sea-level, judging by the circumstance that, during the next or the post-glacial subsidence, these tracts occupied the same height-level as they do at present.

Consequently, it seems to the writer not improbable that the Baltic Sea possessed communication with the Ocean through the Öresund and the Belts, or someone of these, ever since the beginning of the gothi-glacial age, with the sole exception of some time during the epoch in question, when the southern part of the Baltic had the character of an ice-lake.

During the fini-glacial and the primo-post-glacial epochs these sounds served to a very preponderant degree as an exit for the enormous water-masses of the Baltic, for the points of passage lay near the sea-surface.

As the rate and amount of the changes of level were greatest during the melting of the ice-covering, while, later on, they successively decreased to zero, the maximum of subsidence of the fini-glacial period was reached at a comparatively early time, while, between Western and Eastern Sweden the distinctive

difference in climate still existed which found such a marked expression in the melting of the land-ice.

At the commencement of the melting away of the land-ice the Baltic basin was, of course, filled entirely with fresh water, and received enormously rich supplies of water from the melting ice. From the land-districts there were also conveyed large quantities of fresh water, and there was created a tremendous outward flowing current through the Oresund, the sounds in Central Sweden, and in other places. The Central Swedish sounds were, at first, both deep and wide, so that the reactioncurrent could bring in through them considerable quantities of, it is true, rather diluted salt water into the Baltic Sea. After the sounds had been elevated above the sea-level, the Baltic (mainly) by Oresund first, and later on by the Belts, may have for a long time been in a connection with the Western Sea, somewhat resembling that in which Lake Mälaren is now united to the Baltic.

In the latter case, the channel at Norrbro, in Stockholm, is exceedingly narrow, and the threshold lies about 4 m under the sea-level (Sondén 1912). Lake Mälaren has fresh water and the Baltic salt, but if, for any reason, the surface of the water of the Baltic rises above that of the lake, salt water streams into the latter. This water, however, does not mix with the fresh water, but forms certain well-defined beds in the upper water-layers, in which case it is sooner or later carried off by the outward flowing current. The salt water in question also partly finds a resting place at the bottom of the deepest parts of the lake basin. Such salt bottom layers are met with at a distance of as much as some 20 km up the lake, and are renewed only to the degree that storms, etc., are able to agitate the water, so that the salt layers rise to the upper waters. Under normal conditions during 1909-11 the salt percentage in the deep-holes in that part of Lake Mälaren called Ekeröfjärden lying about 10 km W of Stockholm was 2 %, while in the ERNST ANTEVS.

Trälhafvet, a bay of the Baltic about 20 km NE of Stockholm, at a depth of about 10 m, the proportion was 5  $^{\circ}/_{\circ\circ}$ .

The salt water that entered the Ancylus-Lake by means of the reaction stream; as well as by means of possible up-streams, probably behaved in the same way, and it is quite natural that the water at the surface of the lake during a very considerable period of time remained entirely fresh or almost so. It seems to the writer, too, not improbable, that, to an essential degree, it was the high temperature of the salt water of the Gulf Stream, and of the small specific weight that resulted from this high temperature, which enabled it to mix so with the fresh water of the Baltic during the post-glacial subsidence.

At an earlier date some discussion has taken place respecting the character of the Ancylus-Lake as a fresh water basin (see MUNTHE 1910 a, p. 73), and the supposition that the water was in some degree salt, especially in the greater depths, has also been put forward. It is first by this means that one or two zoogeographical peculiarities can obtain their natural explanation, and, as ought to be shown by what has been said above, this opinion in no way stands in opposition to MUNTUE's and other scientists' interesting investigations of the animaland vegetable life of the Ancylus-Lake. The writer refers to Halicryptus spinulosus, a worm and glacial relic in the Baltic - but found on one occasion in the estuary of the river Götaälf -, which could hardly have survived the Ancylus-period of the Baltic inland sea, if its waters had been perfectly fresh. The same holds good for the worm Antinoë Sarsi, which, however, occurs, although but rarely, in the Western Ocean, and now possibly appears in the Baltic Sea as a secundo-relic (von Hofsten 1913, p. 108).

In consequence of the conditions and the theoretical reasonings dealt with, and as within the relatively so well-known Baltic Sea only the Ancylus-transgression in this connection seems to be able to come into question, the writer considers that he is in

a position to put forward the supposition that the »Ancylus-Lake» was an inland sea standing in connection with the Ocean, although its surface-layers and its main mass consisted of fresh water, and that the transgression in question is to be ascribed to the great fini-glacial land-subsidence, instead of, as was formerly supposed, to a vast emptying-out and a rising of the water within a closed basin during the continuance of a lengthy upheaval of the land.

#### The climatic testimony borne by the mollusc-fauna.

Investigators are unanimous as to the sensitiveness shown by molluscs to the varying temperature of the water in which they live, and to their great importance as indicators of climate.

One or two observanda, well-known although they be, may, however, first be touched upon.

To draw final conclusions from some few negative facts is to be condemned, for the fact that the immigration of a species demanding warm conditions did not occur before the last elevation of the land is, for example, no guarantee that it was first then that the climatic conditions had become suitable for its well-being. This is shown, to take one example among many, by the well-known fact that *Mya arenaria*, which is found in Europe from south-west France to the White Sea, did not immigrate to Scandinavia before the very last part of the upheaval that took place during the sero-postglacial age.

From this results, too, that the present extension of various molluses is not yet ended, and that the conditions of distribution are not always an adequate expression of the adaptability of the species to climatic conditions.

In addition to temperature there exist other essential conditions for the well-being of the molluscs, such as the salt-

#### ERNST ANTEVS.

percentage of the water, the bottom, vegetation, depth, currents, the open or protected situation of the locality, etc. By no means unimportant, too, is the competition for suitable localities.

It is, therefore, a matter of no little difficulty to satisfactorily explain the occurrence or non-occurrence of any certain species during a fixed age or in a certain shell-bed, and one is, perhaps, often too easily tempted to have recourse to climate to explain away difficulties.

For these reasons the writer wishes to discuss the question of elimate mainly on the basis of the general composition of the fauna, the assistance of the special, warmth-demanding species as a starting-point coming only in the second place, and this is done all the more readily that, to a great extent, it is then possible to let the objective figures speak for themselves.

The averages of the specific and individual percentages of the a-, b-, and 1-species in the shell-beds deposited during the primo-post-glacial regression are, considered separately:<sup>1</sup>

|    |             | •  |   |   |    |   |   |     |    |   |   |    |   | a  |   | b  | 1    |  |
|----|-------------|----|---|---|----|---|---|-----|----|---|---|----|---|----|---|----|------|--|
|    | Nyckleby .  |    | • |   | •  |   | • |     |    | • |   |    |   | 14 |   | 65 | 21 · |  |
|    | Mörhult I.  |    |   |   |    |   |   |     |    |   |   |    |   | 5  |   | 75 | 20   |  |
|    | Summinge .  |    |   |   |    | • | • |     | •  | • |   |    |   | 11 |   | 69 | 20   |  |
|    | Lunnevik I  |    |   |   |    |   |   |     |    |   | • |    |   | 10 |   | 69 | 21   |  |
| Tł | ie averages | of | t | h | es | e | m | iea | an | s | a | re | : |    | • |    |      |  |
|    |             |    | a |   |    |   |   |     |    | b |   |    |   |    | 1 | ·. |      |  |

10 70 20 On p. 254 a survey has been made of the averages of the specific and individual percentages of the corresponding forms in shell-beds occurring below post-glacial clays. Here follow the same mean-figures for the other shell-beds examined, dating from the time of the primo-post-glacial maximum regres-

sion and the post-glacial transgression:

<sup>1</sup> Being all too few to form an independent group, these shell-beds have otherwise been preliminarily brought together with those deposited during the post-glacial transgression.

| 4          |   |   |   |   |   |   |   |   |   |   |   |   |   | a  | Ե  | 1  |
|------------|---|---|---|---|---|---|---|---|---|---|---|---|---|----|----|----|
| Löndal     |   |   |   | • |   |   |   |   |   |   |   |   |   | 11 | 54 | 35 |
| Hvalö      |   |   | • | • | • | • |   |   | • | • | • |   | • | 9  | 51 | 40 |
| Möshult II | • | • | • | • | • |   | • |   |   | • |   |   | • | 11 | 46 | 43 |
| Smittmyren | • | • | • | • | • |   |   | - | • | • | • | • | • | 5  | 59 | 36 |

The means of the per-cent averages for all these shell-beds are, therefore:

| a | b  | 1   |
|---|----|-----|
| 9 | 18 | -13 |

The same averages for shell beds deposited during the age of the *post-glacial maximum transgression* are:

|             | 8  | b    | 1         |
|-------------|----|------|-----------|
| Medvik · A  | 12 | 61   | 27        |
| <b>,</b> B  | 5  | 73   | 22        |
| Lunnevik II | 11 | 57   | 32        |
| Rössö       | 10 | 62   | <b>28</b> |
| Hällan      | 14 | 61   | 25        |
| Hälle I     | 4  | 62   | 34        |
| Håfve       | 11 | - 26 | 63        |
| Stare       | 4  | 31   | 65        |
| Sandbogen   | 11 | 50   | 39        |
| Efvenås     | 16 | 60   | <b>24</b> |

The means of these per-cent averages are:

| a  | Ь  | 1  |
|----|----|----|
| 10 | 54 | 36 |

In addition to the figures from sero-post-glacial regressional shell-beds given on p. 255, there are also the following:

| Lund       7       39       5         Skälleröd       8       39       5         Holkedalskilen       5       27       6         Prästängen       5       27       6         Prästängen       8       41       5         Lejonküllan       6       26       66         Hälle II       8       36       56         Sydkoster       4       31       66         Grandalen       7       21       77         Svälte       8       48       44 |             |     |   |   |   |    |   |   |   |   |   |   |   |   |   | a | b  | 1  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|---|---|---|----|---|---|---|---|---|---|---|---|---|---|----|----|
| Skälleröd         8       39       5.         Holkedalskilen         5       27       6.         Prästängen         5       27       6.         Prästängen         5       41       5         Lejonkällan         6       26       6.         Hälle II         8       36       50         Sydkoster         7       21       7.         Svälte         8       48       4.                                                                | Lund        |     | • |   | • | •  |   | • | • |   | • |   |   | • |   | 7 | 39 | 54 |
| Holkedalskilen       5       27       6         Prästängen       8       41       5         Lejonkällan       6       26       6         Hälle II       8       36       5         Sydkoster       4       31       6         Grandalen       7       21       7         Svälte       8       48       4                                                                                                                                   | Skälleröd   | •   | • | • | • |    |   |   |   |   |   |   |   | • | • | 8 | 39 | 53 |
| Prästängen                                                                                                                                                                                                                                                                                                                                                                                                                                 | Holkedalski | ilo | n | • | • | •  |   |   |   |   |   | • | • |   |   | 5 | 27 | 68 |
| Lejonkällan       6       26       66         Hälle II       8       36       56         Sydkoster       4       31       66         Grandalen       7       21       77         Svälte       8       48       48                                                                                                                                                                                                                          | Prästängen  |     | • |   | • | •  |   |   |   |   |   |   |   |   |   | 8 | 41 | 51 |
| Hälle II                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lejonkällar | 1   |   |   | • | .• | • |   | • |   |   |   | • |   |   | 6 | 26 | 68 |
| Sydkoster       4       31       63         Grandalen       7       21       75         Svälte       8       48       48                                                                                                                                                                                                                                                                                                                   | Hälle II    | •   | • | • | • |    | • | • | • | • | · |   | • | • | • | 8 | 36 | 56 |
| Grandalen         7         21         7           Svälte         8         48         48         48                                                                                                                                                                                                                                                                                                                                       | Sydkoster . |     | • | • | • | •  | • | • |   |   |   |   | • | • |   | 4 | 31 | 65 |
| Svälte                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grandalen . | •   | • | • | • |    | • |   | • | • |   |   | • | • | • | 7 | 21 | 72 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                            | Svälte .    |     | • | • |   | •  |   |   |   |   | • | • | • | • | • | 8 | 48 | 44 |

#### ERNST ANTEVS.

|              |    |   |   |   |   |   |   |   |   |   |   |   |   |   | a  | Ь  | 1  |
|--------------|----|---|---|---|---|---|---|---|---|---|---|---|---|---|----|----|----|
| Kjellviken . | ۰. | • | • |   | • | - |   | • | • | • |   | • |   | • | 9  | 51 | 40 |
| Kebal        | ۰. |   |   |   |   |   | • |   |   |   |   |   |   |   | 11 | 27 | 62 |
| Baggeröd .   | ۰. | • |   |   |   | • |   |   | • |   | • |   |   |   | 7  | 23 | 70 |
| Mörhult II   | •  |   |   |   | • | • |   |   |   |   | • |   |   |   | 5  | 30 | 65 |
| Nordkoster   |    |   |   |   |   | • | • | • |   | • | • |   |   |   | 9  | 44 | 47 |
| Nöddö        | •  |   |   | • | • |   | • |   | • | • |   |   | • |   | 6  | 30 | 64 |
| Karholmen    | •  |   | • |   |   | • |   |   |   |   |   |   |   |   | 6  | 35 | 59 |
| Brattskär .  |    | • | • |   | • |   | • |   |   | • | ÷ |   |   |   | 9  | 40 | 51 |
|              |    |   |   |   |   |   |   |   |   |   |   |   |   |   |    |    |    |

The means of the per-cent averages for all the scro-postglacial regressional shell-bcds are:

| a | Ъ  | 1  |
|---|----|----|
| 8 | 35 | 57 |

At present it is difficult, on the basis of the mollusc-fauna, to express any decided opinion as regards the climatic conditions existing on the west coast of Sweden during the late finiglacial age, for, on the one hand, the colder forms no longer thrive, and a fairly large number of warm species have immigrated, although, on the other hand, these latter species do not obtain a real foothold for a long time forward. Consequently, the mollusc-fauna is relatively poor in species and exceedingly poor as regards individuals.

However, towards the close of the fini-glacial time, such species as Tapes aureus and T. virgineus, Ostrea edulis, Lepton nitidum, Laevicardium norvegicum, Rissostomia membranacea, and Nassa reticulata are immigrated (see p. 252).

Of these, in the present age, we find *Lacvicardium norve*gicum and Nassa reticulata going as far north as Trondhjem ford, while the remainder have their northern limits on the west coasts of Sweden and Norway.

From this facts it would, probably, be most natural to deduce for the late fini-glacial age a temperature comparable with that of the present time, the poverty of the mollusc individuals being, perhaps, best explainable by unfavourable conditions of bottom and vegetation and by the salt-percentage of the water.

The conditions existing during the primo-post-glacial age, too, are little known, but certain warmth-demanding species, such as Anomia striata, Rissoa parva, Bittium reticulatum, and Odostomia cf. albella immigrate, and appear immediately with fairly great frequency, even if the specific percentages of the l-forms, as a whole, continue to sometimes surpass the percentages of the individuals. The immigrant demanding most warmth is, perhaps, Lasaca rubra, which, in Scandinavia, at the present time, is only occasionally met with on the west coast of Norway. The great majority of the species that play any real rôle in the post-glacial shell-beds seem to be immigrated at the beginning of the transgression.

Climatic conditions become more and more favourable, and towards the close of the transgressional period there appear, among others, *Tapes decussatus* and *Psammobia vespertina*, molluses which demand a higher temperature than that existing at present in the Skagerack, but which occur on the Norwegian west coast, which offers more favourable climatic conditions. The first-named, however, occurs even here only as a southern relic.

At the time of the post-glacial transgression-maximum, there probably occurred an alteration of climate to a lower temperature, for there hardly seems any other acceptable explanation of the more northern characteristics of the fauna in the shell-beds from that age — 36 % for the l-forms as compared with 43 % during the transgression.<sup>1</sup>

The fact is all the more remarkable, as, specially at that period, the Gulf Stream probably washed our west coast. The climatic conditions were, however, still very favourable, so that *Tapes decussatus* throve, and *Solecurtus antiquatus*, whose present northern limit lies at the British Isles, was able to immigrate.

<sup>&</sup>lt;sup>1</sup> This circumstance can, of course, also be explained by the supposition of *two* post-glacial depressions of the land with an intervening elevation, but there is nothing else that speaks in favour of this theory.

But the climate once more quickly improved, until it became the most favourable enjoyed by Scandinavia in late-Quaternary times.

In order to more closely determine the period which may be considered the most favourable as regards climatic conditions, the composition of the fauna during the first half of the sero-post-glacial upheaval may be regarded as distinct from that belonging to the latter half. Within the two groups on p. 255, 265 the shell-beds are arranged in order of age, and even the Nötholmen and Sydkoster beds are taken as belonging to the former half of the regression. The means of the percent averages for the former half of the regression will then be:

b

37

1

55

while, for the latter half of the upheaval, they are:

a

s

| a | Ե  | 1  |
|---|----|----|
| 7 | 34 | 59 |

Thus, according to the testimony borne by the shell-beds of Bohuslän the most favourable climatic period during post-glacial time occurred during the latter part of the sero-post-glacial land-upheaval, which, according to O. FRÖDIN (1906, p. 33), came to a close during the latter half of the bronze-age, or during the years 1000-500 B. C. *Tapes decussatus* is also met in great numbers in shell-beds on very low levels, and *Solecurtus antigatus* occurred towards the end of the emergence.

The question respecting the time for the most favourable climatic conditions during the post-glacial age has, on the bases of the time of immigration, etc., of the molluses demanding warmer waters, already been discussed by Hägg (1910, 1913). From the observations made by Prof. Dr GEER and the writer there appeared in Bohuslän, however, some of the species on which he bases his opinion at a considerably earlier period than that he has adopted. For example, Scrobicularia piperata immigrated as early as during the fini-glacial regression; Tapes decussatus, Lucinopsis undata, and Psammobia vespertina

appareed during the latter part of the post-glacial transgression and *Hinnites pusio* during the transgression maximum.

Although it is not possible to bring forward any evidence of this, from what has been already said it is probable that the most southern forms adduced by Häce but not met by me, *Donax vittatus* and *Lepton squamosum*, actually lived in our western seas during sero-post-glacial time. In any case, for these forms to have occurred, the climate must have been comparable with that now prevailing in the middle of the North Sea and on the west coast of Scotland.

Only the molluse-fauna of our days bears witness to a lateroccurring deterioration of climate to such an extent as, as is shown by what has already been said, certain southern forms are there wanting which, during a part of the post-glacial age, were found in our waters.

To sum up: From an attained, approximately, 50% of the postglacial transgression up to the cessation of the last uphcaval of land, the climatic conditions existing on the west coast of Sweden were more favourable than those at present prevailing, and were comparable with those now found on the coasts of northern England and of Scotland. At the time of the post-glacial transgression-maximum there occured a brief deterioration of climate, during which, however, Tapes decussatus and Solecurtus antiquatus throve. Then the climate again improved, and the climatic optimum was reached during the latter part of the sero-post-glacial uphcaval.

#### On characteristic species.

If a typical post-glacial shell-bed is compared with one of glacial age the difference is distincly observed.

The gradual alteration has become complete. While Balanidae and large-sized Saxicavae are the principal types that characterize the last named beds, masses of small southern Rissoids and mussels set their impress on the former. *Rissoa*  parva and Bittium reticulatum especially, in consequence of their frequency, their omnipresence and the facility with which they can be defined, are excellent post-glacial leading-fossils.

In general, statistical analyses are necessary in order to determine the frequency and to discover the types which are typical. Thus, different forms have proved to characterize individual shell-beds but, taken on the whole, are not characteristic of groups of such beds. An establishment of niveaux and an age-division on these grounds cannot, consequently, come into question. To give an example: *Tapes decussatus* occurs with great frequency in some shell-leds, while it is entirely wanting in the greater number of beds deposited at the same time. It is, consequently, not characteristic of these shell-beds in general, and even if it can be regarded as distinctive of a part of the post-glacial age, this period, as based on finds which will always remain insufficient, cannot be definitively fixed.

Ostrea edulis, however, from its numerousness, give their character to low-lying sero-post-glacial shell-beds.

Like Ostrea edulis, many species show variation of frequency during post-glacial age, while many others occur equally numerously during the whole period. Such a species, for example, is *Rissoa interrupta*, which nowadays plays a very subordinate rôle compared with that it formerly possessed.

Bittium reticulatum appears with extraordinary frequency during the whole of the post-glacial age. It is specially numerous during the last regression, but I cannot, however, decide whether more so than at present:

*Rissoa parva* is from common to numerous during the transgression age, and appears in large numbers during the last upheaval. At present it seems to be relatively common, and plays no especial role.

*Rissostomia membranacea* occurs with from little to scarce frequency during the whole of the post-glacial age, while, at the present time, it occurs in vast numbers.

While Mya arenaria made its appearance somewhat before the cessation of the last upheaval (see p. 333), Rissoa albella<sup>1</sup>, a species now common on our west coast, is a typical recent immigrant, which I have never met in uplifted layers.

In the list, p. 415, there have been placed the present-day occurrence of the sub-fossil molluses, or their absence, on our west coast, but in other respects no comparison has been made between the sub-fossil and recent molluse-fauna. This, too, is a task more properly belonging to our zoologists.

Although the fauna composing the shell-beds consists of distinctive shallow-water forms, there can be read, however, a certain distinction referable to the varying bathymetric conditions, not only from the variation of frequency of the individual species but also from the specific composition. Thus, the shell-bearing clays, representing the deepest water, contain as characteristic forms mainly Brachiopoda, *Pecten-* and *Anomia*species, and *Ostrea edulis*.

# Shell-beds from the primo-post-glacial regression and the post-glacial transgression.

1. Shell-beds below post-glacial clay.

#### Otterö.

4 km SSW of Gräbbestad, circa 8 and c. 5.3 m above sealevel, 1915.

In this locality there is an extraordinarily large deposit of shell-gravel of a thickness exceeding 6 m and filling at least the whole of the south-east part of the 100 m broad glen which traverses the island from NNW to SSW. The shell-bed slopes gentle towards the sea and the SSE. The hills bordering the valley rise somewhat steeply to a height of about 18 m above the sea, afterwards forming a level plateau, which occupies the greater part of the island.

<sup>&</sup>lt;sup>1</sup> By the courtesy of Dr. NILS ODHNER I have had the opportunity of making use of Sven Lovén's original specimens for the sake of comparison.

A specimen-series, A, 175 m, and a second specimen-series, B, at a distance of 125 m from the shore, were taken in sections where shell-gravel is marked on the geological map. In neither spot was the bottom of the deposit reached.

The uppermost specimen in the series A was taken immediately below the surface of the soil, about 7.7 m above the sea, and the highest in series B was taken about 5.2 m above sea-level. The stratification, which is fairly discernible, slopes at B at an angle of 10°, however, and that at A at a somewhat lesser angle, towards the SSE. If this slope is estimated at 8°, the lowest specimen at B lies about 3 m higher in the strata-series than the uppermost at A. The accompanying profile from B, fig. 3, shows this, and also that the shell-bed is covered by a clay, which in the specimen-line is 0.12 mthick, and which is itself covered by a shell-bearing littoral formation (see p. 315).

# А.

#### Table p. 341.



Fig. 1. Otterö A. Variation of frequency of the most typical species.

Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 273



Fig. 2. Otterö A. Variation of frequency of the most typical species.

The composition of the fauna is:

|                         | ft                          | fr                             | $\mathbf{prt}$                |                               |
|-------------------------|-----------------------------|--------------------------------|-------------------------------|-------------------------------|
| 1                       | 10                          | 26                             | 19                            | species                       |
| ĺ                       | 18                          | 47                             | 35                            | % >                           |
| J 5                     | 7 795                       | 90 383                         | 55 911                        | ind.                          |
| Ì                       | 28                          | 44                             | 28                            | °′′ >                         |
|                         | 23                          | 46                             | 31                            | average of percentages        |
|                         |                             |                                |                               |                               |
|                         | а                           | Ь                              | 1                             |                               |
| 1                       | a<br>7                      | ь<br>26                        | 1<br>22                       | species                       |
| {                       | a<br>7<br>13                | ь<br>26<br>47                  | 1<br>22<br>40                 | species<br>%                  |
| { { { { } { 2 }         | a<br>7<br>13<br>3 650       | b<br>26<br>47<br>120 901       | 1<br>22<br>40<br>54 989       | specics<br>%                  |
| $\left\{ 2^{2}\right\}$ | a<br>7<br>13<br>3 650<br>12 | b<br>26<br>47<br>120 901<br>61 | 1<br>22<br>40<br>54 989<br>27 | species<br>% ><br>ind.<br>% > |

The lower samples are entirely free from stones; samples 5, 6, and 7 contain a couple of stones, and sample 7.7 a pretty 20-170108. G. F. F. 1917.

large amount of stones, which last-named, however, are probably secondarily embedded. The percentage of clay is, all through, inconsiderable, being least in the lower samples. All samples, with the exception of the uppermost two, are extraordinarily rich in *Corallina officinalis*, a calcareous alga occurring in the littoral and the upper Laminarian zones.

It is evident that the molluscs lived principally on the level hill-plateau which extends on both sides of the glen in which they were, later on, deposited.

In figs 1 and 2, in accordance with the proposal of Prof. DE GEER, there is shown graphically the variation of frequency in which the most important forms occur; the uppermost sample has not been included, as the stratification is probably secondarily altered. As is seen, all the shallow-water forms Mytilus edulis, Litorina litorea-rudis, Lacuna divaricata, Rissoa interrupta, Gibbula cincraria, and Onoba striata attain their maximum of frequency within the middle horizon of the bank, even if, in details, they present somewhat different curves. Such an unanimous testimony, and that of the Mytilus-curve, especially, ought undoubtedly to demonstrate that the horizon in question was deposited in the shallowest water, while the numerousness of the species mentioned speaks, on the whole, to the whole of that part of the shell-bed here in question being a shallow-water formation. The bed at B being superimposed by clay, indicating, undoubtedly, the post-glacial transgression maximum, the writer considers that the horizon in question should be ascribed to the regression-maximum in early post-glacial times, which here, consequently, did not extend to the + 5 -m- level and certainly not to that of 8 m.

в.

.848 .q oldaT

| pinotte 🚟 | าอาการ อรากาวี เอาระ | દારો લુલ્લે                              | 1994-11948    |
|-----------|----------------------|------------------------------------------|---------------|
|           | \$1                  |                                          |               |
| 0631      |                      | 11 II I |               |
|           |                      |                                          |               |
|           |                      | 80, 8, 5530°, 0, 6                       | 02.00000000   |
|           |                      |                                          | 6- CARLON AND |
| MN        | ·                    | · · · · · · · · · · · · · · · · · · ·    | SE            |

Fig. 3. Section at Otters B.

The composition of the fame:

| .bai<br>* *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29<br>974 19 | 23<br>23F 03 | 9<br>28# # } |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| sətəəds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8F<br>77     | tF<br>07     | 81<br>13     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I            | q            | 2 1<br>v     |
| do osciolado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonado<br>estasonad | TĢ           | 83           | 91           |
| • %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99           | 53           | п )          |
| .bni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F68 09       | 149.21       | 89F S        |
| e %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98           | 8Þ           | 15 J         |
| solooqa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61           | 23           | пſ           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jrd          | ıl           | 11           |

çĉ

10

до өзвтөүк бб гөзктпөэтөд

Sample 3.8 contains much stone, the two others but little. The proportion of clay increases upwards. In sample 3.8 Co. ralling officinalis is richly represented, while, in the others, it is, practically speaking, unrepresented. In sample 4.5 there occurs a pretty general individual minimum, which is partly the result of the material being in a greatly crumbled con-Difficult of explanation, too, is the frequency-maxidition. mum, in the uppermost sample, of Litorina litorca-rudis, Lacuna divaricata, Rissoa parva, R. violacea, etc. Here, Mytilus edulis falls to a mimimum, and, from the percentage of clay, as well as from the conditions of bedding it is evident, too, that deposition occurred during a sinking of the land level. As was mentioned, however, it is highly probable that the molluscs lived, for the most part, on the hill-plateau, which is about 18 m high. Here the water was shallow for a long time, and the molluscs could, very probably, in consequence of improved conditions of vegetation and temperature, increase in frequency, in spite of the gradually increasing depth. On regarding all the attendant conditions as a whole, the writer is inclined to place the formation of this part of the shellbed in the middle of the post-glacial subsidence and the time immediately after.

### Fjällbacka.

Table p. 341.

0.8 km SSE of the church, at the upper part of l in Fjällbacka (the geological map-section >Fjällbacka»), c. 20 m above the sea, 1915.

The shell-bed occurs in a glen running from N to S. The ground slopes about 10<sup>•</sup> towards the E. Towards the W there lies at a distance of 50 m a hill, which rises with some terrasses to a height of about 38 m above the sea. The thickness of the shell-bed is more than 4 m; the underlying strata were not reached. The pure shell-gravel is covered by a clay, 0<sup>•</sup>4 m thick, the under part of which is shell-bearing, and in which the uppermost sample was taken.



Figs. 4 and 5. Fjällbacka. Variation of frequency of the most typical species.

The composition of the fauna is:

| ft                                                                           | fr                             | prt                             |                               |
|------------------------------------------------------------------------------|--------------------------------|---------------------------------|-------------------------------|
| ſ 11                                                                         | 32                             | 22                              | species                       |
| 17                                                                           | 49                             | 34 %                            | ,<br>,                        |
| 65 085                                                                       | 78499                          | 20714                           | ind.                          |
| <u>)</u> 40                                                                  | -48 .                          | $12$ $_{?}$                     | 6 <b>&gt;</b>                 |
| 28                                                                           | 49                             | 23 a<br>1                       | verage of<br>percentages      |
|                                                                              |                                |                                 |                               |
| a                                                                            | b                              | 1                               |                               |
| a<br>( 7                                                                     | ь<br>29                        | 1<br>29                         | species                       |
| a<br>{ 7<br>10                                                               | ь<br>29<br>45                  | 1<br>29<br>45 g                 | species                       |
| $\begin{cases} a \\ 7 \\ 10 \\ 5237 \end{cases}$                             | ь<br>29<br>45<br>133 745       | 1<br>29<br>45<br>21 395         | species<br>ind.               |
| $ \begin{cases}     a \\     7 \\     10 \\     8 237 \\     5 \end{cases} $ | ь<br>29<br>45<br>133 745<br>82 | 1<br>29<br>45<br>21 395<br>13 ; | species<br>, ,<br>ind.<br>, , |

The lowest sample contains rather many stones, the other samples some amount. The percentage of clay, all the way through, is fairly great, and is largest in the lowest samples. Sample 19.3 contains pretty much *Corallina officinalis*.

The entire shell-bed is a distinctively shallow-water formation. The proportion of stones in sample 16.3 and the extraordinary frequency of *Mytilus edulis* in sample 16.8, in which the relative scarcity of the other shallow-water forms (see the diagrams) has perhaps its principal cause, should show that this horizon was propably deposited in the shallowest water, or when the surface of the water stood only inconsiderably higher. As the clay superimposed on the bed undoubtedly distinguishes the post-glacial transgression maximum, the shoreline was, consequently, displaced during the primo-post-glacial regression so far at least, or to about the  $\pm$  17-m-level. As has already been mentioned, the base was not reached; an examination of the lowest part of the shell-bed is, of course, greatly to be desired, as here there may exist a possibility of more exactly determining the amount of the regression.

#### Rössö-Långö.

9 km S of Strömstad, on the northern part of Rössö-Långö, 8 (9) m above the sea, G. De Geer <sup>21</sup>/s 1890<sup>1</sup>). Cfr. De Geer 1910, p. 1184.

The shell-bed showed according to Prof. DE GEER the following section:

| uppermost, | stony  | shell  | -grave | 1.   | •   | • | • |   | • | • | • | • | • | • | . 0 <sup>.</sup> 5- | -1.0 | m |
|------------|--------|--------|--------|------|-----|---|---|---|---|---|---|---|---|---|---------------------|------|---|
|            | clay . | ••     |        |      | •   |   | • | • |   | • |   |   | • | • | . 0.3               |      |   |
|            | post-g | lacial | shell  | -gra | ave | į |   |   |   |   |   |   |   |   | · 2·8               | ÷    |   |

Prof. DE GEER took three series of samples:

The surface of the shell-bed 9 m above the sea

| A   | В   | C             |         |           |       |           |     |
|-----|-----|---------------|---------|-----------|-------|-----------|-----|
| —   | 0.2 | <del></del> • | m above | the clay, | 8·7 n | above the | sea |
| 0.1 | 0.1 | -             | ,       | ,         | 8.3   | >         |     |
| 0.1 | _   | <u> </u>      | m below | ,         | 7.9   | ,         |     |
| —   |     | 0.5           | ,       | ,         | 7.8   | ,         |     |
| 1.0 |     | 1.0           | 3       | ,         | 7:0   | ,         |     |
|     |     |               |         |           |       |           |     |

In this place the writer intends to speak of the lower shelldeposit alone, i. e., of the two lower samples at A, and series C (cfr. p. 313).

#### Α.

#### Table p. 344.

In a pickings, there have been found the following species not met with in the samples:

Tapes aureus . . . . 1 ½ ind. Psammobia vespertina . . 1 ½ Emarginula fissura . . . 1

The composition of the fauna is:

|           | ft | fr | $\mathbf{prt}$ |   |         |
|-----------|----|----|----------------|---|---------|
| ſ         | 9  | 20 | 19             |   | species |
| <u></u> [ | 19 | 42 | 39             | % | >       |

<sup>1</sup>) Most shell-beds are mentioned in Prof. DE GEER's geological diary of the map-section *strömstad*, in the archives of the Geological Survey of Sweden.

|     | ft    | fr    | prt    |                        |
|-----|-------|-------|--------|------------------------|
| n I | 3 195 | 3292  | 16085  | ind.                   |
| 71  | 14    | 15    | 71     | %                      |
|     | 17    | 28    | 55     | average of percentages |
|     | a     | b     | 1      |                        |
| 1   | 7     | 15    | 26     | species                |
| - 1 | 15    | 31    | 54     | % >                    |
| n [ | 661   | 5 738 | 16 105 | ind.                   |
| γÌ  | 3     | 25    | 72     | %                      |
|     | 9     | 28    | 63     | average of percentages |

C. Table p. 344.

| The | composition | $\mathbf{of}$ | the | fauna | ·is: |
|-----|-------------|---------------|-----|-------|------|
|-----|-------------|---------------|-----|-------|------|

|    | ft    | fr    | prt    |                        |
|----|-------|-------|--------|------------------------|
| í  | 9     | 17    | 14     | species                |
| ٦Į | 22    | 43    | 35     | % >                    |
| Í  | 3 530 | 3 513 | 18 331 | ind.                   |
| Ì  | 14    | 14    | 72     | %                      |
|    | 18    | 28    | 54     | average of percentages |
|    | a     | b     | 1      |                        |
| ſ  | 6     | 14    | 20     | species                |
| Í  | 15    | 35    | 50     | % >                    |
| -1 | 738   | 5 593 | 19 233 | ind.                   |
| Í  | 3     | 22    | 7ō     | 96 <b>•</b>            |
|    | 9     | 28    | 63     | average of percentages |

L- and prt-forms are unusually richly represented. Of special interest is the occurrence of *Psammobia vespertina*.

The shell-gravel is fairly rich in stones. The percentage of clay increases upwards. Mytilus edulis and Litorina litorearudis are, practically speaking, absent, while Mytilus modiolus occurs. From the great frequency of Bittium reticulatum and Rissoa parva, however, as well as from the presence of Lacuna

<sup>&</sup>lt;sup>1</sup>) Here, as in the following, calculated exclusively from the statistical analyses, and not from the pickings too.
divaricata we are able to ascertain that the bed was deposited in water which was, at most, some twenty m deep. Taking into consideration the composition of the fauna and the presence of a superimposed clay, it is, consequently, probable that the part of the shell-bed in question was formed some time before the attainment of the post-glacial transgression maximum.

# Torseröd.

# Table p. 344.

10 km N of Gräbbestad, 1 km SSW of Kragenäs sta., immediately above r in Torseröd (the geological map-section »Fjällbacka»), cc. 0.5 (cc. 5.5) m above the sea, 1915.

At the foot of the plateau the sides of which rise perpendicularly to a height of about 25 m and which to the W forms the boundary of the glen at Torseröd, running in north-westerly direction, there occurs a considerable shell-deposit. It consists of a 4 m thick, upper shell-bank, lying above a bed of clay, which, in its uppermost part, is free from shells, but which, lower down, gradually passes into a pure postglacial shell-gravel. In consequence of the presence of water, it was only possible to take one sample in the underlying bank, viz., at a depth of 0.8 m below the upper surface of the clay. The writer was able, however, to ascertain that the shell-gravel went at least 1.5 m deeper. It is the above-mentioned lower sample we shall now deal with (cfr. p. 307).

| ft    | fr fr | prt  |                        |
|-------|-------|------|------------------------|
| ( 7   | 21    | 11   | species                |
| ्र 18 | 54    | 28   | % >                    |
| 6110  | 6 410 | 4850 | ind.                   |
| 1 35  | 5 37  | 28   | °, >                   |
| 26    | 5 45  | 28   | average of percentages |

|   | a   | Ь      | 1    |                        |
|---|-----|--------|------|------------------------|
| ſ | 3   | 20     | 16   | species                |
| ĺ | 8   | 51     | 41   | %                      |
| 1 | 980 | 11 625 | 4705 | . ind.                 |
| ĺ | 6   | 67     | 27   | %                      |
|   | 7   | 59     | 34   | average of percentages |

The under bed was apparently deposited during the postglacial subsidence. When the water became sufficiently deep, clay began to be deposited. The sample analysed has a large percentage of clay, and is rather free from stones. The fact that *Mytilus edulis*, *Litorina litorea-rudis*, *Lacuna divaricata*, *Bittium reticulatum*, and *Rissoa interrupta* are among the forms most numerously represented, depends most certainly on their having lived on the ledges of the c. 25 m high rock-plateau as well as on the plateau itself, for it is probable that this horizon was deposited shortly before the maximum of the post-glacial transgression, or when the tract lay from 30 to 35 m lower than at present.

#### Fjälla.

# Table p. 344.

15.5 km NNE of Strömstad, 3 km SSW of Svinesund, at the outlet of the Fjällatjärn, 31 m above the sea, G. DE GEER 17/8 1893.

A shell-free clay covers at this place a clayey sand, mixed with gravel and rich in shells.

In addition to those species forming part of the analysis, I have found in a pickings made by Prof. DE GEER:

Boreochiton ruber .  $\frac{1}{3}$  ind. (fr. a) Lunatia intermedia . . . 2 (fr. 1) Pecten septemradiatus . . + (prt, b) Litorina litorea . . . . 5 (ft, b) Vola maxima . . . . .  $\frac{1}{2}$  (prt, 1)  $\rightarrow$  rudis . . . . 4 (ft, b) Mytilus edulis . . . . . 2 (ft, b) Hydrobia ulvae . . . . 1 (fr. b) Cardium edule . . . . .  $\frac{1}{2}$  (fr. 1) Rissostomia membranacea 1 (fr. 1) Cyprina islandica . . . . 4 (fr. b) Turritella terebra . . . 5 (prt, 1)

Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 283

| Lucinopsis undata . |  | 5 (prt, 1)   | Clathurella linearis 3    | (fr, 1) | ) |
|---------------------|--|--------------|---------------------------|---------|---|
| Lucina borealis     |  | 5 (fr, b)    | Nassa reticulata 6        | (fr, 1) | ) |
| Cyamium minutum     |  | 1/2 (prt, b) | > incrassata 2            | (fr, b) | ) |
| Emarginula fissura  |  | 6 (prt, 1)   | Utriculus umbilicatus . 1 | (fr, 1) | ) |

The composition of the fauna is:

|         | ft                      | fr                    | prt                        |                                            |   |
|---------|-------------------------|-----------------------|----------------------------|--------------------------------------------|---|
| 1       | 11                      | 19                    | 16                         | species                                    |   |
| 1       | 24                      | 41                    | 35                         | °° >                                       |   |
| ſ       | 249                     | 73                    | 680                        | ind.                                       | - |
| Ì       | 25                      | 7                     | 68                         | % >                                        |   |
|         | 25                      | 24                    | 51                         | average of<br>percentages                  |   |
|         |                         | ,                     | ,                          |                                            |   |
|         | a                       | D                     | 1                          |                                            |   |
| ſ       | a<br>5                  | 20                    | 1<br>21                    | species                                    |   |
| {       | а<br>5<br>11            | 6<br>20<br>43         | 1<br>21<br>46              | species                                    |   |
| {       | a<br>5<br>11<br>69      | 5<br>20<br>43<br>558  | 1<br>21<br>46<br>368       | species<br>%<br>ind.                       |   |
| {     { | a<br>5<br>11<br>69<br>7 | 20<br>43<br>558<br>56 | 1<br>21<br>46<br>368<br>37 | species<br><sup>25</sup> ><br>ind.<br>% -> |   |

Remarkable is the almost complete absence of Rissoids.

The shell-bed was apparently deposited shortly before the maximum of the post-glacial transgression was reached.

# N. Holt.

#### Table p. 344.

5 km N of Strömstad, 0.15 km WSW of N. Holt, c. 32 m above the sea, G. DE GEER and F. ANDERSSON  $\frac{1}{s}$  1890.

The shell-bed occurs on the north side of a narrow valley. It is more than 0.5 m in thickness, and is superimposed by a clay, 0.3 m thick.

|   | ft       | fr     | prt    |                        |
|---|----------|--------|--------|------------------------|
| ſ | 8        | 23     | 12     | species                |
| ĺ | 19       | 53     | 28     | °; >                   |
| ſ | $6\ 105$ | 10 129 | 11 815 | ind.                   |
| ĺ | 22       | 36     | 42     | % >                    |
|   | 20       | 45     | 35     | average of percentages |

|   | a        | b      | 1      |                        |
|---|----------|--------|--------|------------------------|
| ſ | 4        | 23     | 16     | species                |
| ĺ | 9        | 53     | 38     | % >                    |
| ſ | $2\ 565$ | 13 883 | 11 081 | ind.                   |
| í | 9        | 51     | - 40   | % >                    |
|   | 9        | 52     | - 39   | average of percentages |

The shell-gravel is clayey and contains some few stones.

The shell-bed was apparently deposited immediately before the attainment of the maximum of the post-glacial transgression.

2. Shell-beds not superimposed by clay.

## Nyckleby.

Table p. 340.

6 km S of Strömstad, 0.2 km SSE of Nyckleby, c. 23 m above the sea, G. DE GEER  $\frac{16}{s}$  1890.

The shell-bed is  $1.4 \ m$  in thickness. It is superimposed by mould  $0.2 \ m$  in depth and, downwards, passes into sand. Samples at 0.4 and  $0.7 \ m$  depth.

| t               | ft | fr     | prt   |                        |
|-----------------|----|--------|-------|------------------------|
| 1               | 8  | 17     | 12    | species                |
| ្រែន            | 22 | 46     | 32    | % »                    |
| <b>  15 0</b> 3 | 80 | 12 858 | 3 056 | ind.                   |
| 1 4             | 19 | 41     | 10    | % >                    |
| ę               | 35 | 44     | 21    | average of percentages |
| :               | a  | b      | 1     |                        |
| í               | 7  | 18     | 12    | species                |
| í 1             | 19 | 46     | 32    | °,0 >                  |
| 1 2 67          | 74 | 25 636 | 3 182 | ind.                   |
| ì               | 8  | 82     | 10    | °% >                   |
| 1               | 14 | 65     | 21    | average of percentages |

The shell-gravel is entirely free from stones. Mytilus edulis and Litorina litorea-rudis are very sparsely represented, but various other shallow-water forms occur richly and increase in frequency upwards. The mould that covers the bed is probably derived from a post-glacial clay. These circumstances, together with the sparseness with which the southern forms occur, both as species and, especially, as individuals, make it probable that the shell-bed was deposited during the primo-post-glacial regression.

## Mörhult I.

#### Table p. 340.

Some hundred m N of Fjällbacka church, c. 12.5 m above the sea, 1915.

The shell-bed lies 65 m from the sea, in a glen sloping in a westerly direction towards the shore at an angle of 5—10°. To the SE there rises at a distance of 75 m a perpendicular hill 25—30 m above the level of the other ground. 50 m to the eastward there gradually rises another hill, which, at a distance of 75 m, attains a height of 20 m above the other ground.

In this bed, which has been partly removed by digging, there exists a perpendicular section, almost 5 m deep. In the immediate neighbourhood and on each side there are sandpits, so that, consequently, the bed is of inconsiderable extent. It rests on moraine, and the lowest sample was taken from between the moraine boulders. The shell-gravel continues unaltered 0.4 m above the sample-series, and is covered by a bed of sandy mould with stones.

| It          | Ir    | prt       |                        |
|-------------|-------|-----------|------------------------|
| f 8         | 24    | 15        | species                |
| l 17        | 51    | <b>32</b> | %                      |
| f 24 975    | 18790 | 2953      | ind.                   |
| <b>\</b> 54 | 40    | 6         | % »                    |
| 35          | 46    | 19        | average of percentages |

ERNST ANTEVS.

|    | a   | Ъ      | 1    |                           |
|----|-----|--------|------|---------------------------|
| ſ  | 4   | 27     | 16   | species                   |
| ĺ  | 9   | 57     | 34   | % >                       |
| ſ  | 606 | 42 396 | 2740 | ind.                      |
| ٦. | 1   | 93     | 6    | <u>.</u>                  |
|    | 5   | 75     | 20   | average of<br>percentages |

The percentage of stone is, at the bottom, very great, which gives rise to a general minimum of frequency, but it decreases upwards.

No real importance should be attached to the circumstance that some shallow-water forms attain a little noticeable maximum of frequency in the middle strata of the bed, while other forms do this in its upper part; as the shell-bed was certainly deposited when the level of the water stood some ten *m* above it, and the molluscs, to some extent at least, lived in the neighbouring higher parts, for the composition of the fauna points most decidedly to the deposition having taken place during the primo-post-glacial regression.

#### Summinge.

#### Table p. 340.

3 km S of Strömstad, Hvalö, 0.2 km E of Summinge, 11 m above the sea, G. DE GEER  $^{21}/7$  1890.

The shell-bed is some m thick and, downwards, passes into pure clay. One sample 1 m below the surface.

In a pickings the following species, not found in the statistical sample, have been determined:

| Anomia striata 1/2 ind          | . (prt, 1) | Antalis entalis            | 1 | (prt, b) |
|---------------------------------|------------|----------------------------|---|----------|
| Astarte compressa 1/2           | (ft, a)    | Siphonentalis lofotensis . | 1 | (prt, b) |
| <ul> <li>elliptica +</li> </ul> | (ft, a)    | Patella vulgata            | 1 | (fr, b)  |
| Tapes virgincus $\ldots$ $1/_2$ | (fr, 1)    | Emarginula fissura         | 1 | (prt, l) |
| Lucina borealis , 1/2           | (fr, b)    | Polytropa lapillus         | 2 | (fr, b)  |
| Solen sp +                      |            | Balanus porcatus           | + | (ft, a)  |
| Thracia villosiuscula 1/2       | (fr, b)    |                            |   |          |

Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 287 The composition of the fauna is:

|        | ft                       | fr                           | $\operatorname{prt}$      |                               |
|--------|--------------------------|------------------------------|---------------------------|-------------------------------|
| ſ      | 11                       | 20                           | 14                        | species                       |
| í      | <b>24</b>                | 45                           | 31                        | % »                           |
| 1      | 2520                     | 4 905                        | 500                       | ind.                          |
| ٦Ì     | 32                       | 62                           | 6                         | % »                           |
|        | <b>28</b>                | 53                           | 19                        | average of                    |
|        |                          |                              |                           | percentages                   |
|        |                          |                              |                           |                               |
|        | a                        | ь                            | 1                         |                               |
| ſ      | a<br>7                   | ь<br>23                      | 1<br>15                   | species                       |
| {      | a<br>7<br>16             | b<br>23<br>51                | 1<br>15<br>83             | species<br>% >                |
| {      | a<br>7<br>16<br>455      | b<br>23<br>51<br>6 845       | 1<br>15<br>33<br>600      | species<br>%                  |
| {<br>{ | a<br>7<br>16<br>455<br>6 | b<br>23<br>51<br>6 845<br>87 | 1<br>15<br>33<br>600<br>7 | species<br>% ><br>ind.<br>% > |

The shell-bed is fairly gravelly. *Rissoa interrupta*, *Verruca* Strömia, Anomia ephippium, and Mytilus edulis are most richly represented. The warmer forms occur in a relatively large number of species, but individually they are very poorly represented. The shell-bed, consequently, was probably deposited in water some ten m deep and during the latter part of the primo-post-glacial regression.

### Lunnevik I.

# Table p. 340.

12 km N of Strömstad, c. 17 m above the sea, G. DE GEER  $^{19}/_{8}$  1893.

One sample, 0.5 m below the ground. The composition of the fauna is:

| ft          | fr    | $\operatorname{prt}$ |                        |
|-------------|-------|----------------------|------------------------|
| 9           | 18    | 11                   | species                |
| 26          | 47    | 29                   | % »                    |
| j 17 115    | 8 682 | 2580                 | ind.                   |
| <b>)</b> 60 | 31    | 9                    | % >                    |
| 42          | 39    | 19                   | average of percentages |

| a       | Ь                                | 1                                                                                                                                        |                                                                                                                                                                                                             |
|---------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6       | 20                               | 12                                                                                                                                       | species                                                                                                                                                                                                     |
| 16      | 53                               | 31                                                                                                                                       | °6 >                                                                                                                                                                                                        |
| 1 4 2 0 | $23\ 955$                        | 2617                                                                                                                                     | ind.                                                                                                                                                                                                        |
| 5       | 86                               | 9                                                                                                                                        | % >                                                                                                                                                                                                         |
| 10      | 69                               | 20                                                                                                                                       | average of<br>percentages                                                                                                                                                                                   |
|         | a<br>6<br>16<br>1 420<br>5<br>10 | a         b           6         20           16         53           1 420         23 955           5         86           10         69 | a         b         1           6         20         12           16         53         31           1 420         23 955         2 617           5         86         9           10         69         20 |

The shell-gravel contains an inconsiderable number of stones. Mytilus edulis predominates, and Verruca Strömia, Rissoa interrupta, and Anomia spp. are very numerously represented. The bed, consequently, was deposited in very shallow water and, in all probability, during the primo-post-glacial regression, or at the regression-maximum.

# Löndal.

# Táble p. 342.

3.5 km SSW of Fiskebäckskil, cc. 14 m above the sea, 1915. The shell-bearing deposit, which is encountered in a valley
175 m wide and running approximately in an E-W direction, is of considerable extent and has a thickness of more than 5 m. The substratum was not reached. Samples from depths of 0.5,
2.5 and 4.5 m. They were taken 35 m from the northern side of the hill which rises fairly perpendicularly to a plateau some 6-8 m above the level surface of the valley.

|    | ft    | fr     | prt    |                           |
|----|-------|--------|--------|---------------------------|
| ſ  | 10    | 24     | 12     | species                   |
| Í  | 23    | 52     | 26     | % >                       |
| [2 | 22319 | 18 580 | 17538  | ind. '                    |
| Í  | 38    | 32     | 30     | % >                       |
|    | 30    | 42     | 28     | average of<br>percentages |
|    | a     | b      | 1      |                           |
| ſ  | 7     | 20     | 19     | species                   |
| Í  | 15    | 44     | 41     | %                         |
| ſ  | 3 876 | 36545  | 16 301 | ind.                      |
| Í  | 7     | 64     | 29     | ", >                      |
|    | 11    | 54     | 35     | average of percentages    |

The shell-bed contains, especially in its upper half, very much gravel. The frequency of the shallow-water forms and the decrease upwards of *Mytilus cdulis*, *Litorina litorea-rudis*, and *Lacuna divaricata* point to deposition at an inconsiderable but increasing depth. It is, too, probable that the molluses, to a great degree, lived on the neighbouring rock-plateau. The maximum, in the middle levels, of *Rissoa parva*, *R. interrupta*, *Bittium reticulatum*, *Onoba striata*, etc., depends, partly, on the less crumbled character of the shell-gravel, and partly, apparently, on more favourable conditions of the bottom and the vegetation.

The richness of species and individuals of the ft-, fr-, and bforms, as well as the above-mentioned variation of frequency of the shallow-water forms, speaks decidedly in favour of the hed having been deposited during the post-glacial transgression.

## Hvalö.

## Table p. 343.

3 km SSW of Strömstad, SW of Askvik, c. 6 m above the sea, G. DE GEER <sup>9</sup>/s 1895.

Samples at 1 and 3 *m* depth. The composition of the fauna is:

| ft          | fr     | prt    |                        |
|-------------|--------|--------|------------------------|
| <b>9</b>    | 20     | 18     | species                |
| <b>(</b> 19 | 43     | 38     | % >                    |
| f 29 605    | 29 477 | 33 330 | ind.                   |
| 32          | 32     | 36     | %                      |
| 26          | 57     | 37     | average of percentages |
| a           | b      | 1      |                        |
| 6           | 21     | 20     | species                |
| 13          | 44     | 43     | %                      |
| 5 469       | 51 195 | 33 440 | ind.                   |
| <b>\</b> 6  | 57     | 37     | °6 >                   |
| 9           | 51     | 40     | average of percentages |

21-170108. G. F. F. 1917.

The shell-gravel is almost perfectly free from stones, and has probably been deposited at a depth of some ten m or in somewhat shallower water, and, to judge from the decrease upwards of the shallow-water forms and from the composition, during the post-glacial transgression.

The forms most numerously represented are, in the order given, Verruca Strömia, Bittium reticulatum, Anomia spp., Rissoa parva, R. interrupta, and Saxicava rugosa.

#### Mörhult II.

Table p. 343.

0.7 km NNW of Fjällbacka church, 4.3 (4.6) m above the sea, 1915.

In the present shell-bed, which is situated 25 m from the shore and at the foot of a hill, which, 15 m E of the section, rises steeply to a height of 9 m above the sea and, at a distance of 50 m, to a height of 18—20 m, there was encountered the following profile:

|            | ground 4.6 m above the sea                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| uppermost, | coarse gravel                                                                                                                     |
|            | Ostrea-gravel (sample 4.4) 0.2-0.4                                                                                                |
|            | shell-bearing gravel (samples at $0.2 m$ depth<br>and at the bottom) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 10$ |
|            | moraine +                                                                                                                         |

The sharp division between the two shell-bearing layers, the different aspect and the varying fauna show undoubtedly that the two layers are of essentially different ages. The Ostrea-gravel dates, probably, from the latter part of the last upheaval of the land, and will be treated of on p. 329. The lower shell-gravel, which is discussed here, was, on the other hand, as is seen by the composition of the fauna, certainly deposited during the post-glacial transgression, for, when discussing the time of deposition of the bank, no importance should be ascribed to the minimum of frequency that distinguishes the lower sample, this minimum depending essentially

on the far greater percentages of stones and of clay. In addition, it is probable that the molluscs found in the bed have, in part, lived on the neighbouring rocky height, thereby considerably reducing their value as bathymetric indicators.

The composition of the fauna is:

|   | fı   | fr    | prt   |                           |
|---|------|-------|-------|---------------------------|
| ſ | 12   | 18    | 6     | species                   |
| Ì | 33   | 50    | 17    | ?ő >                      |
| ſ | 6354 | 2.669 | 9 925 | ind.                      |
| Ì | 34   | 41    | 52    | % >                       |
|   | 33   | 32    | 40    | average of<br>percentages |
|   | a    | b     | 1     |                           |
| ſ | 7    | 17    | 12    | species                   |
| Ì | 20   | 47    | 33    | 0;j >>                    |
| 1 | 584  | 8 285 | 9 986 | ind.                      |
| Ì | 3    | 44    | 53    | % >                       |
|   | 11   | 46    | 43    | average of percentages    |

#### Smittmyren.

Table p. 344.

0.6 km ENE of Strömstad, 31.1 m above the sea, G. DE GEER  $\frac{5}{8}$  1889.

In some pickings the writer found in addition to those represented in the samples:

| Pecten varius + ind.                              | (prt, l) | Tapes decussatus 5 <sup>1</sup> / | '2 (prt, 1) |
|---------------------------------------------------|----------|-----------------------------------|-------------|
| Cardium edule 3                                   | (fr, 1)  | Lucina borcalis 4                 | (fr, b)     |
| > cf. exiguum . $1^{1/2}$                         | (fr, 1)  | Patella vulgata 3                 | (fr, 1)     |
| Laevicardium norvegicum 1/2                       | (fr, 1)  | Rissostomia membranacea 1         | (fr, 1)     |
| Cyprina islandica 1/2                             | (fr, b)  | Lunatia intermedia 3              | (fr, 1)     |
| <i>Tapcs aureus</i> 6 <sup>1</sup> / <sub>2</sub> | (fr, 1)  | Nassa incrassata 1                | (fr, 1)     |
| > pullastra $1^{1/2}$                             | (fr, 1)  | Buccinum undatum 2                | (prt, b)    |

The composition of the fauna is:

| ft<br>f 7    | fr<br>27 | prt<br>14 | species                   |
|--------------|----------|-----------|---------------------------|
| 15           | 55       | 30        | 26 >                      |
| <b>9 900</b> | 18505    | 8156      | ind.                      |
| 27           | 51       | 22        | % >                       |
| 21           | . 53     | 26        | average of percentages    |
| a            | b        | 1         |                           |
| j 3          | 22       | 23        | species                   |
| <b>ί</b> 6   | 46       | 48        | % 2                       |
| ( 1 340      | 27 080   | 8 820     | ind.                      |
| 14           | 72       | 24        | <u>%</u> =                |
| 5            | 59       | 36        | average of<br>percentages |

Of special interest is the occurrence of *Tapes decussatus*, this being the oldest known one in Bohuslän.

The samples contain some few stones and hardly any elay. Judging from the extraordinary frequency of *Mytilus edulis* in the lower part of the bank, the bed must certainly have been deposited during subsidence, or during the latter part of the post-glacial transgression.

# Shell-beds from the post-glacial transgression maximum.

Table p. 345.

4.5 km N of Strömstad, 0.3 km SSW of Medvik, c. 32 m above the sea, G. DE GEER  $^{31}/_{7}$  1890.

In this thick shell-bed Prof. DE GEER took a sample, A, c. 26 m above the sea and, 15 m from here, a series, B, with samples from a depth of 1 and 3 m, or at a height of c. 31 and c. 29 m.

| ft<br>S     | fr<br>22 | $\operatorname{prt}_{\mathrm{S}}$ | species                |
|-------------|----------|-----------------------------------|------------------------|
| 21          | 58       | 21                                | % >                    |
| f 9419      | 7263     | 2643                              | ind.                   |
| <b>{</b> 49 | 37       | 14                                | % >                    |
| 35          | 48       | 17                                | average of percentages |

| a      | b         | 1    |                        |
|--------|-----------|------|------------------------|
| 6      | 17        | 15   | species                |
| 16     | 45        | 39   | ?ó >                   |
| 1714   | $14\ 989$ | 2679 | ind.                   |
| )<br>9 | 77        | 14   | %                      |
| 12     | 61        | 27   | average of percentages |

The shell-gravel is but inconsiderably stony. The shallowwater forms and *Mytilus edulis*, *Litorina litorea-rudis*, *Rissoa interrupta*, and *R. parva*, especially, occur with very great frequency.

в.

The composition of the fauna is:

| ft             | fr    | prt   | ptm                       |               |
|----------------|-------|-------|---------------------------|---------------|
| ſ 7            | 19    | 7     | 1 spec                    | ies           |
| 1 20           | 56    | 21    | 3 % >                     |               |
| <b>12 71</b> 3 | 7248  | 1 760 | 30 ind.                   |               |
| <b>أ</b> 59    | 33    | 8     | 0 % 2                     |               |
| 40             | 44    | 14    | 2 averag<br>percent       | e of<br>tages |
| a              | հ     |       | 1                         |               |
| 1 3            | 19    | )     | 12 species                |               |
| <b>ĺ</b> 9     | 56    | 3     | 35 % »                    |               |
| j 194          | 19.43 | 2     | 1760 ind.                 |               |
| 1              | 91    | L     | S % >                     |               |
| õ              | 7     | 3     | 22 average o<br>percentag | of.<br>es     |

The shell-gravel is fairly stony.

The shallow-water forms predominate, but do not attain the same frequency as in A. They are about equally numerously represented in both samples. In the immediate neighbourhood there rises a hill to the height of about 35 m above the sea. It is probable that the molluses lived partly on this eminence.

In consequence of the cold character of the bed, it was only with hesitation that the writer referred it to this group, for it is not altogether unlikely that it was deposited as early as during the regression in primo-post-glacial times; perhaps, however, the fauna is too warm for such a supposition. However, the determination of the age has been essentially based on the variation of frequency of the shallow-water forms, according to which the lower part (A) of the bed was deposited in shallower water than the upper part (B). Thus, the deposition possibly occurred during the last part of the transgression and the epoch of greatest depression.

#### Lunnevik II. Table p. 845.

12 km N of Strömstad, c. 35 m above the sea, G. DE GEER  $^{19}/_{8}$  1893.

DE GEER (1910, p. 1179) has communicated the following section of the shell-bed:



Fig. 6. Section at Lunnevik II.

The uppermost sample was taken 15 m south of the others, all of which are from one and the same profile.

In a pickings there have been found the following forms, not discovered in the samples:

| Hinnites pusio 1/2 ind. (ptm, 1)                              | Solen ensis +          | (fr, b)  |
|---------------------------------------------------------------|------------------------|----------|
| Pecten tigrinus 1/2 (prt, b)                                  | Antalis entalis 4      | (prt, b) |
| Cardium echinatum 1 (fr, 1)                                   | Emarginula fissura 2   | (prt, 1) |
| Laevicardium norvegicum 1 <sup>1</sup> / <sub>2</sub> (fr, l) | Capulus hungaricus 2   | (prt, 1) |
| Cyprina islandica 1/2 (fr, b)                                 | Clathurella linearis 2 | (fr, l)  |
| Tapes pullastra 2 (fr, b)                                     | Cylichna sp +          |          |
| Macoma calcaria $1 \frac{17}{2}$ (ft, a)                      | Balanus porcatus 1     | (ft, a)  |

| · ft        | fr     | $\mathbf{prt}$ | pt        | m        |                         |
|-------------|--------|----------------|-----------|----------|-------------------------|
| ſ 13        | 34     | 23             |           | 7        | species                 |
| 17          | 44     | 30             | 1         | 9        | % »                     |
| f 58 369    | 24116  | 21 041         | 6         | 3        | ind.                    |
| 1 57        | 23     | 20             |           | 0        | % >                     |
| 36          | 34     | 25             | +         | 5        | average of percentages  |
| a           | b      |                | 1         |          |                         |
| 9 ا         | 34     | :              | <b>34</b> |          | species                 |
| 12          | 44     | :              | 44        | %        | ,                       |
| 10 516      | 69 341 |                | 20851     |          | ind.                    |
| <u>ا</u> 10 | 69     | I              | 21        | %        | ,                       |
| 11          | 57     | ,              | 32        | av<br>pe | verage of<br>ercentages |

The composition of the fauna is:

In the gothi-glacial clay lying immediately under the bank there have been found:

| Pecten islandicus 3 ind  | . Mya truncata 2   |
|--------------------------|--------------------|
| <i>Astarte elliptica</i> | Sipho sp +         |
| Saxicava rugosa 1        | Balanus porcatus 1 |
| Macoma calcaria 1/2      |                    |

The lowest sample is fairly sandy, and this is probably the chief cause of the pervading minimum of frequency existing here. The shallow-water forms are all numerously represented in the bed, but, for the most part, attain their not very prominent maxima in different horizons, this being, probably, the result of varying conditions of the bottom, the vegetation, etc. The material 2 < mm of *Mytilus edulis* shows in the various samples, from below upwards, the following weight-figures in gr 8.7, 17, 21.6 24.7 and 13.2; the maximum of frequency occurs in the uppermost sample. It is, consequently, probable that the molluscs have, to an essential degree, lived on the neighbouring hill, and that the bed was deposited during the period immediately preceding, during, and immediately after the post-glacial transgression maximum.

# Rössö.

Table p. 346.

10 km S of Strömstad, Rössö, N 6' E of the triangle-point,
c. 24 m above the sea, G. DE GEER <sup>5</sup>/7 1894.

In the same pit Prof. DE GEER took two sample-series at a distance of 6 m from each other:

| c. | 23.6                              | m | above | the | sea | and | 0.2         | m | below | the | surface |
|----|-----------------------------------|---|-------|-----|-----|-----|-------------|---|-------|-----|---------|
| c. | 23.3                              |   |       | ,   |     |     | 0.8         |   |       | ,   |         |
| c. | $22 \cdot 2$                      |   |       | ,   |     |     | <b>1</b> ·8 |   |       | ,   |         |
| c. | 21.7                              | m | above | the | sea | and | $2 \cdot 3$ | m | below | the | surface |
| c. | <b>21</b> ·0                      |   |       | ,   |     |     | 3.0         |   |       | 3   |         |
| he | here below $>0.9$ m shell-gravel. |   |       |     |     |     |             |   |       |     |         |

In a pickings, chiefly from the uppermost part of the bed, the writer has found the following species, not represented in the statistical samples:

| Pecten varius 1 ind. (prt, 1)     | Macoma baltica           | $\frac{1}{2}$ | (fr, b)  |
|-----------------------------------|--------------------------|---------------|----------|
| > septemradiatus 1/2 (prt, b)     | Antalis entalis          | 1             | (prt, b) |
| Laevicardium norvegicum 1 (fr, 1) | Lepeta caeca             | 4             | (ft, a)  |
| Astarte elliptica 1 (ft, a)       | Aporrhais pes pelecani . | 1             | (fr, 1)  |
| Lucina borealis $2^{1/2}$ (fr, b) | Buccinum undatum         | 1             | (prt, b) |

In the same pickings there occur 19 individuals of Tapes decussatus and 7 of T. aureus, which, consequently, characterize the upper part of the bank.

|   | ft              | fr     | $\mathbf{prt}$ | pt     | m        |                         |    |
|---|-----------------|--------|----------------|--------|----------|-------------------------|----|
| ſ | 15              | 36     | 25             |        | 4        | species                 |    |
| ĺ | <sup>.</sup> 19 | 45     | 31             |        | 5        | % >                     |    |
| ſ | 65 233          | 48099  | 20619          |        | 3        | ind.                    |    |
| ĺ | 49              | 36     | 15             | _      | _        | %                       |    |
|   | 34              | 40     | 43             |        | 3        | average o               | f  |
|   |                 |        |                |        |          | percentag               | ĊS |
|   | a               | 1      | b              | 1      |          |                         |    |
| ſ | 12              | 3      | 6              | 32     |          | species                 |    |
| ĺ | 15              | 4      | 5              | 40     | %        | >                       |    |
| ſ | $6\ 620$        | 107 15 | i4             | 20 471 |          | ind.                    |    |
| ĺ | <b>5</b>        | 8      | <b>60</b>      | 15     | 00       | >                       |    |
|   | 10              | 6      | 2              | 28     | av<br>pe | verage of<br>ercentages |    |

From 22.5 to 23.5 *m* above the sea there occur in the shellbank large masses of *Corallina officinalis*.

The frequency decreasing upwards of the most typical shallow-water forms *Mytilus edulis*, *Litorina litorea-rudis*, *Lacuna divaricata*, etc., in the lower part of the shell-bed and the frequency, increasing in the same direction of the same species in its upper part clearly show that the deposition occurred during subsidence and a subsequent upheaval, or during the time shortly before, during, and shortly after the post-glacial transgression maximum.

#### Hällan.

Table p. 346.

3 km NNW of Strömstad, 0.4 km NE of Hällan, c. 36.5 m above the sea, G. DE GEER  $^{29}/7$  1890.

In a pickings occur the following species, not found in the statistical sample:

Cardium cf. exigium . 4 ind. (fr, 1) Polytropa lapillus . . . 2 (fr, b) Astarte compressa . . . 1 (ft, a) Balanus porcatus . . . + (ft, a) Lepeta caeca . . . . . 1 (ft, a) Echinocyanus pusillus . 2 Lacuna pallidula . . . . 2 (prt, b)

|   | ft        | fr    | $\operatorname{prt}$ |                        |
|---|-----------|-------|----------------------|------------------------|
| ſ | 10        | 16    | 8                    | species                |
| Ì | <b>29</b> | 47    | 24                   | % »                    |
| ſ | 2996      | 3 171 | 1 531                | ind.                   |
| Ì | 39        | 41    | 20                   | °° >                   |
|   | 34        | 44    | 22                   | average of percentages |
|   | a         | ь     | 1                    |                        |
| 1 | 7         | 17    | 10                   | species                |
| Ì | 21        | 50    | 29                   | % >                    |
| ſ | 596       | 5521  | 1 581                | ind.                   |
| Ì | 8         | 72    | 20                   | % >                    |
|   | 14        | 61    | 25                   | average of percentages |

The shell-bank can be characterized as shell-bearing sand. The forms most numerously represented are *Rissoa interrupta*, *Verruca Strömia*, and *Bittium reticulatum*, and the bed gives the impression of having been deposited in water 5—10 m deep, or during the greatest post-glacial subsidence.

# Hälle I.

#### Table p. 346.

6 km NNE of Strömstad, 0.4 km N of Hälle, 0.5 km W of Kilarna, c. 39 m above the sea, G. DE GEER <sup>3</sup>/s 1890.

According to Prof. DE GEER there exists here a shell-bank, 0.3 m thick, on shell-free sand.

In pickings there have been determined the following forms not met in the samples:

*Tapes decussatus* is in the pickings represented by 11 specimens.

|   | ft       | fr     | prt   |                        |
|---|----------|--------|-------|------------------------|
| 1 | 7        | 21     | 11    | species                |
| í | 18       | 54     | 28    | ;; >                   |
| 1 | 9 360    | 2 731  | 3 714 | ind.                   |
| Ì | 59       | 17     | 24    | °/2 >                  |
|   | 39       | 35     | 26    | average of percentages |
|   | а        | ь      | 1     |                        |
| ſ | <b>2</b> | 20     | 17    | . species              |
| í | <b>5</b> | 51     | 44    | % »                    |
| ſ | 380      | 11 371 | 3884  | ind.                   |
| Ì | <b>2</b> | 73     | 28    | %                      |
|   | 4        | 62     | 34    | average af             |

The fauna points to deposition in very shallow water. Probably, the shell-bed was formed at the time of the greatest post-glacial depression.

### Nötholmen.

See p. 310. — The clay below the shell-bed at section A. In two analyses there have been found:

0.8 m below the surface of the clay:

| Borcochiton ruber 2/6 ind. (fr, a | ) Tectura virginea 2 (fr, b)      |
|-----------------------------------|-----------------------------------|
| Anomia ephippium 2 (fr, 1         | ) Litorina obtusata 1 (fr, b)     |
| > aculeata 1 (fr, k               | ) <i>Rissoa parva</i> 8 (prt, 1)  |
| Timoclea ovata 1 (prt, b          | ) > interrupta 6 (fr, b)          |
| Corbula gibba 1/2 (prt, 1         | ) Bittium reticulatum 13 (prt, 1) |
| Saxicava rugosu 1 (ft, a          | ) Verruca Strömia 5 (ft, b        |
| and $1.3 m$ below the surface     | ce of the clay:                   |
| Boreochiton ruber 1/6 ind. (fr, a | ) Onoba striata 1 (fr, b)         |
|                                   | Diana numa 7 (not 1)              |

| Anomia ephippium .    |  | 2 (fr, b)  | Rissoa parva 7                   | (prt, l) |
|-----------------------|--|------------|----------------------------------|----------|
| Portlandia cf. tenuis |  | 1 (prt, b) | <ul> <li>interruptă 3</li> </ul> | (fr, b)  |
| Gibbula cincraria     |  | 1 (fr, b)  | Bittium reticulatum 14           | (prt, 1) |
| Lacuna pallidula      |  | 1 (prt, b) | Verruca Strömia 5                | (ft, b)  |
| > divaricata          |  | 1 (ft, a)  |                                  |          |

The composition of the fauna is:

| ft | fr  | prt       |
|----|-----|-----------|
| 3  | 8   | 6 species |
| 18 | -17 | 35 %      |
| a  | ь   | 1         |
| 3  | 11  | 3 species |
| 18 | 64  | 18 % >    |

The clay is, obviously, of post-glacial age.

# Tofterna.

# В.

See p. 308. — From the clay underlying the shell-gravel at this place there are a couple of pickings and washings made by Prof. DE GEER. In a pickings 2.5 m above the sea, there have been determined:

| b) Abra sp $1/2$                     |
|--------------------------------------|
| b) Macoma calcaria 1 (ft, a          |
| 1) Saxicava rugosa 2 (ft, a          |
| 1) Antalis entalis 5 (prt, b)        |
| a) Tectura virginea 1 (fr, b         |
| b) Lunatia intermedia 1 (fr, 1       |
| b) Aporrhais pes pelecani . 1 (fr, 1 |
| 1) Onoba striata 1 (fr, b            |
| b) Waldheimia cranium 23 (prt, a     |
| a) Verruca Strömia 5 (ft, b          |
| a)                                   |
|                                      |

The upper part of the clay is poor in shells. A sample contained in addition to a part of the above-mentioned species:

| Axinus sp 1 ind.                                          | Rissoa interrupta 3 (fr,    | b) |
|-----------------------------------------------------------|-----------------------------|----|
| Lepton nitidum $\ldots \ldots \ldots \frac{1}{2}$ (fr, 1) | Nassa sp 1                  |    |
| Gibbula sp 1                                              | Clathurella linearis 1 (fr, | l) |
| Lacuna divaricata 1 (ft, a)                               |                             |    |

In a third sample from a level not stated, there were determined, among others:

 Tapes decussatus
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

The composition of the fauna present in the three samples taken as a whole is:

| ft | fr | $\mathbf{prt}$ | ptm  |         |
|----|----|----------------|------|---------|
| 7  | 11 | • 7            | 1    | species |
| 27 | 42 | 27             | 4 %  | ć >     |
| a  | Ե  |                | 1    |         |
| 7  | 10 |                | 9    | species |
| 27 | 38 |                | 35 % | >       |

The clay lying under the shell-bed is, consequently, of postglacial age.

# Uppsikt.

Strömstad, the eastern boundary of the town, at the highway, G. DE GEER <sup>18</sup>/7 1889.

A pickings from a post-glacial clay:

| Anomia aculeata 1 ind. (fr, b)                                 | Timoclea ovata $\ldots \ldots 1/2$ | (prt, b) |
|----------------------------------------------------------------|------------------------------------|----------|
| > striata 1 (prt, 1)                                           | Antalis entalis 10                 | (prt, b) |
| Pecten septemradiatus 4 (prt, b)                               | Lepeta cacca 1                     | (ft, a)  |
| > tigrinus 3 (prt, b)                                          | Litorina litorea 1                 | (ft, b)  |
| Nucula nucleus 1 (fr, 1)                                       | Aporrhais pes pelecani . 6         | (fr, 1)  |
| Cardium echinatum $1/2$ (fr, 1)                                | Nassa incrassata 1                 | (fr, b)  |
| $\Rightarrow$ fasciatum 1 <sup>1</sup> / <sub>2</sub> (prt, b) | Buccinum undatum 1                 | (prt, b) |
| Cyprina islandica + (fr, b)                                    | Terebratulina sp 1                 |          |
| Astarte compressa 3 (ft, a)                                    | Waldheimia cranium 1/2             | (prt, a) |

The composition of the fauna is consequently:

|   | ft | fr | $\mathbf{prt}$ |         |
|---|----|----|----------------|---------|
| ſ | 3  | 6  | 8              | species |
| ĺ | 18 | 35 | 47             | % »     |
|   | a  | b  | 1              |         |
| ſ | 3  | 10 | 4              | species |
| ĺ | 18 | 59 | 23             | % >     |

Although there is no statement with regard to the height, this shell-bearing clay has been included, as it can with certainty be ascribed to the post-glacial transgression maximum.

# Håfve.

# Table p. 412.

11 km ESE of Strömstad, E of Håfve, at the foot of the hill E of the brook, 22.3 m above the sea, G. De GEER  $^{20/9}$  1890.

Prof. DE GEER measured the following section:

Of the Ostrea-clay a washing has been made of a quantity which, however, was neither measured nor weighed, and the figures showing individuals have reference to the number of individuals found.

The composition of the fauna is:

|    | ft | fr  | prt |                           |
|----|----|-----|-----|---------------------------|
| ſ  | 8  | 12  | 7   | spccies                   |
| ٦. | 30 | -11 | 26  | % >                       |
| 1  | 25 | 62  | 351 | ind.                      |
| ì  | 6  | 14  | 80  | %                         |
|    | 18 | 29  | 53  | average of percentages    |
|    | а  | Ь   | 1   |                           |
| 1  | 5  | 10  | 12  | species                   |
| ĺ  | 18 | 37  | 45  | ;ć >                      |
| ſ  | 16 | 57  | 337 | ind.                      |
| ĺ  | -1 | 14  | 82  | % 1                       |
|    | 11 | 26  | 63  | average of<br>percentages |

The clay was certainly deposited during the post-glacial transgression maximum.

#### Stare.

#### Table p. 347.

3.5 km SSE of Strömstad, 0.4 km WSW of Stare, c. 32.6 m above the sea, G. DE GEER  $^{21}/7$  1890.

Samples at 1 and 1.6 m depth.

In a pickings occur the following species not found in the statistical samples:

| Pecten varius . | • | • |   | • | • |   | • | • | 2 ind. | (prt, 1) |
|-----------------|---|---|---|---|---|---|---|---|--------|----------|
| Cardium edule   |   | • | • | • |   | • | • | • | 2      | (fr, l)  |
| Mya truncata .  |   | • | • | • |   |   | • |   | 1/2    | (ft, a)  |

In the same pickings *Tapes decussatus* is represented by 43 and *T. aureus* by 13 individuals, which species consequently characterize the shell-bed. Also important is the occurrence of *Solecurtus antiquatus*.

The composition of the fauna is:

|   | ft   | fr    | $\operatorname{prt}$ | р     | $_{\mathrm{tn}}$ |                           |
|---|------|-------|----------------------|-------|------------------|---------------------------|
| 1 | 8    | 20    | 9                    |       | 1                | species                   |
| Í | 21   | 53    | 23                   |       | 3                | ,<br>,<br>,               |
| ſ | 2476 | 4 879 | 31 741               |       | 5                | ind.                      |
| Ì | 6    | 13    | 80                   | -     | - :              | % » <sup>:</sup>          |
|   | 14   | - 32  | 52                   |       | 2                | average of<br>percentages |
|   | а    |       | Ե                    | 1     |                  |                           |
| ſ | . 3  |       | 18                   | 17    | ;                | species                   |
| Í | 8    |       | 47                   | 45    | %                | 2                         |
| 1 | 341  | 5     | 648                  | 32981 |                  | ind.                      |
| ì | 1    |       | 14                   | 85    | %                | 2                         |
|   | 4    | ·     | 31                   | 65    | av<br>pe         | erage of<br>rcentages     |

The lower sample contains some amount of stones, the upper one a fairly large quantity. The fauna points to deposition in very shallow water. There is nothing in the frequency of the species to show that there was any change of level during the deposition of the bed, but its age is, probably, to be ascribed to the post-glacial transgression maximum.

#### Sandbogen.

Table p. 347.

1.5 km NNE of Grafvarna, c. 36 m above the sea, 1915. Cfr. A. LINDSTRÖM 1902, p. 76.

The shell-bank is situated in an inconsiderable hollow in a large, level rocky plateau. It is of fairly large extent and has a thickness of 2 m. The samples were taken from the lowest, middle and uppermost parts of the bank, which is covered by a layer of coarse gravel.

In addition to the forms found by the writer, LINDSTRÖM in his list of species mentions:

Pecten varius (prt, 1) Cardium edule (fr, 1) Tapes pullastra (fr, b) Lucina borealis (fr, b) Corbula gibba (prt, 1).

Mya truncata (ft, a) Nacella pellucida (prt, b) Lepeta cacca (ft, a) Rissoa violacea (prt, 1) The composition of the fauna is:

|   | ft               | fr           | prt        |             |
|---|------------------|--------------|------------|-------------|
|   | j 10             | 26           | 19         | species     |
|   | 21               | 54           | 25         | 96 ×        |
|   | ſ 16 <u>1</u> 90 | 14 804       | $23 \ 930$ | ind.        |
|   | 29               | 27           | 44         | % >         |
|   | 25               | 41           | 34         | average of  |
|   |                  |              | •.         | percentages |
|   | a                | ь            | 1          | •           |
|   | 6 7              | .24          | 17         | species     |
| • | 14               | 50           | 36         | % · >       |
|   | ( 0.0-0          | 60 979       | 90.000     | ind         |
|   | 3 852            | ~0010        | £0.000     | mu.         |
|   | 3 852<br>  7     | 20 575<br>50 | <b>4</b> 3 | mu.<br>%    |

The shell-gravel is sandy and, in the lower part of the bank, contains a fairly large amount of stones. This is probably one of the causes of the minimum of frequency of the molluses here. Everything points to the whole of the bank having been deposited in very shallow water, and the frequency maximum, in the upper parts of the bed, of *Mytilus edulis, Litorina litorea-rudis, Rissoa parva*, etc., shows that the land lay highest when it was formed. The time for the formation of the bed can, by means of the compositions and of the high situation, be with certainty fixed at the greatest post-glacial depression of the land and the very beginning of the last upheaval.

37 m, consequently, forms a minimum measure of the postglacial transgression of the district.

### Efvenås.

#### Table p. 347.

 $1.5 \ km$  E of Fiskebäckskil, SE of Efvenås. The uppermost sample,  $28.5 \ m$  above the sea, of the sample-series B 29, taken, and in part examined, by Prof. DE GEER (1910, p. 1173).

According to DE GEER the post-glacial shell-bank, at the height of  $28 \cdot 25 m$ , is superimposed, with a sharp limit, on a fini-glacial shell-bed.

According to DE GEER'S (1910, table C) analysis of a sample from the lowest part of the bank, or 28.3 m, and from what is communicated here, the composition of the fauna is

|   | ft    | fr    | $\mathbf{prt}$ | pt    | tm       |                         |
|---|-------|-------|----------------|-------|----------|-------------------------|
| ſ | 14    | 16    | 7              |       | 2        | species                 |
| Í | 36    | 41    | 10             |       | 5        | % >                     |
| ſ | 9 172 | 723   | 1420           | · _   |          | ind.                    |
| Ì | 81    | 6     | 13             | -     |          | ?' <b>&gt;</b>          |
|   | 58    | 24    | 15             |       | 9        | average of percentages  |
|   | a     | Ъ     |                | I     |          |                         |
| ſ | 11    | 14    |                | 14    |          | species                 |
| ĺ | 28    | 36    |                | 36    | %        | ,                       |
| 1 | 372   | 9 494 |                | 1 414 |          | ind.                    |
| ì | 3     | 84    |                | 13    | %        | >                       |
|   | 16    | 60    |                | 24    | av<br>pe | rerage of<br>ercentages |

Consequently, the bank contains especially in its lower part a very large percentage of cold forms, which, to an essential degree, are to be ascribed to the underlying fini-glacial bank and, in the present instance, occur secondarily. The presence of *Tapes decussatus*, *Bittium reticulatum*, *Rissoa parva*, etc., gives a full guarantee for the post-glacial age of the bank, and, as DE GEER points out, it has certainly been deposited in shallow water during the greatest post-glacial transgression or, more correctly, to judge by the increase upwards of *Mytilus edulis*, *Litorina litorea-rudis*, and others, immediately after the last upheaval of the land had begun.

30 m, consequently, forms the minimum figure of the postglacial transgression of the district.

22-170108. G F. F. 1917.

# Shell-beds from the sero-post-glacial regression.

# 1. Shell-beds above post-glacial clay.

# Kilarna.

Table p. 848.

6.5 km NNE of Strömstad, 0.3 km N of Kilarna, c. 22 m above the sea, G. Dr Grer 3/s 1890. The shell-bed lies below a 30 m bigh precipice, is 1.4 m thick, and is superimposed on a muddy clay.

| :si | əlqmaz | slyguiz | əq1  | jo  | vuneg   | әцз   | ło  | noitizoqmoo  | əųL            |
|-----|--------|---------|------|-----|---------|-------|-----|--------------|----------------|
|     |        | · Apro  | lupu | m · | γη πο r | hasod | un. | radus si nur | <b>'</b> yanua |

| sercentages     | 01           | 01            | 0       |
|-----------------|--------------|---------------|---------|
| 10 ADETAYE      | 9r           | čt.           | 0       |
| < %             | 2F           | ŧř            | 6 ' }   |
| .bai            | 976 9        | 653 8         | 662 I ) |
| ¢ %             | Q₽           | Ğ₽            | j ro    |
| <b>z</b> oicoqa | 61           | 61            | ₽Ĵ      |
|                 | T            | q             | v       |
| percentages     |              |               |         |
| lo ozerove      | SC           | ₹₽.           | 03      |
| e %             | 9F           | 88            | 15 )    |
| .bni            | <u>668 ð</u> | 08 <b>6 f</b> | 09T S   |
| < %             | 18           | <b>0G</b>     | 61 }    |
| soicoqa         | 51           | <b>T</b> Z    | 8 )     |
|                 | Jīđ          | тî            | jî      |

The shell-gravel can be characterized as a clayey Ostreagravel. It is entirely free from stones. The shallow-water forms are numerously represented, but probably lived on the adjacent rock, as the percentage of clay points to relatively deep water.

The bed, consequently, appears to have been deposited during the first part of the sero-post-glacial regression

# Torseröd.

Table p. 349.

See p. 281. This refers to the shell-bed above the postglacial clay. It is, as was mentioned, 4 m thick, and the lowest sample was taken 0.2 m above the clay, while the uppermost was taken at the surface cc. 5.5 m above sea-level. The composition of the fauna is:

|            | ft    | · fr   | $\mathbf{prt}$ | $\mathbf{ptm}$         | $\mathbf{spr}$ |                        |
|------------|-------|--------|----------------|------------------------|----------------|------------------------|
| ſ          | 9     | 26     | 19             | 1                      | 1              | species                |
| ĺ          | 16    | 47     | 33             | 2                      | <b>2</b>       | %                      |
| 120        | ) 480 | 82 785 | 38225          | 30                     | 10             | ind.                   |
| ſ          | 22    | 36     | 42             | _                      |                | %                      |
|            | 19    | 41     | 38             | 1                      | . 1            | average of percentages |
|            | a     | b      | 1              |                        |                |                        |
| ſ          | 6     | 22     | 28             | species                |                |                        |
| ĺ          | 11    | 39     | 50             | °,′ >                  |                |                        |
| ( 8        | 8 735 | 49231  | 39745          | ind.                   |                |                        |
| <b>١</b> - | 4     | 53     | 43             | % >                    |                |                        |
|            | 7     | 46     | 47             | average of percentages |                |                        |

The shell-gravel is inconsiderably stony. The shallow-water molluses are represented numerously to very numerously, and although they present a couple of different curves of frequency, these, however, may point to diminishing depth. This holds good especially for those for *Rissoa interrupta*, *Lacuna divaricata*, *Onoba striata*, and *Gibbula cineraria*. *Litorina litorearudis*, *Rissoa parva*, and *Bittium reticulatum* have their minimum in the middle of the bed; the two first-named have their maximum in its uppermost part and the last mentioned has its greatest frequency in its lower part. *Mytilus edulis* occurs in approximately the same number throughout the whole bed. The explanation of these conditions is, undoubtedly, that the molluses, to a preponderant degree, lived above and on the sides of the 25 m high rock-plateau, and that the shell-bed was mainly deposited during the former and the middle part of the last upheaval, or considerably before the sea-surface passed its level; it has not been conditions of depth but other, various factors that, in the main, enabled the molluses in question to thrive to a greater or less degree.

# Tofferna.

3 km SW of Strömstad, the north side of Öddö, c. 14 m above sea-level.

Prof. DE GEER (1910, p. 1182 and pl. 45) has in Quaternary Sea-bottoms, given a map and a description of the shell-bed, to which the reader is referred.

The shell-bearing layers are to be found in a regularly sloping strip of land between the sea-level and the steep hillsides, which rise to a height of some 20 m.

Samples were taken at three different points (B see p. 299).

#### A.

Tables p. 350, 412.

8 *m* above the sea, G. DE GEER  $^{26}/s$  1890. Prof. DE GEER measured this section:

| uppermost, sand                                              | 1 m |
|--------------------------------------------------------------|-----|
| shell-gravel, towards the bottom very clayey                 | 6.2 |
| post-glacial clay, at the very bot-<br>tom somewhat gravelly | 6.3 |
| bed-rock                                                     | +   |

The shell-gravel's base, consequently, lies 0.5 m above the sea, and samples were taken 1.5, 2, 3, 4, 5, 6 and 7 m above the sea.

Sample 1.5 consists of sandy shell-bearing clay, of which there was washed a little more than 1 kg. There was obtained 65 gr shell-gravel of the coarseness 2 < mm, and 40 gr 1-2 mm in size. The result of the analysis is given in the table p. 412.

|     | ft         | fr      | $\operatorname{prt}$ | ptm                    | $\operatorname{spr}$ |             |
|-----|------------|---------|----------------------|------------------------|----------------------|-------------|
| ſ   | 15         | 31      | 30                   | 5                      | 12                   | species     |
| ĺ   | 16         | 34      | 32                   | 5                      | 13                   | % >         |
| 178 | <b>947</b> | 238152  | $71\ 165$            | 29                     | 97                   | ind.        |
| ٦.  | 20         | 62      | 18                   | -                      |                      | % >         |
|     | 18         | 47      | 25                   | 3                      | 7                    | average of  |
|     |            |         |                      |                        |                      | percentages |
|     |            | ь       | ,                    |                        |                      |             |
|     | ä          | μ       | 1                    |                        |                      |             |
| ſ   | 16         | 39      | 38                   | species                |                      |             |
| Ì   | 17         | 42      | 41                   | %                      |                      |             |
| 16  | 6 4 4 7    | 299 037 | 73275                | ind.                   |                      |             |
| Ĵ.  | 4          | 77      | 19                   | ¢, >                   |                      |             |
|     | 11         | - 59    | 30                   | average of percentages |                      |             |

The composition of the fauna is:

The shallow-water forms are numerously, to very numerously, represented. They have, undoubtedly, lived above the neighbouring rock-plateau, and present greatly varying curves of frequency, giving, consequently, no information as to changes of level during the formation of the bed. Since, as is shown on p. 300, the underlying clay is post-glacial, the deposition took place, however, during the last regression.

## c.

# Table p. 350.

S of the brook, 8.5 m above the sea, G. DE GEER <sup>11</sup>/<sub>9</sub> 1890. Only 1 sample, 1 m below the ground and 7.5 m above the sea.

| ft            | fr    | prt   |                        |
|---------------|-------|-------|------------------------|
| 8             | 15    | 11    | species                |
| <b>\</b> 24   | 44    | 82    | °, '                   |
| <b>(2 830</b> | 3 330 | 11825 | ind.                   |
| <b>โ</b> 16   | 18    | 66    | °,0 >                  |
| 20            | 31    | 49    | average of percentages |

| a          | b     | 1      |                        |
|------------|-------|--------|------------------------|
| ( 3        | 17    | 14     | species                |
| <b>1</b> 9 | 50    | 41     | %                      |
| 1 033      | 5 120 | 11 660 | ind.                   |
| <b>6</b>   | 29    | 65     | °' >                   |
| 8          | 39    | 53     | average of percentages |

The sample is probably from the same or a somewhat higher horizon than sample 7 in series A. The shallow-water forms are relatively numerous. Some few, such as *Rissou interrupta*, attain higher figures than are reached in sample 7 in A, but others — *Litorina litorca-rudis*, *Lacuna divaricata*, and *Bittium reticulatum* — have lower ones.

#### Nötholmen.

 $0.5 \ km$  WNW of Strömstad,  $14 \ m$  above the sea.

In »Quaternary Sea-bottoms», p. 1179 and pl. 44, Prof. De GEER has given a map, profile (at A) and a detailed description of the shell-bed, to which the reader is referred.

The shell-bed, which is one of considerable dimensions, extends from sea-level up to a height of 14 m, and lies at the foot of a steep rock-plateau, which rises to a height of more than 20 m.

There are two series of samples, A and B, in hand.

#### A.

#### Table p. 351.

5 *m* above the sea (A 5 on the map), G. DE GEER  $^{26}/_{8}$  1890. The section is, briefly, as follows:

| uppermost, coarse gravel with houlders up to more than $1 m$ in size | 1·2 m |
|----------------------------------------------------------------------|-------|
| shell-bed with a layer of fine grav-<br>el (between samples 1 and 2) | 4     |
| post-glacial clay                                                    | 2     |
| bed-rock                                                             | +     |

The base of the shell-bed lies on a level with the sea, and . samples were taken 0.5, 1.5, 2.5, and 3.5 m above the sea.

In a couple of pickings, one of which is dated <sup>6</sup>/s 1895, there occur the following forms, which are not represented in the statistical samples:

| Pecten septemradiatus 1/2 ind.                    | Mactra subtruncata 1/2(prt, 1)        |
|---------------------------------------------------|---------------------------------------|
| (prt, b)                                          | Psammobia respertina . 11/2 (prt, 1)  |
| Leda pernula 1 (ft, a)                            | Solecurtus antiquatus . 11/2 (ptm, 1) |
| > minuta 1/2 (ft, a)                              | Thracia villosiuscula 1 (fr, b)       |
| Portlandia arctica 21/2 (ft, a)                   | Corbula gibba 11/2 (prt, 1)           |
| Arca glacialis                                    | Antalis entalis 4 (prt, b)            |
| Cardium edule 11/2 (fr, 1)                        | Patella vulgata 4 (fr, b)             |
| Isocardia cor $\ldots \ldots \ldots 1/2$ (spr, 1) | Lèpeta caeca 7 (ft, a)                |
| Cyprina islandica 1 (fr, b)                       | Lunatia Montagui 2 (spr, b)           |
| Tapes pullastra                                   | Aporrhais pes pelecani . 1 (fr, b)    |
| Lucinopsis undata 1 (prt, 1)                      | Neptunea sp 1                         |
| Axinus flexuosus 1 (prt, b)                       | Balanus Hameri + (ft, a)              |

Portlandia arctica, Arca glacialis, Balanus Hameri, and several individuals of Saxicava rugosa occur, of course, secondarily. This is, possibly, also the case with others, such as Leda pernula and L. minuta.

The composition of the fauna, consequently, is — redeposited forms being neglected:

|    | ft    | fr     | prt     | ptm                    | $\mathbf{spr}$ |                        |
|----|-------|--------|---------|------------------------|----------------|------------------------|
| ſ  | 13    | 31     | 23      | 3                      | 5              | species                |
| ĺ  | 17    | 41     | 31      | 4                      | 7              | % >                    |
| 12 | 5 621 | 35 680 | 100 630 | 10                     | 136            | ind.                   |
| Ì  | 16    | 22     | 62      | · <u> </u>             | _              | % >                    |
|    | 17    | 32     | 46      | 2                      | 3              | average of percentages |
|    | а     | Ե      | 1       |                        |                |                        |
| 1  | 8     | 36     | 31      | species                |                |                        |
| ĺ  | 11    | 48     | 41      | % >                    |                |                        |
| ſ  | 8 139 | 49 825 | 73482   | ind.                   |                |                        |
| ĺ  | 6     | 38     | 56      | % >                    |                |                        |
|    | 8     | 43     | 49      | average of percentages |                |                        |

In the section, DE GEER (1910) has noted the underlying clay as late-glacial and, on p. 1182, has expressed the opinion that the bed was deposited during the post-glacial transgression, suppositions which are contradicted, however, by one or two analyses of the fauna of the clay, which give evidence of its post-glacial age (see p. 299).

The molluscs which compose the bed have probably mainly lived above the 20 m high rock-plateau at the foot of which they are deposited.

The shallow-water forms are richly represented. As is usually the case in beds deposited under similar conditions, they present greatly varying curves of frequency. In this case, Mytilus cdulis and Litorina litorea-rudis keep company, while Lacuna divaricata, Onoba striata, Rissoa parva, and R. interrupta have curves which deviate very considerably from those of the former two. The chief cause of this is probably to be found in alterations in the conditions of the bottom and the vegetation.

The underlying post-glacial clay shows, as was mentioned, that the bed was deposited during the last regression; the fine gravel-layer near its base has probably been deposited fortnitously. The time of the deposition may, probably, be put at and after 50 % of the upheaval.

# в.

# Table p. 351.

100 *m* S of the preceding sample-series (A 5) or in the rectangle in Prof. DE GEER's map (1910, pl. 44), 8 *m* above the sea, G. DE GEER <sup>14</sup>/s 1893.

The shell-bed, which is covered by a 0.3 m thick bed of earth, is here about 1.3 m thick and becomes fairly stony downwards. The samples were taken 0.1, 0.3 and 1.1 m below the surface of the shell-gravel.

In a couple of pickings have been determined the following species, not found in the statistical analyses:

| Bd 39. H. 4. POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. | 313 | 5 |
|----------------------------------------------------------|-----|---|
|----------------------------------------------------------|-----|---|

| Cardium edule           | • | • | • | • | • | • | • | • | • | 1/2 | ind. (fr, 1) |
|-------------------------|---|---|---|---|---|---|---|---|---|-----|--------------|
| Laevicardium norvegicum |   | • |   | • | • |   |   |   |   | 2   | (fr, 1)      |
| Tapes virgineus         | • | • | • |   |   |   | • |   | • | 1   | (fr, 1)      |
| Psammobia vespertina .  |   |   |   | • |   |   |   |   |   | 6   | (prt, 1)     |
| Patella vulgata         |   |   |   |   |   | • |   | • |   | 1   | (fr, b)      |
| Neptunca despecta       | • |   |   | • | • | • |   | • | • | 1   | (ft, a)      |

The composition of the fauna is:

|     | ft  | fr    | $\mathbf{prt}$ | spr                    |      |
|-----|-----|-------|----------------|------------------------|------|
| ſ   | 12  | 30    | 13             | 1 species              |      |
| ĺ   | 22  | 53    | 23             | 2 % >                  |      |
| (17 | 465 | 8 740 | S4 860         | 10 ind.                |      |
| ĺ   | 16  | 8     | 76             | — % >                  |      |
|     | 18  | 31    | 50             | 1 average of percent   | ages |
|     | a   | b     |                |                        |      |
| ſ   | 8   | 24    | 24             | species                |      |
| ĺ   | 14  | 43    | 43             | % »                    |      |
| 3   | 639 | 22435 | 85 551         | ind.                   |      |
| ١.  | 3   | 20    | 77             | ° >                    |      |
|     | 9   | 31    | 60             | average of percentages | •    |

Mytilus cdulis is exceedingly rare, but the other shallowwater forms are relatively, to very richly, represented. On the whole they all increase in number upwards, and the curves of frequency of the species are, in many cases, very unlike those in A. The cause lies, perhaps, in the fact that the present series corresponds only to a part of that in A, for that they were deposited simultaneously is, the writer thinks, beyond all doubt.

#### Rössö-Långö.

See p. 279.

This refers to the part of the shell-bed which is superimposed on the post-glacial clay, or the uppermost sample in A and the two samples from B.

|       | Δ. |      |
|-------|----|------|
| Table | р. | 351. |

The composition of the fauna is:

|     | ft                  | fr                      | $\operatorname{prt}$    |                               |
|-----|---------------------|-------------------------|-------------------------|-------------------------------|
| ſ   | 7                   | 8                       | 8                       | species                       |
| Í   | 30                  | 35                      | 35                      | % >                           |
| 1   | 1240                | 543                     | 12448                   | ind.                          |
| ĺ   | 9                   | . 4                     | 87                      | % >                           |
|     | 20                  | 19                      | 61                      | average of percentages        |
|     | a                   | b                       | 1                       |                               |
|     | -                   |                         | 0                       |                               |
|     | 3                   | 11                      | 9                       | species                       |
| {   | 3<br>13             | 48                      | 9<br>39                 | species<br>%                  |
| {   | 3<br>13<br>320      | 481443                  | 9<br>39<br>12 450       | species<br>% ><br>ind.        |
| { { | 3<br>13<br>320<br>2 | 11<br>48<br>1 443<br>10 | 9<br>39<br>12 450<br>88 | species<br>% ><br>ind.<br>% > |

в.

Table p. 352.

The composition of the fauna is:

|        | ft                       | fr                          | $\mathbf{prt}$                |                        |
|--------|--------------------------|-----------------------------|-------------------------------|------------------------|
| 1      | 8                        | 17                          | 11                            | species                |
| í      | 22                       | 47                          | 31                            | % >                    |
| 1      | 6 505                    | 4 860.                      | 55370                         | ind.                   |
| Ì      | 10                       | 7                           | <b>S</b> 3                    | % >                    |
|        | 16                       | 27                          | 57                            | average of percentages |
|        |                          |                             |                               |                        |
|        | a                        | b                           | 1                             |                        |
| ſ      | a<br>4                   | Ե<br>17                     | 1<br>15                       | species                |
| {      | a<br>4<br>11             | ь<br>17<br>47               | 1<br>15<br>42                 | species<br>% >         |
| {      | a<br>4<br>11<br>775      | ь<br>17<br>47<br>9115       | 1<br>15<br>42<br>55 980       | species<br>% ><br>ind. |
| {<br>{ | a<br>4<br>11<br>775<br>1 | b<br>17<br>47<br>9115<br>14 | 1<br>15<br>42<br>55 980<br>85 | species<br>%           |

With the exception of *Mytilus cdulis*, the rare occurrence of which may depend mainly on other causes than bathymetrical ones, the shallow-water forms are, on the whole, numerously represented. Specially characteristical are *Bittium rcticulatum* and *Rissoa parva*. From this, as well as from the

small-stony character of the shell-gravel, the latter was probably deposited at a depth of about 10 m, or when about 50 % of the last upheaval was reached.

#### Otterö.

#### · Table p. 353.

See p. 271. This refers to the shell-bearing coarse gravel above the post-glacial clay at section B.

The composition of the fauna is:

|     | ft                            | fr                                 | $\mathbf{prt}$                     |                                                          |
|-----|-------------------------------|------------------------------------|------------------------------------|----------------------------------------------------------|
| ſ   | 7                             | 8                                  | 9                                  | species                                                  |
| Ì   | 29                            | 33                                 | 3S g                               | 6 >                                                      |
| 1   | 1240                          | 345                                | 8195                               | ind.                                                     |
| Ì   | 13                            | 3                                  | 84 ;                               | 6 ×                                                      |
|     | 21                            | 18                                 | 61                                 | average of<br>percentages                                |
|     |                               |                                    |                                    |                                                          |
|     | a                             | b                                  | 1                                  |                                                          |
| ſ   | a<br>B                        | ь<br>11                            | 1<br>10                            | species                                                  |
| - { | a<br>3<br>12                  | ь<br>11<br>46                      | 1<br>10<br>42                      | spccies                                                  |
| {   | a<br>3<br>12<br>160           | ь<br>11<br>46<br>1 370             | 1<br>10<br>42<br>8140              | species<br>% ,<br>ind.                                   |
| {   | a<br>3<br>12<br>160<br>2      | ь<br>11<br>46<br>1 370<br>14       | 1<br>10<br>42<br>8140<br>84        | species<br>% ><br>ind.<br>% >                            |
| {   | a<br>3<br>12<br>160<br>2<br>7 | b<br>11<br>46<br>1 370<br>14<br>30 | 1<br>10<br>42<br>\$140<br>84<br>63 | species<br>, ,<br>ind.<br>,<br>average of<br>percentages |

The nature of the shell-bearing gravel and the richness of *Litorina litorea-rudis* point to its undoubtedly littoral character. The time of formation, consequently, can with certainty be referred to the last part of the last upheaval.

2. Shell-beds not superimposed on post-glacial clay.

# Lund.

# Table p. 348.

3 km E of Strömstad, 0.3 km SW of Lund, c. 26 m above the sea, G. DE GEER  $^{2}/_{8}$  1889.

The shell-bed, which is rich in stones, rests on coarse gravel, and is, on an average, 0.5 m thick. Samples from depths of 0.4 and 0.9 m.

The composition of the fauna is:

| ft                                               | · fr                          | prt                                                |  |
|--------------------------------------------------|-------------------------------|----------------------------------------------------|--|
| 1 9                                              | 25                            | 17 species                                         |  |
| L 18                                             | 49                            | 33 %                                               |  |
| 6 473                                            | 15328                         | 34 005 ind.                                        |  |
| 12                                               | 27                            | 61 % »                                             |  |
| 15                                               | 38                            | 47 average of perce .tages                         |  |
|                                                  |                               |                                                    |  |
| a <sup>.</sup>                                   | ь                             | 1                                                  |  |
| a .<br>( 5                                       | ь<br>22                       | l<br>24 species                                    |  |
| a ·<br>{ 5<br>10                                 | b<br>22<br>43                 | l<br>24 species<br>47 s 、                          |  |
| a .<br>$\begin{cases} 5\\ 10\\ 1848 \end{cases}$ | b<br>22<br>43<br>18 730       | 1<br>24 species<br>47 ダー・<br>33 293 ind.           |  |
| a ·<br>{ 5<br>10<br>{ 1848<br>3                  | b<br>22<br>43<br>18 730<br>35 | 1<br>24 species<br>47 % ><br>33 293 ind.<br>62 % • |  |

Although *Mytilus edulis* is very sparsely present, and *Litorina litorea-rudis* is fairly scarce, the shell-bed, to judge from its composition in other respects as well as from its stony character, was deposited in relatively shallow water. The increase of the shallow-water forms upwards, and the percentage composition, show that the formation of the bed took place during the first third of the sero-post-glacial upheaval.

#### Holkedalskilen.

Table p. 348.

1.3 km S of Strömstad, the northern side of Holkedalskilen, 25.9 m above the sea-level, G. DE GEER July 1889.

One sample. The composition of the fauna is:

|   | ft       | fr             | prt    | spr      |                        |
|---|----------|----------------|--------|----------|------------------------|
| ſ | 8        | - 24           | 12     | 1        | species                |
| Í | 18       | 53             | 27     | <b>2</b> | % >                    |
| 1 | $1\ 930$ | · <b>3</b> 223 | 30 935 | 10       | ind.                   |
| Ì | 5        | 9              | - 86   |          | % >                    |
|   | 12       | 31             | 56     | 1        | average of percentages |

316

.
### Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 317

|   | a   | b     | 1      |                        |
|---|-----|-------|--------|------------------------|
| 1 | 4   | 20    | 21     | species                |
| ĺ | 9   | 44    | 47     | % >                    |
| ſ | 583 | 3 723 | 31 215 | ind.                   |
| ĺ | 2   | 10    | 88     | °′ >                   |
|   | 5   | 27    | 68     | average of percentages |

The shell-bed is fairly stony. Among the distinctive shallow-water forms *Litorina litorea-rudis* and *Lacuna divaricata* are fairly richly represented. *Bittium reticulatum* occurs in extraordinary numbers, and *Rissoa parva* and *R. interrupta* are found numerously. From these facts, and from the composition in general, it is probable that the shell-bed was deposited in relatively shallow water and during the first third of the last upheaval.

### Skälleröd.

### Table.p. 348.

16 km SSE of Strömstad, Skälleröd at Kragenäs sta., c. 24 m above the sea, 1915.

The shell-bed is covered by a sand-layer some dm thick. The samples are from depths of 0.2, 0.5, 1.4 and 2.4 m. The uppermost and the lowest samples are exceedingly sandy, and the central ones somewhat so. Beneath the shell-bed there lies pure sand.

The shell-bed occurs on a rocky slope lying at an angle of about 10°. Some twenty m above the shell-bed there rises, at a gentle slope, a rocky eminence to a height of some m above the bed.

The composition of the fauna is:

| f              | t     | fr I     | prt   |                      |
|----------------|-------|----------|-------|----------------------|
| 1 \$           | 9     | 25       | 16    | species              |
| ( <u>1</u> 8   | 3.    | 50 5     | 32 %  | >                    |
| <b>( 19 60</b> | 0 345 | 61 、82 3 | 20    | ind.                 |
| <b>1</b> 1     | 5 5   | 25 (     | 50 %  | >                    |
| 16             | 3     | 38 4     | 16 av | verage of ercentages |

|    | a     | ь         | 1      |                           |
|----|-------|-----------|--------|---------------------------|
| ſ  | 5     | 23        | 22     | species                   |
| ĺ  | 10    | 46        | 44     | % >                       |
| ſ  | 8 555 | $42\ 621$ | 83 478 | ind.                      |
| Į. | 6     | 32        | 62     | % >                       |
|    | 8     | 39        | 53     | average of<br>percentages |

The bed is specially characterized by Risson parva, R. interrupta, and Bittium reticulatum. Among the typical shallowwater forms Lacuna divaricata is very general and Litorina litorea-rudis fairly so. The bed was probably deposited at a depth of 5 to 10 m and, to judge from the increasing frequency upwards of the shallow-water forms, during upheaval. The composition of the fauna, too, points to formation during the last regression.

# Prästängen.

Table p. 349.

1 km SE of Strömstad, 21 m above the sea, G. DE GEER  $^{23}/7$  1889.

The composition of the fauna of the single sample is:

|   | ft    | fr     | prt    |                        |
|---|-------|--------|--------|------------------------|
| 1 | 7     | 15     | 12     | species                |
| ĺ | 21    | 44     | 35     | % >                    |
| ſ | 4555  | 7 377  | 17265  | ind.                   |
| ſ | 16    | 25     | 59     | % >                    |
|   | 18    | 35     | 47     | average of percentages |
|   | a     | b      | 1      |                        |
| ſ | 4     | 15     | 15     | species                |
| ĺ | 12    | 44     | 44     | °, >                   |
| ſ | 1 119 | 10 940 | 17 246 | ind.                   |
| Ì | 4     | 37     | 59     | %)                     |
|   | 8     | 41     | 51     | average of percentages |

Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 319

The shell-gravel is fairly stony and, to judge from the composition of the fauna, etc., was probably deposited in water about 10 *m* deep during the first part of the last regression. By far the greatest rôle is played by *Rissoa parva* and *Bittium reticulatum*, but *Rissoa interrupta* and *Veruca Strömia* also appear very numerously.

### Vintermyren.

1 km N of Strömstad, c. 5 m above the sea, G. DE GEER  $^{15}/_{8}$  1889.

Rich Ostrca-clay. From a sample there have been washed (coarseness 2 < mm):

| Lepidopleurus cinercus 1/6 ind. (fr, 1) | Corbula gibba 1 (prt, 1)         |
|-----------------------------------------|----------------------------------|
| Boreochiton marmoreus . 1/2 (ft, a)     | Saxicava rugosa 3 (ft, a)        |
| Anomia striata 1 (prt, 1)               | Tectura virginea 3 (fr, b)       |
| Ostrea edulis 4 (fr, 1)                 | Gibbula cineraria 5 (fr, b)      |
| Pecten varius 2 (prt, 1)                | Lunatia intermedia 1 (fr. 1)     |
| Cardium cf. nodosum 1/2 (fr, b)         | Litorina rudis 1 (ft, b)         |
| • cf. exiguum 9 (fr, 1)                 | Lacuna divaricata 1 (ft, a)      |
| Tapes sp $^{1/2}$                       | Rissoa parva 5 (prt, 1)          |
| Montacuta bidentata 1 (fr, 1)           | Bittium reticulatum 120 (prt, 1) |
| Abra sp 10                              | Nassa reticulata 13 (fr, 1)      |

The composition of the fauna is:

| ft | fr | prt        |
|----|----|------------|
| 4  | 9  | 5 species  |
| 22 | 50 | 28 %       |
| a  | b  | 1          |
| 3  | -4 | 11 species |
| 17 | 22 | 61 % »     |

To judge by the richness of Ostrea edulis, the great number of 1-forms, and the composition of the fauna in other respects it is probable that the shell-bearing clay was deposited in water some 10 m in depth and during the last regression, or, more exactly, during the first part of this phase.

### Lejonkällan. Table p. 349.

Strömstad, NE of Lejonkällan, 22 m above the sea, G. DE GEER  $\frac{22}{7}$  1890.

The composition of the fauna of the single sample is:

| ft         | fr    | prt           | •                         |
|------------|-------|---------------|---------------------------|
| ( 9        | 19    | 13            | species                   |
| 22         | 46    | 32            | %                         |
| 2 014      | 4054  | 27 239        | ind.                      |
| <b>1</b> 6 | 12    | 82            | %                         |
| 14         | 29    | 57            | average of percentages    |
| a          | b     | 1             |                           |
| ( 4        | 16    | 21            | species                   |
| 10         | 39    | 51            | %                         |
| 1 093      | 4 107 | <b>27</b> 867 | ind.                      |
| 14         | 12    | 84            | %                         |
| 6          | 26    | 68            | average of<br>percentages |

The fairly large percentage of stones, as well as the character of the fauna, shows that the bed was deposited in shallow water. In addition to the ordinary shallow-water forms there occurs *Psammobia vespertina*, which lives from the low-water mark to a depth of some few *m*, and which gives the bed its character.

From the important rôle played by prt- and l-forms it is highly probable that the shell-bed was deposited during the last upheaval and, in accordance with the other circumstances mentioned above, at a period corresponding to about 30 % of the movement.

### Daftö.

4 km S of Strömstad, 0.7 km SE of the north-western point of Daftö, c. 11 m above the sea, G. DE GEER  $^{20}$ /s 1890.

Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 321

Only the following pickings is in hand:

| Pecten varius 4 ind. (prt, 1)                                     | Solecurtus antiquatus . 11/2 (ptm, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , <i>tigrinus</i> $\frac{1}{2}$ (prt, b)                          | <i>Mya truncata</i> 1 (ft, a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vola maxima 1 (prt, 1)                                            | Saxicava rugosa <sup>1</sup> / <sub>2</sub> (ft, a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Astarte compressa $1/2$ (ft, a)                                   | Emarginula fissura 5 (prt, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Timoclea orata $\ldots \ldots \ldots \ldots \frac{1}{2}$ (prt, b) | Turritella terebra 1 (prt, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tapes aureus 7 (fr, 1)                                            | Bittium reticulatum S (prt, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lucinopsis undata 19 (prt, 1)                                     | Aporrhais pes pelecani 1 (fr, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lucina borcalis 1 (fr, b)                                         | Neptunea despecta var.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $A bra \ alba \ \ldots \ \ldots \ 2 \ (fr, 1)$                    | $(H_{1}, h_{1}, h_{2}, h_{3}, h_{3},$ |
| Psammobia vespertina . 41/2 (prt, 1)                              | Tereoratulina sp /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

The composition of the fauna is consequently:

| ft | fr | $\mathbf{prt}$ | $\mathbf{ptm}$ |         |
|----|----|----------------|----------------|---------|
| 4  | 4  | 9              | 1              | species |
| 22 | 22 | 50             | 6 %            | ,       |
| a  | 1  | )              | 1              |         |
| 4  |    | 3              | 11 :           | species |
| 22 | 1  | 7              | 61 %           |         |

The shell-bed is characterized by Lucinopsis undata, a species living at a depth of some 20 to 30 m, while, apart from *Psammobia vcspertina*, it possesses no distinctive shallow-water forms. The bed, consequently, was probably deposited in relatively deep water and, to judge from the specially warm character of the fauna, during the last upheaval, or, more exactly, during the first part of this movement.

### Hälle II.

### Table p. 412.

5.5 km NNE of Strömstad, Hälle, c. 16.5 m above the sea, G. DE GEER 4/8 1890.

The shell-bed, which is found in the immediate neighbourhood of Hälle III (see p. 337), is 2.2 *m* thick. The samples are from a depth of 1.4 and 1.9 *m* below the surface. Prof. DE GEER made some washings of the shell-gravel on the spot 23-170108. G. F. F. 1917. through a 3-mm-net. The figures show the total number of individuals found in 50  $cm^3$  of the washed shell-gravel. The composition of the fauna is:

> prt ft fr 10 16 14 species 2540 35 % 3 292 97 652ind. J 9 2863 % , 4917 34 average of percentages b 1 a 20species 5 15 12 5038% , 34358631 ind. 3 6235 % > 8 36 56average of percentages

The lower sample contains some stones.

The composition of the fauna makes it probable that the shell-bed was deposited during the last upheaval.

### Sydkoster. Table p. 349.

10 km ESE of Strömstad, at Öfre Kile, c. 15 m above the sea, G. DE GEER  $^{2}/_{8}$  1893.

In a pickings Prof. DE GEER has found the following species, not represented in the statistical analysis:

| Lucina borealis (fr, b)   | Psammobia ferröensis (spr, b) |
|---------------------------|-------------------------------|
| Mactra elliptica (prt, b) | Triforis perversa (prt, l)    |

The composition of the fauna is:

|   | ft   | fr   | $\mathbf{prt}$ | $\operatorname{spr}$ |                          |
|---|------|------|----------------|----------------------|--------------------------|
| ſ | 7    | 22   | 14             | 1                    | species                  |
| ĺ | 16   | 50   | 32             | 2                    | % >                      |
| ſ | 4398 | 3270 | 37 389         | -                    | ind.                     |
| ĺ | 10   | 7    | 83             | _                    | % >                      |
|   | 13   | 29   | 57             | 1<br>I               | average of<br>ercentages |

### Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 323

|   | a   | Ь     | · 1   |                        |
|---|-----|-------|-------|------------------------|
| ſ | 3   | 21    | 20    | species                |
| ĺ | 7   | 48    | 45    | .% > .                 |
| 1 | 693 | 6 634 | 38260 | ind.                   |
| ĺ | 1   | 15    | 81    | % >                    |
|   | 4   | 31    | 65    | average of percentages |

The shell-bed is very stony. The characteristic forms are *Rissoa parva* and *Bittium reticulatum*. Although *Mytilus cdulis* is rather scarce and *Litorina litorea-rudis* is rare, the shellbed, consequently, was probably deposited in comparatively shallow water and, to judge from the composition, at about 50 % of the last upheaval.

### Grandalen.

### Table p. 349.

2 km N of Strömstad, 0.1 km NNE of Grandalen, c. 14 m above the sea, G. DE GEER  $^{15}/s$  1889.

One sample. The composition of the fauna is:

| ft                                                                                      | fr                          | $\mathbf{prt}$                                     |
|-----------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| 5                                                                                       | 18                          | 10 species                                         |
| $\{15$                                                                                  | 55                          | 31 % ›                                             |
| 1 510                                                                                   | $3\ 405$                    | SO 060 ind.                                        |
| 1 2                                                                                     | 4                           | 94 % »                                             |
| 9                                                                                       | 29                          | 62 average of percentages                          |
|                                                                                         |                             |                                                    |
| a                                                                                       | b                           | 1                                                  |
| a<br>  4                                                                                | b<br>13                     | l<br>16 species                                    |
| $\left\{ \begin{array}{c} a \\ 4 \\ 12 \end{array} \right.$                             | b<br>13<br>39               | l<br>16 species<br>49 % >                          |
| $\begin{array}{c} a \\ 4 \\ 12 \\ 1240 \end{array}$                                     | b<br>18<br>39<br>3 065      | 1<br>16 species<br>49 % →<br>80 310 ind.           |
| $ \begin{array}{c}     a \\     4 \\     12 \\     4 \\     1240 \\     1 \end{array} $ | b<br>13<br>39<br>3 065<br>4 | l<br>16 species<br>49 % ><br>80 310 ind.<br>95 % > |

The shell-bed contains much stone. Mytilus cdulis is wanting, and Litorina litorca-rudis is sparsely represented. Bittium reticulatum and Rissoa parva appear with extraordinary frequency, and *R. violacea* is found in great numbers. Finally, the southern forms predominate on the whole.

The shell-bed, consequently, was certainly deposited during the last upheaval and probably at about 50 % of the movement.

### Kile.

9.5 km ESE of Strömstad, Sydkoster, 0.2 km N of Öfre Kile, cc. 14 m above the sea, G. DE GEER  $^{2}/s$  1893.

Prof. DE GEER has in a pickings determined the following species:

| Anomia spp 11 ind.               | Thracia papyracea              |
|----------------------------------|--------------------------------|
| Ostrea edulis 17 (fr, 1)         | Corbula gibba 13 (prt, 1)      |
| Pecten varius                    | Tectura virginea 9 (fr, b)     |
| Mytilus cdulis 16 (ft, b)        | Litorina litorea 4 (ft, b)     |
| Astarte compressa 12 (ft, a)     | Rissoa parva                   |
| Timoclea orata 23 (prt, b)       | Bittium reticulatum 3 (prt, 1) |
| Tapes aureus                     | Triforis perversa 2 (prt, 1)   |
| Lucina borealis 14 (fr, b)       | Polytropa lapillus 7 (fr, b)   |
| Mactra elliptica 15 (prt, b)     | Nassa reticulata 5 (fr, 1)     |
| Psammobia ferröensis 19 (spr, b) | Balanus cf. crenatus 1 (ft, b) |

The composition of the fauna is, consequently:

|   | ft | fr   | $\mathbf{prt}$ | $\operatorname{spr}$ |          |
|---|----|------|----------------|----------------------|----------|
| 1 | 4  | 6    | $\mathbf{s}$   | 1                    | species  |
| ì | 21 | - 32 | 42             | 5 %                  | ,        |
|   | a  | Ъ    |                | 1                    |          |
| 1 | 1  | 9    |                | 9 sp                 | ecies    |
| ì | 5  | 47   |                | 48 %                 | <b>,</b> |

The shell-bed is evidently characterized by Ostrea edulis, and was certainly deposited at the middle of the last regression...

### Tånga.

5.5 km SSW of Strömstad, at å in Tånga (the geological map-section "Strömstad"), c. 14 m above the sea, G. DE GEER 19/8 1890.

In his geological diary, Prof. DE GEER mentions from this locality *Tapes decussatus* 1 ind. and *T. aureus* several ind.

The shell-bed was probably deposited during the last upheaval.

### Svälte.

### 'Table p. 352.

6.5 km NNE of Grafvarna, 0.7 km W of Svälte, at the southern end of the bay, c. 4 m above the sea, 1915.

The shell-bed occurs in a glen below a hill of some small height. The thickness is more than 3 m. The underlying strata were not reached. The samples analysed are from depths of 0, 0.6, and 2.6 m.

The composition of the fauna is:

|                | ft   | fr    | $\mathbf{prt}$ | $\operatorname{spr}$ |                        |
|----------------|------|-------|----------------|----------------------|------------------------|
| ſ              | 10 . | - 24  | 23             | 3                    | species                |
| _1 ÷           | 17   | 40    | 38             | 5                    |                        |
| 127            | 80 Z | 5 080 | $31\ 452$      | 21                   | ind.                   |
| - ( I          | 18   | 36    | 46             | _                    | °, >                   |
| -              | 18   | 38    | 42             | 2                    | average of percentages |
|                | a    |       | b              | 1                    |                        |
| 1              | 7    | 2     | 9              | <b>24</b>            | species                |
| - <u>(</u> - : | 12   | 1     | 8              | 40                   | % >                    |
| 39             | 71   | 3328  | 6              | -33514               | ind.                   |
| í              | 6    | 4     | 7              | 47                   | %                      |
|                | 8    | - 4   | 8              | 44                   | average of percentages |

The stone-percentage in the lowest-lying sample is very inconsiderable, but in the uppermost it becomes fairly large. The markedly shallow-water forms are somewhat few in number, but *Bittium reticulatum*, *Rissoa interrupta*, and *R. parva* are richly represented and increase in numbers upwards. In spite of the low percentage of the prt- and l-forms, a condition of things that may probably -- in part at least -- be the result of the bed having been deposited in relatively deep water, the bed, consequently, was in all likelihood deposited during the latter part of the last upheaval.

### S. Öddö.

4 km SSW of Strömstad, E of the north-western part of Ramnekilen, c. 9 m above the sea-level, G. DE GEER  $^{12}/_{8}$  1890.

Only a pickings is in hand:

Tapes decussatus 15 ind, (prt, 1)

- » aureus 16 (fr, l)
- >  $pullastra \frac{1}{2}$  (fr, b)

All the three species prefer shallow water, and the land, at the time of the deposition of the bed, probably lay some 10 or 15 m lower than at the present day. It is highly probable that the deposition took place during the last regression, for the two warmer species never appear in any large numbers in beds that are certainly transgressional ones. The great frequency of *Tapes decussatus* at such a low level is of great climatological interest.

### Kjellviken. Table p. 352.

4.5 km NNW of Strömstad, 1.2 km NW of Kjellviken, 6.3 m above the sea, G. DE GEER  $\frac{30}{7}$  1890.

From this shell-bed, which is more than 1.5 m thick, there has been analysed one sample taken 1 m below the surface. The composition of the fauna is:

| ft     | fr<br>10 | prt<br>16  | spr<br>1 |                           |
|--------|----------|------------|----------|---------------------------|
| 1 $16$ | 15<br>44 | 10<br>37   | 3        | species                   |
| 17 670 | 5 457    | 11 775     | 5        | ind.                      |
| ( 51   | 15       | <b>3</b> 3 | 1        | o, >                      |
| 33     | 30       | 35         | 2        | average of<br>percentages |

# Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 327

|     | a     | b      | 1     |                           |
|-----|-------|--------|-------|---------------------------|
| ſ   | 4     | 19     | 20    | species                   |
| ĺ   | 9     | 44     | . 47  | % >                       |
| • 1 | 2 637 | 19 120 | 11750 | ind.                      |
| Ì   | 10    | 57     | 33    |                           |
|     | 9     | 51     | 40    | average of<br>percentages |

Judging by the large percentage of stones, the presence of the littoral *Patella vulgata* and *Psammobia vespertina*, and the relatively great frequency of the ordinary shallow-water forms, the bed was deposited in shallow water. In consequence of the extraordinary richness of *Verruca Strömia* the bed obtains an apparently cold character contrasting with the large number of the warmth-demanding *Rissoa parva*. In this case, therefore, it would be best to lay chief weight on the specificpercentages. Of importance, too, is the comparatively numerously represented *Ostrea edulis*. Taking one circumstance with the other, the writer considers it probable that the shell-bed was deposited during the latter part of the last upheaval.

### Kebal.

### Table p. 352.

1.5 km N of Strömstad, c. 1.5 m above the sea, G. DE GEER  $\frac{17}{8}$  1889.

The greater part of this shell-bed has been quarried away. The composition of the fauna of the single sample is:

|    | ft   | fr            | $\operatorname{prt}$ | $\operatorname{spr}$ |                        |
|----|------|---------------|----------------------|----------------------|------------------------|
| 1  | 9    | 15            | 16                   | 2                    | species                |
| ì. | 21   | 36            | 38                   | 5                    | % >                    |
| ſ  | 2500 | 5 <b>4</b> 23 | 28605                | 140                  | ind.                   |
| ì  | 7    | 15            | 78                   |                      | °, >                   |
|    | 14   | 25            | 58                   | 3                    | average of percentages |

|   | a    | ь     | 1     |                        |
|---|------|-------|-------|------------------------|
| Ĺ | 8    | 15    | 19    | species                |
| ĺ | 19   | 36    | 45    | a; >                   |
| ſ | 1488 | 6.455 | 28760 | ind.                   |
| ĺ | 4    | 18    | 78    | % <b>&gt;</b>          |
|   | 11   | 27    | 62    | average of percentages |

ERNST ANTEVS.

The shell-gravel is fairly stony. Characteristic species are *Bittium reticulatum*, *Rissoa parva*, and *Ostrea edulis*. This fact, as well as the composition as a whole should, probably, show that the bed was deposited in water some 10 m deep during the last regression, or, in other words, during the last half of this phase.

### Baggeröd.

### Table p. 352.

7 km NNE of Strömstad, SW of Baggerödsfjärden, 0.5 m above the sea, G. DE GEER 3/8 1890.

One sample at 0.3 m depth.

The composition of the fauna is:

|   | ft     | fr   | $\mathbf{prt}$ | $\operatorname{spr}$ |                        |
|---|--------|------|----------------|----------------------|------------------------|
| 1 | 8      | 15   | 10             | 1                    | species                |
| Í | 23     | -14  | 30             | - 3                  | %                      |
| ſ | 925    | 1365 | 29510          | 5                    | ind.                   |
| ĺ | 3      | 4    | 93             | _                    | %                      |
|   | 13     | 24   | 62             | 1                    | average of percentages |
| ſ | a<br>4 | 1    | ՝<br>14        | 1<br>16              | species                |
| Ì | 12     | ÷    | 1              | 47                   | °′ . >                 |
| ſ | 378    | 176  | 50             | 29527                | ind.                   |
| Í | 1      |      | 6              | 93                   | 000                    |
|   | 7      | 2    | 23             | 70                   | average of percentages |

The shell-gravel is fairly stony. Mytilus edulis is practically wanting, and Litorina litorea-rudis is relatively sparse. Ostrea Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 329 edulis and Bittium reticulutum are characteristic forms, and prt- and l-species predominate.

Thus, the shell-bed was probably deposited in water some 10 m deep, and certainly during the last upheaval.

### Mörhult II.

### Table p. 353.

See p. 290. The Ostrea-gravel. The composition of the fauna is:

ъ <u>Е</u>

|    | ft   | fr    | $\mathbf{prt}$ |                        |
|----|------|-------|----------------|------------------------|
| 1  | 7    | 12    | 5              | species                |
| Í  | 29   | 50    | 21             | %                      |
| ſ  | 2435 | 2 335 | 22860          | ind.                   |
| ٦Į | 9    | 8     | 83             | %                      |
|    | 19   | 29    | 52             | average of percentages |
|    | a    | b     | 1.             |                        |
| 1  | 2    | 11    | 11             | species                |
| ÷١ | 8    | 46    | 46             | % >                    |
| 1  | 380  | 3 890 | 23 240         | ind.                   |
| Ì  | 1    | 14    | 85             | °, >                   |
|    | 5    | 30    | 65             | average of percentages |

The shell-gravel is rich in stones. *Rissoa parva* appears in extraordinary numbers, and *Bittium reticulatum* is very numerously represented.

As was mentioned, the shell-gravel was deposited — as shown by the composition of the fauna and the frequency of *Ostrea edulis* — during the latter part of the last upheaval.

### Furnholmen.

1 km SW of Strömstad, at the sea-level, G. DE GEER 10/s 1890.

In a pickings occur these species:

| Pecten varius 1/2 ind. (prt, 1)                    | <i>Abra sp.</i> $\frac{1}{2}$         |
|----------------------------------------------------|---------------------------------------|
| septemradiatus 1/2 (prt, b)                        | Macoma calcaria 1 (ft, a              |
| Cardium echinatum 1 (fr, 1)                        | Psammobia ferröensis . 2 (spr, b)     |
| Isocardia cor $\ldots \ldots \ldots 1$ (spr, 1)    | Solecurtus antiquatus . 11/2 (ptm, 1) |
| Venus gallina 1 (prt,b)                            | Antalis entalis 5 (prt, b)            |
| Timoclea ovata $\ldots \ldots \ldots 1/2$ (prt, b) | Lunatia intermedia 1 (fr, 1)          |
| Dosinia lineta $1^{1/2}$ (spr, l)                  |                                       |

The composition of the fauna is:

| ft | fr | prt | $\mathbf{ptm}$ | $\operatorname{spr}$ |
|----|----|-----|----------------|----------------------|
| 1  | 2  | õ   | 1              | 3 species            |
| 8  | 17 | 42  | 8              | 25 %                 |
|    | a  | b   | 1              |                      |
|    | 1  | 5   | 6              | species              |
|    | 8  | 42  | 50             | 0 »                  |

The composition of the fauna makes it probable that the shell-bed was deposited in water some 10 m deep and during the sero-post-glacial upheaval.

### Nordkoster.

### Table p. 353.

 $10.5 \ km$  WSW of Strömstad, N of the landing-stage Bopallen of Nordkoster, 3.3 *m* above sea-level, G. DE GEER <sup>1</sup>/s 1893.

The shell-bearing layers are about 1.5 m thick, probably with underlying sand. Samples from depths of 0.3 and 0.7 m.

The composition of the fauna is:

|   | ft    | fr    | prt   | $\operatorname{spr}$ |                          |
|---|-------|-------|-------|----------------------|--------------------------|
| 1 | 7     | 24    | 13    | 1                    | species                  |
| í | 16    | 53    | 29    | 2 %                  | \$ <b>&gt;</b>           |
| ſ | 3 759 | 14961 | 15803 | 5                    | ind.                     |
| í | 11    | 43    | 46    | - ?                  | <i>;</i>                 |
|   | 13    | 48    | 38    | 1 a                  | verage of<br>percentages |

### Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 331

|   | a    | · b   | 1     |                        |
|---|------|-------|-------|------------------------|
| ſ | 5    | 19    | 21    | species                |
| 1 | 11   | 42    | 47    | 0' )<br>'9             |
| ſ | 2384 | 15793 | 15748 | ind.                   |
| ĺ | 7    | 47    | 46    | o;, >                  |
|   | 9    | 44    | 47    | average of percentages |

The shell-bed, especially in its central horizon, is rich in stones and also in Ostrea edulis. Litorina litorea-rudis is wanting, and Mytilus edulis is sparsely represented. The shallow-water forms increase in frequency upwards, a fact which probably points to deposition during a period of decreasing depth. The water, in any case, can hardly ever have been of any great depht. Although the evidence is not unanimous, and although the percentages of prt- and l-forms are relatively low, the writer is inclined to believe that the bed was deposited during the latter part of the last upheaval.

### Nöddö.

### Table p. 353.

8 km SSE of Strömstad, 0.3 km WNW of Nöddö, 4.2 m above the sea (Hägg 1910, p. 472), G. De Geer <sup>22</sup>/s 1890.

In Professor DE GEER's geological diary in the archives of the Geological Survey of Sweden, there is found the following account of the *Tapes*-species found in the fauna of the bed:

|       |            | left<br>va | right<br>lives | both valves<br>together |
|-------|------------|------------|----------------|-------------------------|
| Tapes | aureus     | 76         | 90             | 12                      |
| ,     | pullastra  | . 9        | 14             | 1                       |
| 2     | decussatus | 38         | 33             | 3                       |

The composition of the fauna of the single sample is:

|   | ft   | fr    | $\mathbf{prt}$ | ptm |                        |
|---|------|-------|----------------|-----|------------------------|
| 1 | 9    | 19    | 14             | 1   | species                |
| ĺ | 21   | 44    | 33             | 2   | %                      |
| 1 | 2780 | 3 370 | 26885          | 45  | ind.                   |
| ſ | 9    | 10    | <b>S</b> 1     |     | °′ >                   |
|   | 15   | 27    | 57             | 1   | average of percentages |

| a<br>4 | ь<br>19 | 1<br>20 | species                |
|--------|---------|---------|------------------------|
| 9      | -14     | 47      | »                      |
| 670    | 5 215   | 27060   | ind.                   |
| 2      | 16      | 82      | %                      |
| 6      | 30      | 64      | average of percentages |

ERNST ANTEVS.

The shell-bed is rich in small stones. As Hägg has already pointed out, the fauna and, especially, the frequency of the *Tapes*species point to its having been deposited in very shallow water, only some few m deep. The primary position of the shell-bed is, as Prof. DE GEER has orally stated, probably fully shown by the great number of *Tapes*-individuals with both shells attached to each other. The composition of the fauna, together with the characteristics already mentioned, show, undoubtedly, that the bed was deposited during the final part of the last upheaval. The great frequency of *Tapes decussatus* at so late a time is of great climatological interest.

# Karholmen.

Table p. 353.

2 km SSW of Strömstad, in the north-western bay of Karholmen, at the sea-level, G. DE GEER <sup>26</sup>/s 1889.

The composition of the fauna of the single sample is:

|    | ft         | fr    | prt    |                           |
|----|------------|-------|--------|---------------------------|
| ſ  | 8          | 13    | 13     | species                   |
| Ì  | 24         | 38    | 38     | s' >                      |
| 1  | 3670       | 1 883 | 19384  | ind.                      |
| 1  | 15         | 7     | 78     | °6 .                      |
|    | 19         | 23    | . 58.  | average of<br>percentages |
|    | a          | b     | 1      |                           |
| 1  | 3          | 17    | - 14   | species                   |
| ٦. | 9          | 50    | - 41   | 95 D                      |
| 1  | 570        | 4 903 | 19 176 | ind.                      |
| Ì  | 2          | 20    | 78     | <b>%</b> > 1              |
|    | <b>5</b> . | 35    | 60     | average of percentages    |

Bd 394 H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 333

The shell-gravel is rather sandy. Mytilus cdulis is sparsely represented, but Litorina litorca-rudis is richly so. Bittium reticulatum dominates to an overwhelming extent, and Rissoa parva is very rich. Interesting and of importance is the presence of Mya arenaria, this occurrence being the oldest hitherto known in Bohuslän.

The shell-bed was probably deposited in water some few m in depth, and during the final part of the last upheaval.

### Brattskär. Table p. 353.

10 km SSW of Strömstad, in a bay in the south-castern part of Brattskär, 0.3 m above the sea, G. DE GEER 5/7 1894 The composition of the fauna of the single sample is:

|        | ft                         | fr                            | $\mathbf{prt}$                |                               |
|--------|----------------------------|-------------------------------|-------------------------------|-------------------------------|
| .1     | 7                          | 20                            | 14                            | species                       |
| ٦Ĺ     | 17                         | 49                            | 34                            | % <b>&gt;</b>                 |
| ſ      | 9 030                      | 3211                          | 15 975                        | ind.                          |
| Ĩ      | 32                         | 11                            | 57                            | ;; >                          |
|        | 25                         | 30                            | 45                            | average of                    |
|        |                            |                               |                               | percentages                   |
|        |                            |                               |                               |                               |
|        | a                          | հ                             | 1                             |                               |
| ſ      | a<br>õ                     | Ե<br>17                       | 1<br>19                       | species                       |
| {      | a<br>5<br>12               | b<br>17<br>42                 | 1<br>19<br>46                 | species                       |
| {      | a<br>5<br>12<br>1 710      | b<br>17<br>42<br>10 560       | l<br>19<br>46<br>15 826       | species<br>% •<br>ind.        |
| {<br>{ | a<br>5<br>12<br>1 710<br>6 | b<br>17<br>42<br>10 560<br>38 | 1<br>19<br>46<br>15 826<br>56 | species<br>% ,<br>ind.<br>% , |

The shell-bed is fairly stony. To judge by the frequency of *Litorina litorea-rudis*, as well as from the composition of the fauna in other respects, the bed was deposited in quite shallow water and during the very last part of the sero-post-glacial upheaval.

There have been found in the shell-bed some Balanidshells, vividly recalling *Balanus balanoides*. It is true that no very serious attempt has been made to distinguish this species from *B. crenatus*, but it should seem as if in the other post-glacial shell-beds there occurred only the latter or *B. crenatus*.

### Recent shell-beds.

### Gullmaren. Table p. 353.

Gullmaren, unknown depth, scraped-up shell-gravel, A. Goës. The composition of the fauna is:

|   | ft       | fr    | pr       | t ptm  | $\operatorname{spr}$     |                         |
|---|----------|-------|----------|--------|--------------------------|-------------------------|
| ſ | 12       | 1     | 3 19     | ) 1    | 2                        | species                 |
| ĺ | 23       | 3     | 5 36     | 5 2    | -1 %                     | ¥                       |
| ۱ | 37 948   | 2915  | 4 15.680 | ;      | 3                        | ind.                    |
| Ì | 46       | 3     | 5 19     | ) —    | ";;                      | >                       |
| • | 34       | 3     | 5 28     | 8 1    | 2 a<br>P                 | verage of<br>ercentages |
|   |          | a     | Ь        | 1      |                          |                         |
|   | Ì        | 9     | 22       | 21     | species                  |                         |
|   | í        | 17    | 42       | 41     | °' >                     |                         |
|   | ſ        | 4 196 | 60 467   | 15 501 | ind.                     |                         |
|   | <u>ا</u> | 5     | 76       | 19     | °'0 >                    |                         |
|   |          | 11    | 59       | 30     | average of<br>percentage | 5                       |

The shell-gravel contains some stones and a little Corallina officinalis. There occur in greatest frequency Verruca Strömia, Anomia spp., and Bittium reticulatum; the extreme richness of the first-named giving rise to the high percentage of the ft- and b-species.

The shell-bed is probably recent.

### Herföl.

9 km NW of Strömstad, south-western side of Herföl, c. 14 m below the sea-level, G. DE GEER.

A pot taken from the sea-bottom contained a clay rich in shells. In a quantity of this, which was neither weighed nor measured, there were found:

| Lepidopleurus cinereus 1/2 ind. | . (fr, 1)         | Saxicava rugosa 6         | (ft, a)  |
|---------------------------------|-------------------|---------------------------|----------|
| Boreochiton: ruber 1/3          | (fr, a)           | Tectura virginea 7        | (fr, b)  |
| Anomia ephippium . 1 1/2        | (fr, b)           | Gibbula cineraria 46      | (fr, b)  |
| • aculeata 1                    | (fr, b)           | Litorina rudis 2          | (ft, a)  |
| » striata $2^{1/2}$             | (prt, l)          | Lacuna divaricata 1       | (ft, a)  |
| Pecten varius $2^{1/2}$         | (prt, l)          | <i>Onoba striata</i> 1    | (fr, h)  |
| Mytilus cdulis 1/2 *            | (ft, b)           | Bittium reticulatum 83    | (prt, 1) |
| Cardium cf. exiguum 1           | (fr, 1)           | Nassa reticulata 1        | (fr, l)- |
| » fasciatum . 2                 | (p <b>r</b> t, b) | Buccinum undatum 2        | (prt, b` |
| Timoclea ovata 2                | (prt, b)          | Balanus cf. crenatus 24   | (ft, b)  |
| Montacuta bidentata 1/2         | (fr, l)           | > porcatus 1              | (ft, a)  |
| Abra alba 5 <sup>1</sup> /2     | (fr, l)           | Verruca Strömia +         | (ft, a), |
| Corbula gibba 7 1/2             | (prt, l)          | Echinocyamus pusillus . 1 |          |
| <i>Mya sp.</i> $1/_2$           |                   | •                         |          |

The composition of the fauna is:

| ft  | fr | prt       |
|-----|----|-----------|
| 7   | 11 | 7 species |
| 28  | 44 | 28 % ·    |
| a   | b  | 1         |
| - 4 | 12 | 9 species |
| 16  | 48 | 36 % »    |

This shell-deposit is of interest as it evidently dates from our days. Compared with those from sero-post-glacial times, the percentages of prt- and l- forms are very low. It would be precipitate, however, to draw any conclusions from this fact with respect to elimatic conditions.

# Shell-beds of undeterminable age.

### Strömstad.

Ö. Brogatan and N. Bergsgatan, c. 7 m above the sea, G. DE GEER  $\frac{4}{6}$  1894.

The shell-gravel is scarcely 0.1 m thick, and is superimposed on gravel and covered by mould.

Only a pickings, in which have been determined:

| Anomia striata 1/2 ind. (prt, 1)                                                                                                                                                                        | Lucina borcalis $2^{1/2}$ (fr, b)                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Ostrea edulis 1 (fr, l)                                                                                                                                                                                 | Solen sp +                                                                                                                           |
| Pecten varius + (prt, l)                                                                                                                                                                                | Thracia sp +                                                                                                                         |
| <ul> <li>septemradia-<br/>tus+ (prt, b)</li> <li>Mytilus edulis <sup>1</sup>/<sub>2</sub> (ft, b)</li> <li>modiolus <sup>1</sup>/<sub>2</sub> (fr, b)</li> <li>Cardium echinatum . 1 (fr, l)</li> </ul> | Corbula gibba $\ldots$ $2 \frac{1}{2}$ (prt, 1)Mya truncata $1/2$ (ft, a)Tectura virginea $1$ (ft, b)Emarginula fissura $1$ (prt, 1) |
| $ nodosum \cdot 1 \qquad (fr, b)  fasciatum \cdot 11/2 (prt, b) $                                                                                                                                       | Lunatia intermedia 2 (fr, l)<br>Lacuna divaricata 2 (ft, a)<br>Rissostomia membrana-                                                 |
| Laevicardium norve-<br>gicum $\dots \dots \frac{1}{2}$ (fr.l)                                                                                                                                           | cea                                                                                                                                  |
| Astarte compressa $2^{1/2}$ (fr, a)                                                                                                                                                                     | Aporrhais pes pelecani.1(fr, l)Triforis perversa1(prt, l)                                                                            |
| Timocieu ovala2(prt, b)Tapes aureus2(fr, l)Lucinopsis undata. 1/2(prt, l)                                                                                                                               | Nassa reticulata        3         (fr, 1)           Waldheimia sp1/2         Balanus porcatus        1         (ft, a)               |

The composition of the fauna is, consequently:

| ft | fr | prt        |
|----|----|------------|
| 4  | 14 | 10 species |
| 14 | 50 | 36 %       |
| a  | b  | 1          |
| 4  | 9  | 15 species |
| 14 | 32 | 54 %       |

Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 337

The composition points to the shell-bed having been deposited during the latter part of the last upheaval. Still, it is possible that the composition, being determined from a pickings, does not give a correct view of the conditions, and that the superimposed mould is derived from a clay deposited during the post-glacial depression.

### Hälle III.

### Table p. 412.

5.5 km NNE of Strömstad, Hälle, c. 13 m above the sea, G. DE GEER <sup>4</sup>/8 1890. Close by Hälle II (see p. 321). Prof. DE GEER measured this section:

The only sample was taken on the boundary between the shell-bed and the partially redeposited clay, and contains a mixed glacial and post-glacial fauna. Prof. DE GEER made a washing of the shell-gravel on the spot with a 3-mm-net. Of this there has been analysed 50  $cm^3$ , weighing 64 gr.

In a pickings occur the following species not found in the sample:

| Pecten septemradia-                                |             | Mactra subtruncata . 1/2 (prt, 1)   |
|----------------------------------------------------|-------------|-------------------------------------|
| $tus \ldots \ldots \ldots \ldots 1$ in             | d. (prt, b) | Macoma calcaria 28 (ft, a)          |
| Pecten tigrinus 1 1/2                              | (prt, b)    | Antalis entalis 3 (prt. b)          |
| Vola maxima $1/2$                                  | (prt, l)    | $\rightarrow$ striolata 1 (ft.a)    |
| Leda pernula 1                                     | (ft, a)     | Patella rulaata                     |
| > minuta 4                                         | (ft, a)     | Puncturella noachina 1 (ft a)       |
| Portlandia arctica . 1 <sup>1</sup> / <sub>2</sub> | (ft, a)     | Natica afinis 1 (ft a)              |
| Cyprina islandica 2                                | (fr, b)     | Anorchais nes nelecani 6 (fr. 1)    |
| Astarte compressa +. 5                             | (ft, a)     | Clathurella linearie 1 (fr. 1)      |
| Venus gallina 1                                    | (prt, b)    | $V_{assa}$ in propagata $A$ (fr. b) |
| Tapes spp 1                                        |             | Russi inclassifia 4 (II, b)         |
| Lucina borealis 13                                 | (fr. b)     | Nuccinum undatum I (prt, b)         |
| Axinus flexuosus 1                                 | (prt, b)    | carinata 6 (ft, a)                  |
| 24-170108. G. F. F. 1917.                          |             |                                     |

As it is not possible to distinguish with certainty the glacial forms from those of post-glacial age, a determination of the time of the deposition of the post-glacial part of the shellbed is impossible.

### Tables.

The molluscs have been divided, after GERARD DE GEER and the writer, into groups in accordance with their time of immigration into Bohuslän. The shell beds are arranged according to age, so that the time for the immigration of the various species, in post-glacial age, can be read more exactly from the tables. The figures signify the calculated number of individuals per  $dm^3$  of shell-gravel. Often not separable, Litorina litorea and L. rudis have been brought together. Under sp. after a genericname there have often been brought together different species, belonging to the genus, but not more exactly determinable. The Echinoids have not been taken into account in the calculations of the composition of the fauna. The time of immigration of the now common Balanus balanoides L. is unknown (cfr. p. 334). For the sake of completeness those forms, too, are included which have been found in pickings only.

An asterisk \* signifies that Dr. NILS ODHNER has kindly carried out the determination; in addition to those so marked, he has determined various young specimens and less characteristic individuals.

# Shell-beds from the primo-post-glacial re-

|        |                                            |                                          | _            | _               |               |           |          | -               |          |          |               |            | _        | _          |             |                 |      |          | -        |
|--------|--------------------------------------------|------------------------------------------|--------------|-----------------|---------------|-----------|----------|-----------------|----------|----------|---------------|------------|----------|------------|-------------|-----------------|------|----------|----------|
|        |                                            | 1                                        | Nyc          | kleb            | у             |           | М        | ör]             | հսl      | t I      |               | Su:<br>min | m-<br>ge | Luı<br>vil | ınę-<br>c I |                 |      |          |          |
|        |                                            |                                          | p. 1         | $284 \cdot$     |               |           |          | р.              | 285      |          |               | p. 2       | 86       | р. 5       | 287         |                 |      |          |          |
|        | a service a service service state and      |                                          |              | 93              |               |           |          | -               | 19.5     |          |               | - 11       |          |            | 17          |                 |      |          |          |
|        | Locality: height in <i>m</i> above the sea |                                          | с.<br>а.а. Ш | 20              |               |           | 0        | <u> </u>        | 12 5     |          | 19            | - 10       |          |            | 17          |                 | 9 ]  |          |          |
|        | Samples: , , , ,                           | c. 2                                     | 2.3          | <u> </u>        | 2.6           | <u>c.</u> | <u>v</u> | <u>с.</u>       | 10       | <u> </u> | 1.2           | 100        |          |            | 11          | <u> </u>        | ~    | <u> </u> | <u>ə</u> |
|        | Weight in gr of whole sample, $0.2 \ dm^3$ | $\begin{bmatrix} 275 \\ 5 \end{bmatrix}$ | 9            | 26              | 56<br>76      | 34        | 5        | 2               | 40<br>90 | 20       | $\frac{4}{2}$ | 182        |          |            | 90<br>49    | 15              | 3    | 11       | 8        |
|        | $\rightarrow 1-2 mm \dots$                 |                                          | 6            | Ì               | 6             | 4         | 6        |                 | 60       | ā        | 9             | 24         |          | :          | 54          | 2               | 7    | 3        | 3        |
|        | Analysed part of $dm^3$                    | 1/30                                     | 1/10         | 1/50            | 1/5           | 1/40      | 1/10     | 1/40            | 1/20     | 1/40     | 1/15          | 1/30       | 1/10     | 1/30       | 1/10        | 1/20            | 1/10 | 1/30     | 1/10     |
|        | Correspondence of material in WW           | 1-2                                      | 2 < 1        | $\frac{1}{1-2}$ | $\frac{1}{2}$ | 12        | 2 <      | $\frac{1}{1-2}$ | 2 <      | 1-2      | 2 <           | 1 - 2      | 2 <      | 1 - 2      | 2 <         | $\frac{1}{1-2}$ | 2<   | 1 - 2    | 2<       |
|        | Coardeness of material man of the state    | 1                                        |              |                 |               |           |          |                 | <u></u>  | 1        |               |            |          |            |             |                 |      |          |          |
| Redo   | 1 Portlandia arctica (iBAX (a)             | _                                        |              |                 | _             |           |          | _               | _        | _        | _             | _          |          | ·          | _           | _               |      |          | -        |
| 23     |                                            |                                          |              |                 |               |           |          |                 | <u> </u> |          |               |            | ·        | 5          |             |                 |      |          |          |
|        | 2 Boreochiton marmoreus FABR. (a)          |                                          |              | <u></u>         |               |           |          |                 |          |          |               |            |          |            |             |                 |      |          | <u> </u> |
| ft     | 3 Pecten islandicus Müll. (a)              | -                                        |              |                 | _             |           |          | -               | 120      |          | 100           |            |          |            | <br>a #00   | 1 000           |      | 1.050    | -        |
| (Go    | 4 Mytilus edulis L. (b)                    | +                                        | 10           |                 | 30            | 50        | 20       | 600             | 120      | 320      | 120           | 490        | 190      | 4 000      | 2 000       | 1 260           | 830  | 1 690    | 2 250    |
| thi    | 5 Leda minuta MULL. (a)                    |                                          |              | -               | -             | -         |          | —               | -        | -        | _             |            | —        |            | _           | _               | -    |          | -        |
| 07     | 6 Portlandia lenticula FABR. (a)           | -                                        | —            | —               | _             |           | -        | _               | -        | -        | _             | -          | -        | —          | _           |                 |      | -        |          |
| licia  | 7 Astarte compressa Mont. (a)              |                                          | 20           | 50              | 25            |           | 10       | —               | -        |          | -             |            |          | —          | 5           | —               | —    | -        | -        |
|        | 8 > elliptica Brown (a)                    |                                          |              |                 | _             |           |          | _               |          | —        |               |            | -        |            | _           | _               | -    | -        |          |
| 51     | 9 Macoma calcaria Снемя. (a)               |                                          | —            | -               | _             |           | _        |                 | -        |          | —             | _          |          |            | -           | -               | -    |          | -        |
| i ssi. | 10 Mya truncata L. (a)                     | _                                        | _            |                 | _             |           | ]        | _               | _        | _        |               |            |          | ]          | . 2         | _               |      | _        |          |
| ona    | 11 Saxicava rugosa L. (a)                  |                                          | 60           | 150             | 75            |           | 15       | 80              | 50       | 200      | 15            | 210        | 45       | 330        | 25          | 195             | 125  | 240      | 180      |
|        | 12 Antalis striolata STIMPS (a)            | _                                        | _            |                 | _             | _         | _        | _               | _        |          | _             | _          |          | _          |             | _               | _]   | _        |          |
| (br    |                                            | <u> </u>                                 | 00           | 200             | 190           | 80        | 15       | 680             | 170      | 520      | 125           | 660        | 105      | 1 390      | 9 595       | 1.455           | 975  | 1.890    | 9.130    |
| Ē      | Pelecypoda: sum                            | . +                                      | 50           | 200             | 190           | 00        | 40       | 000             | 110      | 0.0      | 100           | 000        | 100      | 1000       | <i></i> 000 | 1 400           | 010  | 0.00     | ~ 100    |
| 1      | 13 Lepeta caeca Müll. (a)                  | -                                        | _            | -               | -             |           | _        | _               |          | —        | —             | —          | 10       | —          | -           | _               |      | —        | -        |
| lac    | 14 Puncturella noachina L. (a)             | _                                        |              |                 | _             |           |          | _               |          |          | —             | —          |          | ·          | -           |                 |      | ·        |          |
| lai    | 15 Mölleria costulata Möll. (a)            |                                          | _            |                 |               |           |          | -               |          |          | _             | —          | _        |            |             | -               | —    |          | -        |
| L H    | 16 Margarita helicina FABR. (a)            |                                          | !            | _               |               |           |          |                 |          |          |               | —          | ~        | -          | ÷           |                 |      |          | . –      |
| 3su    | 17 Litorina litorea L. (b)                 |                                          |              |                 | _             |           |          |                 |          |          |               |            |          |            | ~0          | 1-0             | 100  | = 10     | 150      |
| res    | 18 rudis Matox (b)                         |                                          | _            |                 | õ             | 80        | 30]      | 1 000           | 200      | 1 400    | 60            | 90         | -        | 330        | 70          | 490             | 130  | 940      | 190      |
| sion   | 19 Lacuna diraricata FARR (a)              | 900                                      | 401          | 000             | 45            |           |          | -               |          | _        |               | 120        | 30       | 990        | 20          | 150             | _    | 450      | 45       |
| nal i  | Gastropoda: sum                            | 900                                      | 40           | 000             |               | 80        | 30 1     | L 000           | 200      | 1 400    | 60            | 210        | 40       | 1 320      | 90          | 600             | 130  | 990      | 195      |
| mm     |                                            |                                          |              | 1               |               | 400       | 190      | 1 6 10          | 9.010    | 1.000    | 870           | 90         | .        | 900        | 290         | 7.90            | 610  | 570      | 995      |
| isin   | 20 Balanus crenatus BRUG. (b)              | 210                                      | 10           |                 | 45            | 400       | 1001     | 1040            | 60       | 4 01/0   | 010           |            | _        |            | 200         | •~0             |      |          |          |
| unts   | 21 $\rightarrow$ portations of Costa (a)   | 1 500                                    | 560 2        | 500             | 1775<br>1775  | 1 190     | 70       | . 600           | 620      | 3 700    | 995           | 1 200      |          | 7 500      | ÍOO         | 540             | 30   | 780      | 120      |
| ft     | 22 vertuca Stromut MULL. $(0)$             | + 000                                    | 000,0        | 1000            | 1 1 10        | 1 120     | 101<br>1 |                 | 000      | 0 100    | 440           | 1 200      | 50       |            | 100         | 010             |      |          |          |
| 16     | Balanidae: sum                             | 4 710                                    | 590 đ        | 500             | 1 820         | 1 560     | 200 7    | 7 240           | 2 750    | 7 700    | 1 095         | 1 290      | 90       | 8 400      | 390         | 1,260           | 640  | 1 390    | 340      |
|        | 23 Echinus dröbakensis Müll                | +                                        |              | _               | _             |           |          | _               |          |          |               | ;          | _        |            |             | —               | —    |          |          |
|        | Continued on p                             |                                          |              |                 | N,            |           |          |                 |          | 35       | 1             |            |          |            |             |                 |      |          |          |

340

| _         |             |          | <u>.</u> |       |               | _         |       |               |          |              |                                              |                      |       |           |            |             |       |
|-----------|-------------|----------|----------|-------|---------------|-----------|-------|---------------|----------|--------------|----------------------------------------------|----------------------|-------|-----------|------------|-------------|-------|
| 0         | t           | t e      | r        | ö     | A             |           |       |               |          | ן            | Fjä                                          | 11Ъ                  | a e k | ta        |            |             |       |
| <b>+-</b> |             | _ p.     | 271      |       |               |           |       |               |          |              |                                              | p. 27                | 76    | <u>0v</u> | er!        |             |       |
|           |             | с.       | 8        |       |               |           |       |               |          |              | <u>.                                    </u> | cc. 2                | 0     |           |            |             |       |
| c         | L_          | c.       | 5        | c.    | 6             | <u>c.</u> | 7     | <u>c. 7</u> . | 7        | <u>cc.</u> 1 | 6.3                                          | cc. 1                | 6.8   | cc. 17    | 7-3        | •••         | • •   |
| 153       |             | 129      | )        | 168   | 3             | 18        | 1     | 289           | 2 1      | 29           | 3                                            | 25                   | 7     | 170       |            | • •         | • •   |
| 94<br>47  |             | 46       | 3        | 55    | 5             | 5         |       | 13:           |          | 4            | 6                                            | 4                    | 0     | 35        |            | •••         |       |
| 1/20      | 1/10        | 1/40     | 1/10     | 1/20  | 1/10          | 1/50      | 1/20  | 1/20          | 1/10     | 1/:0         | 1/10                                         | 1/40                 | 1/15  | 1/20      | 1/15       |             | • • • |
| 1-2       | 2 <         | 1 - 2    | 2 <      | 1 - 2 | 2 <           | 1 - 2     | 2 <   | 1 - 2         | 2 <      | 1 - 2        | 2 < 1                                        | -2                   | 2 < 1 | 1 - 2     | $2 \leq 1$ | • •         | · · · |
|           |             |          |          | ĺ     |               |           |       | i             | 1        |              | 1                                            |                      |       |           | Ĩ          |             |       |
|           |             |          | ]        | _     |               |           |       |               | -        |              | <u> </u>                                     |                      |       |           | !          | 1.          |       |
| 5         |             |          | *        | 25    | !             | 8         | 7     |               |          |              |                                              |                      |       |           |            | 2.          |       |
|           | [           |          |          |       |               |           |       |               |          |              |                                              |                      |       |           |            | 3.          |       |
| 3 390     | 2 600       | 4 600    | 1 600    | 1740  | 1 000         | 1 5 9 0   | 1 550 | 360           | 340      | 1650         | 530                                          | 500,                 | 1 425 | 1 800     | 540        | 4.          |       |
| _         | _           |          |          |       |               | _         | _     | _!            | _        |              |                                              | _                    | _     |           | _          | 5.          |       |
| ·         | _           | _        |          |       | _             |           |       | !             |          | _            | _!                                           | _                    | _     |           | _          | 6.          |       |
| ·         |             |          |          | -     | _             | ·         | _     |               | -        | _            | -                                            | -                    | _     |           | _          | 7.          |       |
|           | -[          |          | - ]      | -     |               |           |       | _             | _        | _            | -                                            |                      | -     |           |            | 8.          | • •   |
|           |             | —        |          |       | -             | _         |       | -             |          | -            | -                                            | -                    | -     |           |            | 9.          | •••   |
| -         | -           | _        | —        | -     | 5             | -         | 10    |               |          | ¦            |                                              |                      | 8     | 15        | -          | 10.         | •••   |
| 300       | 350         | 1 000    | 240      | 570   | 180           | 800       | 800   | 480           | 680      | 75           | 50                                           | 80'                  | 60    | 105       | 45         | 11.         | • •   |
|           |             |          |          |       |               |           | ]     | !             |          | <u> </u>     |                                              |                      | ;     |           |            | 12.         | • •   |
| 3 690     | 2950        | 5 600    | 1 840    | 2310  | 1 185         | 2 300     | 2 360 | 840           | 1 (020   | 1 725        | 580                                          | 1880                 | 1 493 | 1 920     | 585        | • •         | • •   |
| ·         |             | —        | -        | —     | _             | _         | —     |               |          |              | -1                                           | !                    |       |           |            | 13 .        |       |
| -         |             | -        |          |       | _             | -         | —     | -             |          | -            | -                                            | -                    |       | _         |            | 14.         |       |
| -         | -           |          | _        | ·     | <sup>  </sup> | -         | `     |               |          |              | -¦                                           |                      | ,     |           | -          | 15.         |       |
| -         | -           |          | —        | -     | —             |           |       |               | -        | -            |                                              |                      | '     |           |            | 16.         | • •   |
| 1 740     | <b>2</b> 20 | 880      | 50       | 1 380 | 100           | 500       | 240   | 570           | 400      | 1 050        | 100                                          | L 200                | 150   | 1 800     | 180        | 17.<br> 18. | •••   |
| 610       | 30          | 1520     | 20       | 480   | ]             | 450       | 20    | 270           | 60       | 570          | 20                                           | 600                  | 15    | 600       |            | 19,         |       |
| 2350      | 250         | 2400     | 70       | 1 860 | 100           | 950       | 260   | 840           | 460      | 1 620        | 120                                          | l 800                | 165   | 2400      | 180        | • •         |       |
| 1 050     | 400         | 880      | 330      | 780   | 260           | 150       | 140   | 60            | 70       | 2 850        | $1280^{1}$                                   | L 400                | 1 350 | 600       | 600        | 20.         |       |
| +         | +           | _        | _!       | —     | _             | -         | 20    | —             | . —      | -            |                                              | _                    | _     | -         | —          | 21.         |       |
| 840       | 160         | 2 000    | 60       | 1 680 | - 30          | 2500      | 220   | 180           | 10       | 780          | 20                                           | 2 600                | 120   | 1950      | 105        | 22.         |       |
| 1 890     | 560         | 2880     | - 390    | 2460  | .290          | 2650      | 380   | 240           | 80       | 3 630        | 1 300                                        | 4 000 <mark> </mark> | 1 470 | 2550      | 705        | :.          |       |
|           |             | <u> </u> | ;        |       |               | <u> </u>  |       |               | <u> </u> |              |                                              |                      |       |           | ]          | 23.         |       |
|           |             |          |          |       |               |           | 855   |               |          |              |                                              |                      |       |           |            |             |       |

# gression and the post-glacial transgression

341

•

[April 19

| Shell-beds | from | $\mathbf{the}$ | post- |
|------------|------|----------------|-------|
|------------|------|----------------|-------|

|        |              |          |                 | <u> </u> |           |                   |      |          |      |      |        |               |              | <u> </u> | _        | -             |
|--------|--------------|----------|-----------------|----------|-----------|-------------------|------|----------|------|------|--------|---------------|--------------|----------|----------|---------------|
|        |              |          | ${ m F}~{ m j}$ | ä l      | l b a     | e k               | a    |          |      |      |        | I             | ü ü n        | d a      | 1        |               |
|        | Over!        |          |                 | р        | . 276     |                   |      |          |      | •    |        |               | p. 2         | 88       |          |               |
| •      | 1            |          |                 |          | ce. 20    | )                 |      |          |      |      |        |               | · cc.        | 14       |          |               |
| •      | cc.          | 17.8     | ec. 1           | S·3      | cc.       | 19 <sup>.</sup> 3 | cc.  | 19.8     | ec   | . 20 | cc     | 9.5           | ce.          | 11.2     | cc.      | 13.5          |
| •      | 21           | 12       | 16              | 7        | 2         | 10                | 3    | 36       | 3    | 45   | 2      | 48            | 2            | 74       | 3        | 05            |
| • • •  |              | 36<br>10 | . 2<br>3        | ն<br>Տ   |           | 1ə<br>40          |      | 55<br>33 | i.   | 21   |        | 70<br>57      |              | 74<br>68 | 1        | 31<br>61      |
|        | 1/30         | 1/10     | 1/50            | 1/10     | 1/30      | 1/10              | 1/20 | 1/5      | 1/30 | 1/5  | 1/40   | 1/15          | 1/40         | 1/10     | 1/40     | 1/            |
| •••    | 1-2          | 2<       | 1-2             | 2<       | 1-2       | 2 <               | 1-2  | 2 <      | 1-2  | 2<   | 1-2    | $\frac{1}{2}$ | 1-2          | 2<       | 1-2      | 12<           |
|        | 1            |          | -               |          | •         |                   |      |          | 1    | 1    | 1      | 1             | 1            | 1        |          | Í,            |
| . 1    |              |          |                 |          | ·         |                   |      |          |      |      |        |               |              |          |          |               |
| . 2    | _            | _        |                 |          |           |                   |      | _        | _    | _    |        | _             | 7            |          | <u> </u> | _             |
| . 3    | · -          | +        | -               |          |           |                   | -    |          |      | ·    |        | +             | -            | +        |          | -             |
| . 4    | 2 250        | 560      | 2100            | 550      | 480       | 140               | 660  | 110      | 60   | 5    | 1 200  | 450           | 1 000        | 180      | 800      | 240           |
| . 5    | -            | -        | -               | <u>i</u> | —         | . —¦              |      | —        |      |      | -      |               |              | -        | -        | -             |
| . 6    | i            | _        |                 |          |           | —                 |      |          |      |      |        |               | -            | _        | -        | -             |
| . 7    |              |          | -               |          | —         | —'                | —    | 15       |      | —    | 20     | 45            | -            | 5        |          |               |
| . 8    | —            | -        | -               |          | —         |                   | —    | -        |      |      |        | _             | -            | -        | _        | _             |
| . 9    | —            | -        |                 | 'l       | —         | -                 | -    | ]        |      | _    |        | _             | -            | -        |          | -             |
| . 10   | —            |          | 15              |          |           |                   |      |          |      |      |        | -             | -            |          |          | -             |
| . 11 ; | 570          | 150      | 420             | 80       | 480       | 70                | 330  | - 50     | 120  | 10   | .80    | —             | 360          | 120      | 120      | <sup>13</sup> |
| . 12   |              | 710      |                 | (:20     | 960       |                   | 990  | 175      | 150  | 15   | 1 800  | 495           | 1 360        | 805      | 920      |               |
| •••    |              | 110      | , 000<br>       | 0.00     | 500       | 210               | 550  | 1.00     | 100  | 10   | 1000   | 455           | 1 000        | 000      | 520      | 200           |
| . 13   |              | -        |                 |          | _         | _                 | _    |          |      | _    |        |               |              |          | -        |               |
| . 15   | _            |          | _               |          | _         | ]                 | _    | ]        |      | _    |        | . –           | _            | ]        | _        | _             |
| . 16   | —            |          |                 | -        |           |                   |      | _        | -    | _    | _      | ·             |              | -        |          | -             |
| . 17   | 2 100        | 140      | 1 950           | 80       | 540       | 10                | 390  | 35       | 240  | 50   | 840    | 90            | 400          | 70       | 240      | <b>6</b> 0    |
| . 13)  | 930,         | 30       | 1 650           | +        | $450_{c}$ | 20                | 450, | 30       | 30   |      | 1 520, | <b>C</b> 0    | 1 280        | 30       | 200      |               |
|        | 3 060        | 170      | 3 600           | 80       | 990       | 30                | 840  | 65       | 270  | 50   | 2 360  | 150           | 1 680        | 100      | 440      | 6             |
| . 20   | 3 810        | 1 110    | 2 850           | 700      | 390       | 110               | 480, | 40       | 30   | ō    | 3 320  | 1 005         | 1 440        | 400      | 2 800    | 823           |
| . 21   | _            | _        | -               | -:       |           |                   | _    | _        | _    |      |        | -             |              | 10       |          | 5             |
| . 22   | <b>1</b> 860 | 100      | 2 550,          | _60      | 990¦      | 10                | 480  | 5        |      |      | 20     | 8             | <b>2</b> 000 | 70       | 1 000    | 3             |
| •••    | 5670         | 1 210    | 5400            | 760      | 1 380     | 120               | 960  | 45       | 30   | õ    | 3 340  | 1 013         | 3 4 4 0      | 480      | 3 S00    | 871           |
| . 23   |              | _:       |                 |          |           |                   |      |          |      | _    |        |               | .—           |          |          |               |
|        |              |          |                 |          |           |                   |      | 356      |      |      |        |               |              |          |          |               |

342

••

343

|          |            |        |        |                 |               |        |               |                  |             |               |        |          |              | _           | _ |
|----------|------------|--------|--------|-----------------|---------------|--------|---------------|------------------|-------------|---------------|--------|----------|--------------|-------------|---|
|          | 0          | ttei   | rö I   | 3               |               |        | Ηv            | a l ö            |             | M             | örh    | ult      | II           |             |   |
|          |            | p. 2   | 71     |                 |               |        | p. 3          | 289              |             |               | р.     | 290      |              |             |   |
|          |            | c. 5   | .3     |                 |               |        | c.            | 6                |             |               | c.     | 4.3      |              |             | • |
| c. 3.8 ( | (c. 4·4)   | с. •   | 1.2    | c. i            | 5.5           | c.     | 3             | с.               | 5           | e.            | B·3    | c.       | 4            |             |   |
| 260      | )          | 27     | 7      | 26              | 6             | 17     | $\frac{0}{7}$ | 16               | 0<br>7<br>1 | 39            | )9     | 35<br>16 | 7<br>8       | • •         | · |
|          | ) ·        | 0<br>5 | 6      | 7               | 3             | 5      | 6             | 5                | 3           | 10            | 14     | 7        | <u>ŏ</u>     |             | • |
| 1/00     | 1/5        | 1/80   | 1/5    | 1/ <sub>0</sub> | $\frac{1}{3}$ | 1/50   | 1/10          | $^{1/50}$        | 1,'10       | 1/20          | 1′5    | 1/40     | 1/10         |             | • |
| 1-2      | $2 \leq  $ | 1-2    | 2 <    | 1 - 2           | _2<           | 12     | 2 < 1         | 12               | 2<          | 1-2           | 2<     | 1-2      | $2 \leq$     | <u> </u>    |   |
|          |            |        | f<br>t |                 |               |        |               |                  |             |               | 1      | ĺ        |              |             |   |
|          | 3          |        |        |                 |               |        |               |                  |             |               | !      |          |              | 1.          | • |
| _        | _          |        | _      |                 | _             | _      |               | 17               |             |               | [      |          |              | 2.          |   |
| _        |            |        |        |                 | _             | _      |               |                  | -           |               | 3      | _        |              | 8.          |   |
| 570      | 460        | 240    | 40     | 120             | 40            | 150    | 60            | 150              | 40          | 60            | 75     | 240      | 230          | 4.          | • |
| -        | -          | -      | _      |                 | -             |        | -             | —                |             | —             | !      |          | -            | 5.          | • |
| -        | -          | —      | . —    |                 | -             | _      |               |                  | ÷           |               | -[     |          |              | 6.          | • |
| -        | 3          | 15     | -      | 45              |               |        |               | 25               | -           | -             | 3      |          | 5            | 7.          | • |
|          | —          |        |        |                 | _             |        | —,            | -                | -           | -             |        |          | -            | 8.          | • |
| -        |            | -      | 5      | _               | _             |        |               |                  |             |               | 9<br>8 |          | _            | 10<br>10    | • |
| 595      | 535        | 660    | 75     | 1 4 1 0         | 120           | 2 250  | 240           | 1 850            | 140         |               | 10     | 240      | 60           | 10.         |   |
| 0.0      | _          |        | _      | _               | -             |        |               |                  | _           | —.            | -      |          |              | 12.         |   |
| 1 095    | 998        | 915    | 120    | 1 575           | 160           | 2400   | 300           | 2 025            | 180         | 90            | 99     | 480      | 295          | ·           | • |
| _        | -          | _      | _      | _               |               | _      | _             | _                | -           | _             | ]      | _        | -            | 13.         |   |
|          |            | _      | _      |                 |               | _      |               | - i              | _           | -             |        | -        | <del>.</del> | 14.         | • |
| _        | _          | —      |        | —               |               | -      | —'            |                  | -           | —             | _      | -        |              | 15.         | • |
| —        | -          | _      | —      |                 | -             |        |               |                  | -           | —             |        | -        | -            | 16.         | • |
| 600      | 50         | 270    | 60     | 660             | 50            | 100    | 30            | -                | -           | 360           | 80     | 480      | +            | 17.<br> 18. | • |
| 390      | 5          | 150    | 10     | 480             | 10            | 650    | 10            | 500              | 10          | 90            |        | 120      | 10           | 19.         |   |
| 990      | 55         | 420    | 70     | 1 140           | 60            | 750    | 40            | 500 <sup>1</sup> | 10          | $450^{1}_{1}$ | 80     | 600      | 10           | •           |   |
| +        | 10         | 120    | 20     | 120             | 10            | _      | 20            | —                | 10          | 60            | 165    | 320      | 320          | 20.         |   |
|          | 5          | -      |        | _               |               | —      | —             | -                | 10          |               | 5      | —        | . +          | 21.         | • |
| 390      | 20]        | 150    | 10     |                 | 10            | 10 250 | 850           | 11750            | 510         | 300           | 50     | 2 600)   | 430          | 22.         | · |
| 390      | 35         | 270    | 30     | 120             | 20            | 10 250 | 870           | 11 750           | 530         | 360           | 220    | 2 920    | 750          |             | • |
| i        |            | —      |        |                 |               |        |               |                  | —           | <u> </u>      |        |          |              | 23.         |   |

# glacial transgression

357

. . .

|           | Rössö-Långö<br>A                                          | Rössö-Långö<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Torseröd                              | Smittmyren                                                                                                         | Fjälla N. Holt      |
|-----------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------|
|           | p. 279                                                    | р. 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p. 281                                | p. 291                                                                                                             | p. 282 p. 283       |
|           | . 8                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cc. 0.5                               | 31.1                                                                                                               | 31 c. 32            |
|           | 7 7.9                                                     | 7 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cc. 0.5                               | 30.6 30.9                                                                                                          | 31 c. 31.5          |
| • • •     | 277 289                                                   | 260 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 285                                   | 182 220                                                                                                            | 345 212             |
|           | 37 41                                                     | 35 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                    | 42 		 48                                                                                                           | 88 37               |
| •••       | $\frac{1}{25}$ $\frac{1}{5}$ $\frac{1}{25}$ $\frac{1}{5}$ | $\frac{1}{25}$ $\frac{1}{5}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/20 1/10                             | <sup>1</sup> / <sub>20</sub> <sup>1</sup> / <sub>10</sub> <sup>1</sup> / <sub>20</sub> <sup>1</sup> / <sub>1</sub> | 0 1/19 1/8 1/25 1/1 |
| <u></u>   | 1-2 < 1-2 < -2 < -2 < -2 < -2 < -2 < -2                   | $ 1-2  \le 1-2  \le$ | 1-2  <  2                             | 1 - 2   2 <   1 - 2   2 <                                                                                          | 1-2 2< 1-2 2<       |
|           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    |                     |
| 1         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    |                     |
| 2         | s 1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    | 15 -                |
| 3         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | ·                                                                                                                  |                     |
| 4         | +                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 840 <sup>†</sup> 410                  | 750[1450] $510[45]$                                                                                                | 0 - 350,160         |
| 5         |                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                     | _  _  _ -                                                                                                          |                     |
| 6         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    |                     |
| 7         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    | -24 6               |
| 8         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    |                     |
| 10        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    |                     |
| 11        | $200^{1} 40^{1} 225^{1} 20^{1}$                           | 125 40 300 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210 180                               | 150 210 270.26                                                                                                     | 0 12 6 59520        |
| 12        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    |                     |
|           | 200 48 225 2                                              | 3 125 45 300 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 1 050 590                           | 900 1 660 780 71                                                                                                   | 0 36 15 945 36      |
| 13        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                    |                     |
| 14        | ·                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                     | _  -                                                                                                               |                     |
| 15        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |                                                                                                                    | -  -                |
| 16        |                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                     |                                                                                                                    | ╺╏╺─╎╾╎╴            |
| 17        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 750 70                              | 120 40 300 21                                                                                                      | 0 + - 315 21        |
| 19        |                                                           | 25 - 100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 510 40                              | 600 70 750 -                                                                                                       | - $  154020$        |
|           |                                                           | 25 - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 1 260 110                           | 720 110 1 050 21                                                                                                   | 0 + - 1 855 41      |
| 20        | 25 90 150 120                                             | 125, 150; 100, 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 570, 2 010                            |                                                                                                                    | 0 86 72 525 25      |
| 21        | - 10 - :                                                  | 5 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _  _                                  | -                                                                                                                  | 18                  |
| 22        | $1500110^{\circ}500^{\circ}53$                            | 5 1 000 110 1 125 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 <u>480</u> 100                      | 1 800 120 1 260 7                                                                                                  | 0 12 6 1 575 18     |
| i <b></b> | 1 525 210 650 180                                         | 0 1 125 270 1 225 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 050 2 110                           | 1 800 160 1 290 14                                                                                                 | 0 48 96 2 100 43    |
| 23        |                                                           | -  _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                              |                                                                                                                    | <u> </u>            |

•••

Shell-beds from the post-glacial transgression maximum

| Med          | vik         |              | Mec<br>B       | lvik         |             |              |             |           | Lu             | nn        | evi            | k       | II             |               |                |               |     |   |
|--------------|-------------|--------------|----------------|--------------|-------------|--------------|-------------|-----------|----------------|-----------|----------------|---------|----------------|---------------|----------------|---------------|-----|---|
| р. 2         | 292         |              | p. 2           | 292          |             | 1            |             |           |                | p.        | 294            |         |                |               |                |               |     |   |
| c. 1         | 82          |              | c.             | 32           |             |              |             |           |                | c         | . 35           |         |                |               |                |               |     | . |
| е.           | 26          | с.           | 29             | <u>c.</u>    | 31          | c. 2         | 7.2         | <u>c.</u> | 28.5           | <u>c.</u> | 30             | c. 8    | 32.5           | <u> </u>      | 34             |               | • • | . |
| 24<br>6<br>5 | 2<br>9<br>9 | 2            | 15<br>75<br>64 | 19<br>8<br>4 | 4<br>1<br>0 | 26<br>4<br>2 | 7<br>1<br>2 | 2         | 37<br>53<br>44 | 2         | 44<br>58<br>48 | 2       | 41<br>55<br>41 | 2             | 12<br>48<br>40 |               | ••• |   |
| 1/25         | 1/10        | 1/25         | 1/15           | 1/20         | 1/15        | 1/20         | 1/5         | 1/20      | 1/5            | 1/20      | 1/5            | 1/20    | 1/5            | 1/20          | 1/5            |               |     | . |
| 1-2          | $2 \leq$    | 1-2          | 2 < 1          | 1 - 2        | 2 <         | 1-2          | 2 <         | 1-2       | 2<             | 1-2       | $2 \leq$       | 1-2     | 2 < 1          | 12            | 2<             |               |     | 1 |
|              | -           |              |                |              | <u> </u> _  |              | _           |           |                |           |                |         |                |               |                | 1.            |     |   |
|              | 1           | _            |                | _            |             | 17           | _           | 7         | _              | 3         | _              | 10      |                | 10            | _              | 2.            |     | 1 |
|              | _           |              | _              | _            | -           | <u> </u>     | -           | _         |                | <u> </u>  |                | -       |                | _             | _              | 3.            |     |   |
| 1645         | 375         | 8 <b>7</b> 5 | 440            | 690          | 525         | 2600         | 725         | 3 700     | 1200           | 3 700     | 1540           | 3 800   | 1500           | <b>5 0</b> 00 | 1 600          | 4.            |     |   |
| -            | _           | <del></del>  | _              | -            |             |              | -           | -         | -              | —         |                | -       |                | —             | -              | 5.            | • • |   |
|              |             |              |                |              | _           | _            | 5           |           |                |           |                |         |                |               | _              | 6.            | • • |   |
| 10           |             |              | _              |              |             |              | 3           |           |                | _         |                |         |                |               |                | 7.<br>8       | • • | ł |
| _            |             |              | _              | _            | _           |              | _           | Ì _       | _              | _         |                | —       |                | _             | -              | 9.            | ••• |   |
| _            |             |              | _              | -            | _           |              | —           |           |                | -         | _              | -       | _              | -             |                | 10.           |     |   |
| 18           | 20          | -            |                | 15           | 8           | 70           | 40          | 540       | 145            | 500       | 125            | 320     | 80             | 320           | 30             | 11.           | • • |   |
|              |             |              |                | -            | ( <u> </u>  |              |             |           |                |           |                |         |                |               |                | 12.           | • • |   |
| 1 651        | 390         | 515          | 440            | 705          | 033         | 2 670        | 113         | 4 240     | 1 348          | 4 200     | 1 665          | 4 120   | 1 550          | ə 320         | 1 630          | • •           | • • |   |
| -            | -           |              |                | _            | _           |              | 5           |           | _              | -         | ;              |         | j—             | _             | —              | 13.           | • • |   |
|              |             |              |                |              |             |              |             |           |                | · _       |                |         |                | _             |                | 14.           | • • |   |
| _            | _           | _            |                | -            |             | -            | _           | _         |                |           | _              |         |                |               | _              | 16.           | ••• |   |
| 1 435        | 200         | 1 375        | 275            | 900          | 899)        | 440          | 30          | 1 040     | 155            | 840       | 180            | 920     | 105            | 1 600         | 105            | <b>[17</b> .  | • • | ļ |
|              | _           | 375          | 15             | 150          |             | 1 600        | 15          | 2460      | 55             | 1 720     | 30             | 1 340   | 35             | 900           | _              | (18.<br>19.   | ••• |   |
| 1 435        | 200         | 1 750        | 290            | 1 0 5 0      | <b>3</b> 99 | 2040         | 50          | 3 500     | 210            | 2 560     | 210            | 2 260   | 140            | 2500          | 105            |               |     |   |
| 1 890        | 910         | 2 300        | 1 130          | 960          | 861         | <b>1</b> 260 | 825         | 2 000     | 1 210          | 2140      | 810            | 1 240   | 700            | 320           | 1 410          | · · ·<br>20 . | ••• |   |
| 2 853        | +<br>55     |              |                | 450          | <br>23      |              | <br>33      | <br>1 120 | <br>25         |           |                | <br>840 | 20             | <br>1 300     | <br>19         | 21.           | • • |   |
| 4 743        | 965         | 3 225        | 1 160          | 1 410        | 884         | 2 300        | 85S         | 3 120     | 1 235          | 3 020     | <br>825        | 2 050   | 720            | 1 620         | 1423           | <u> </u>      | ••• |   |
| 105          |             | _            |                | _            | _           |              |             | +         | _              | +         | _              | +       | _              |               |                | 23.           |     |   |

359

. . . .

# ERNST ANTEVS.

[April 1917]

| Shell-beds | from | the | post- |
|------------|------|-----|-------|
|------------|------|-----|-------|

|         |             |     |               |               | She   | ll-be      | ds fro      | om t         | he po          | ost-      |                                                      |        |               |                      | 1 |
|---------|-------------|-----|---------------|---------------|-------|------------|-------------|--------------|----------------|-----------|------------------------------------------------------|--------|---------------|----------------------|---|
|         |             |     | -             | R             | ö s   | s          | ö           |              |                | -         | Häl                                                  | lan    | Häll          | e I                  |   |
|         |             |     |               |               | p. 2  | 96         |             |              |                |           | p. 2                                                 | 97     | p. 2          | 98                   | ļ |
|         |             |     |               |               | c. 2  | 24         |             |              |                |           | <b>c.</b> 36                                         | 3.2    | c. 1          | 39                   | í |
| • • •   | <u>c. 2</u> | 21  | <u>, c. 2</u> | 1.7           | c. 2  | 2.5        | <u>c. 2</u> | 3.3          | <u>c.</u> 2    | 3.6       | <u>c. 3</u>                                          | 6.2    | <u>e.</u>     | 39                   | ! |
|         | 24          | 4   | 26<br>3       | $\frac{1}{2}$ | 25    | 2          | $19 \\ 2$   | 9            | 23             | 0<br>6    | $   \begin{array}{c}     30 \\     2   \end{array} $ | 0<br>7 | 27            | 56                   | 1 |
|         | 3           | 0   | 2             | 5             | 2     | ō l        | 4           | 5            | 7              | 7         | 9                                                    | 8      |               | )                    |   |
|         | 1/25        | 1/5 | 1/25          | 1/ <u>5</u>   | 1/25  | 1/5        | 1/25        | 1/5          | $\frac{1}{25}$ | 1/5       | 1/50                                                 | 1/5    | 1/50          | 1/5                  |   |
| <u></u> | 1-2         | 2 < | 1-2           | 2<            | 1 - 2 | 2 <        | 1-2         | 2 <          | 12             | $2 \leq $ | 1-2                                                  | 2<     | 1-2           | $\underline{2} \leq$ |   |
| 1       |             |     |               | _             |       |            | ·           |              |                |           |                                                      |        |               |                      |   |
| 2       | 13          | _   | -4            | _             | -     | _          | . 4         |              | 4              | _         |                                                      |        |               |                      |   |
| 3       |             |     | _             | _             | · _   |            |             | _            | _              | _         |                                                      |        | _             |                      |   |
| 4       | 2 925       | 625 | 2450          | 450           | 1 050 | 325        | 2 125       | 275          | 3 500          | 600       | _                                                    | _      | .400          | 200                  |   |
| 5       |             |     | _             | _             | _     | _          | _           | _            | _              | _         | ·                                                    | _      |               |                      |   |
| 6       | _           | _   | —             | -             |       |            |             |              | _              |           | _                                                    | —      | —             |                      |   |
| 7       |             | 5   | · —           | _             |       |            | —           | —            | —              | -         | 150                                                  | 20     |               | _                    |   |
| 8       | —           |     |               | —             | —     |            | _           |              | -              |           | _                                                    |        | ·             |                      |   |
| 9       |             |     | -             | -             | -     | —          | .—          |              | -              |           | _                                                    | —      | -             | -                    |   |
| 10      |             | -   | -             | -             | -     | —          |             |              | -              | 3         | _                                                    | -      | -             |                      |   |
| 11      | 350         | 65  | 775           | 115           | 575   | 90         | 1 300       | 160          | 500            | 50        | 120                                                  | _      | 29            | -                    |   |
| 12      |             |     | <u> </u>      |               |       |            |             |              | -              |           |                                                      |        |               |                      | í |
| · · ·   | 3 275       | 695 | 3 225         | 565           | 1 625 | 415        | 3 425       | 440          | 4 000          | 683       | 275                                                  | 20     | 420           | 200                  |   |
| 13      | . —         |     | -             | -             |       | —          |             | -            | -              | _         |                                                      |        |               | -                    | ĺ |
| 14      |             | -   |               | -             | -     | -          | -           | 5            | -              | ·         | -                                                    | -      | _             |                      | ĺ |
| 15      | -           | -   | -             | -             | —     | -          | -           |              |                | _         | -                                                    | _      | · —           |                      |   |
| 10      | +           |     | +             | —             | _     | -          |             | -            | +              | -         | _                                                    | _      |               |                      |   |
| 18      | 250         | 20  | 225           | 20            | 100   | 20         | 225         | 80           | - 950          | 85        | 300                                                  | +      | 800           | 115                  |   |
| 19      | 525         | 5   | 300           |               | 175   | 10         | 300         | 10           | 925            | 10        | 300                                                  |        | 350           | 5                    |   |
|         | 775         | 25  | 525           | 20            | 275   | <b>S</b> 0 | 525         | 45           | 1 875          | 95        | 600                                                  | +      | 1 150         | 120                  |   |
| 20      | 1 050       | 295 | 1 125         | 225           | 825   | 170        | +           | 10           | 2650           | 980       | 600                                                  | • +    | 3 350         | 625                  | l |
| 21      | 25          | 15  |               | 10            | . +   | 5          |             | —            | 25             |           | . —                                                  |        | -             | -                    | I |
| • 22    | 6 750       | 195 | 9 625         | 115           | 5 000 | 130        | 3 600       | 50           | 10 125         | 295       | 1 500                                                |        | <b>3 2</b> 50 | 140                  | ļ |
| • • •   | 7 825       | 505 | 10750         | 350           | 5 325 | 305        | 3 600       | 60           | 12800          | 1 275     | 2 100                                                | +      | 6,600         | 765                  |   |
| 23      | +           |     | -             |               |       | —          | _           | <sup>1</sup> | _              | _         |                                                      |        | _             |                      | I |

. . .

Sandbogen Stare Efvenås p. 303 p. 303 p. 304 c. 32.6 cc. 36 29 c. 31 c. 32 cc. 36 28<sup>.</sup>5 Į cc. 34 cc. 35 . 327 302 311 231 261 81 72 45 108106 68 101 171 30 60 92 621/5 1/80 1/10 1/40 1/20 1/40 1/20 1/40 1/20 1/85 1/15 1/25 2<1-2 2 <1-2 2 < || 1 - 21-2 2 < |1-2 2 <1 - 22 <1. . 720---2. . ----3 15 665 150 + ----4 . \_ \_\_\_\_ 5 . ------6.. \_\_\_ 7. -. ----8. . \_\_\_\_ -\_ -----9. . \_ ---10. . s \_ 2545 20 680 105 + 40 50 20370 4511. . 12 . . 23 45 + 20680 2540 50 20 370 770 195. . 18. . 14 . . \_ -------15. . 16. . ----\_ \_ \_ 17 . . 750 165 600 200 360 **S0** 480 960 260 240 60 +18. 12590 600 1 000 48 180 S00 70 19. . 875 213 690 200 960 260  $1\,480$ 1 760 260 240130 +1 350 5030 60 20800 1 200 1 640 640240180 4.02520. + 40 30 21. \_\_\_ \_ 25210 10 32060 1 380 180 3 160 45024030 22. 75::0 270 30 1 260 3 020 820 3 400 1 1 2 0 670 42651 4 1 0 23. ÷ +

### glacial transgression maximum

361

. . .

347

### ERNST ANTEVS.

[April 1917.

| Shell-beds | from | the | sero- |
|------------|------|-----|-------|
|------------|------|-----|-------|

|                 |       | Kila  | arna |             | n d  | Ho<br>dals | lke-<br>kilen | Skälleröd |                  |       |         |        |             |         |            |          |          |
|-----------------|-------|-------|------|-------------|------|------------|---------------|-----------|------------------|-------|---------|--------|-------------|---------|------------|----------|----------|
| -               |       | р.    | 306  |             | թ. ք | 815        |               | р.        | 316              |       |         |        | р.          | 817     |            |          |          |
|                 |       | c.    | 22   |             | c. 5 | 26         |               | 2         | 5-9              |       |         |        | c.          | 24      |            |          |          |
| •               |       | c.    | 22   | c. 2        | 25.1 | c. 2       | 5.6           | 2         | 5.9              | _c. 2 | 21.6    | c. 2   | $2 \cdot 6$ | c. 2    | 3.2        | c. 23.8  |          |
| •               |       | 20    | 00   | 337<br>110  |      | 25         | 3             | 2         | 55               | 37    | 6       | 21     | 3           | 202     |            | 358      |          |
| :               | · · · | 27    |      | $119 \\ 58$ |      | 0<br>6     | 8<br>3        |           | 99<br>8 <b>7</b> |       | 9<br> 3 | 2<br>5 | 4           | 4       | 0          | 68<br>36 |          |
|                 |       | 1/25  | 1/20 | 1/50        | 1/20 | 1/50       | 1/10          | 1/20      | <sup>1</sup> /10 | 1/80  | 1/5     | 1/40   | 1/10        | 1/40    | 1/10       | 1/40     | 1/10     |
|                 |       | 1 - 2 | 2 <  | 1-2         | 2 <  | 1-2        | $2 \leq$      | 1-2       | $^{2}<$          | 12    | 2<      | 1-2    | 2 <         | 1-2     | 2 <        | 1 - 2    | 2<       |
|                 |       |       |      |             |      |            |               |           |                  |       |         |        |             |         |            |          | _        |
| ·               | . 1   |       |      |             |      |            |               |           |                  |       | (       |        | _=          |         |            |          |          |
| ••              | . 2   |       |      | 8           |      |            |               | 5         |                  |       |         | 7      |             |         |            |          | -        |
|                 | . 3   |       |      | _           | -    | -          |               | -         | -                | — `   | -       |        | _           | —       | _          |          | _        |
| ٠.              | . 4   | 300   | 180  | —           | 10   | 50         | 15            | 60        | 70               | 60    | 15      | 240    | - 70        | 240     | 50         | · +      | 20       |
| •               | . 5   | ·—    | —    |             | -    | -          |               |           |                  |       |         |        | _           | -       | -          |          |          |
| •               | . 6   | -     | —    | —           | —    | -          |               | -         | —                | -     | -       |        | -           |         | -          |          | -        |
| ·               | . 7   | —     | —    | —           | -    |            |               | -         | _                |       | -       | -      | -           | -       |            |          | -        |
| •               | . 8   |       | —    | -           | -    | -          |               |           | _                | —     | — i     | -      | -           | -       |            |          | -        |
| •               | . 9   | _     | -    | -           | -    | <br>       |               | -         | —                | _     | -       |        |             | -       |            |          | -        |
| •               | . 10  |       | 120  | 195         |      | 20         | 50            |           |                  |       | 5       | 560    |             | 760     |            | 220      |          |
| •               | . 11  | 230   | 120  | 1.0         |      | 100        |               |           |                  |       |         |        | _           |         |            |          | -        |
| •               |       | 550   | 300  | 125         | 90   | 475        | 65            | 270       | 150              | 150   | 20      | 800    | 160         | 1 000   | 140        | 220      | 100      |
|                 | . 13  |       | _    |             |      |            |               |           | _                | _     | _       |        | _           | _       | _          | _        | _        |
|                 | . 14  | ·     |      | -           | _    | -          |               |           |                  |       | _       |        | _           |         | _          | _        | -        |
|                 | . 15  | _     |      |             | _    |            |               | _         |                  | -     | -       | _      | _           | -       | _          | _        | -        |
| •.              | . 16  | -     | —    | -           |      | -          |               | -         | -                |       | —       | -      |             | _       |            | i —      |          |
| •               | . 17  | 350   | 60   | 50          | +    | 100        | 20            | 390       | 110              | +     | 5       | 360    | 70          | 720     | <b>3</b> 0 | 240      | 27       |
| •               | . 187 | 825   | -40  | 200         | 20   | 850        | 30            | 240       | 100              | 180   | 10      | 2 320  | 20          | 3 200   | 40         | 760      | 8        |
|                 |       | 1 175 | 100  | 250         | 20   | 950        | 50            | 630       | 210              | 180   | 15      | 2 680  | 90          | 3 920   | 70         | 1 000    | 35       |
|                 | . 20  | 275   | 320  | 50          | +    | - 1        |               | 90        | 70               | +     | õ       | 240    | 20          | 40      | 30         | 120      | 2        |
| •               | . 21  | —     | +    |             | —    | -          |               | -         |                  | -     | -       | -      | +           |         | _          | -        | -        |
| ۰.              | . 22  | 400   | 40   | 1 350       | 200  | 2750       | 90            | 450       | 60               | 510   | 30      | 3500   | 170         | 2600    | 110        | 20       |          |
| ۰.              | •••   | 675   | 360  | 1 400       | 200  | 2750       | 90            | 540       | 130              | 540   | - 35    | 3 740  | 190         | 2 6 4 0 | 140        | 140      | 2        |
| •               | . 23  |       |      |             | _    | -          |               |           |                  |       |         |        |             |         |            |          | <u> </u> |
| $\langle \cdot$ |       |       |      |             |      |            |               |           | 36               | 2     |         |        |             |         |            |          |          |

348

# Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

| Präst-<br>ängen<br>p. 318 |             | Lejon-<br>källan<br>p. 320 |     |                  | То      | rs (<br>р. 3( | erö<br>07 | d     |         | Syd<br>to | kos-<br>er<br>322 | Gr<br>da                                     | an-<br>len<br>323 |             |
|---------------------------|-------------|----------------------------|-----|------------------|---------|---------------|-----------|-------|---------|-----------|-------------------|----------------------------------------------|-------------------|-------------|
|                           | 1           | <u> </u>                   | 2   | <u></u>          |         | -<br>         | ·5        |       |         |           | 15                |                                              | 14                |             |
|                           | <u> </u>    |                            | 22  |                  | 1:5     | <u></u>       | 3.5       |       | 5.2     |           | 15                |                                              | 14                | • • • •     |
| 245                       |             | 300                        |     | 185              |         | 259           |           | 248   |         | 278       |                   | 292                                          |                   | ••••        |
| 43                        |             | (                          | 37  | 6                | 7       | 1             | 18        |       | 27      |           | )2                |                                              | 82                |             |
|                           | 1/          | 1/                         | 1/  | $\frac{42}{1/2}$ |         | ;<br>1/       | 1/20 1/10 |       | <u></u> |           | 1/                | $\frac{124}{1/m}$                            |                   | • • • •     |
| 1/40                      | 1/10        | 1 9                        | -/5 |                  |         | -/:0<br>1 9   | ·/10      | 1 9   | -/10    | 1 9       | -/5               | 1 9                                          | ·/20              | • • • •     |
| <u> </u>                  | ~           | <u>1-2</u>                 | ~   |                  | ~       |               | ~         | _1-~~ | -       | 1         |                   | 1 <u></u> 2                                  | ~                 | <u> </u>    |
|                           |             |                            |     |                  | ·       |               |           |       | -       |           |                   |                                              |                   | 1           |
| 28                        | _           | 20                         |     |                  | —       |               | _         | -     | _       |           | _                 | -30                                          | _                 | 2           |
|                           |             |                            | _   |                  | _       | _             |           |       |         | _         | _                 |                                              |                   | 3           |
| 80                        | 35          | 20                         | 38  | 1 050            | 240     | 1140          | 180       | 1050  | 220     | 60        | 20                | —                                            |                   | 4           |
| -                         |             |                            | —   | ·                | -       |               |           | —     | _       |           | -                 |                                              | -                 | 5           |
| -                         |             | -                          | —   |                  |         | -             |           | —     | —       | -         |                   |                                              |                   | 6           |
| -                         | <del></del> | -                          | -   | -                | —       |               |           | —     |         | -         | 3                 | -                                            | -                 | 7           |
|                           | -           | —                          | —   |                  | -       | -             | —         | _     | -       |           | -                 | -                                            | —                 | 8           |
|                           | _           | -                          | -   |                  | -       |               | _         | —     | õ       |           | -                 |                                              | -                 | 9           |
| -                         |             |                            | 3   |                  | 6<br>00 |               |           |       |         |           | _                 |                                              | -                 | 10          |
| 560                       | 05          | 400                        | 15  | 350              | 50      | 300           | 50        | 350   | 80      | 60        | 9                 | 400                                          | 40                | 11          |
| 440                       | 115         | 420                        | 56  | 1 380            | 325     | 1 4 4 0       | 230       | 1.350 | 305     | 120       | 28                | 400                                          | <br>              | 12          |
| 110                       |             |                            |     | 1.000            | 0.40    |               |           | 1000  | 000     | 120       | -0                | 100                                          | 10                | 19          |
|                           |             | _                          |     |                  | _       |               |           |       |         |           |                   |                                              |                   | 14          |
|                           |             | _                          |     |                  |         | _             |           | _     | _       | _         |                   |                                              | _                 | 15          |
|                           |             | —                          |     | -                |         | -             | -         |       |         | _         |                   |                                              | · _               | 16          |
| 40                        | 70          | 120                        | 55  | 600              | 150     | 630           | 30        | 1 530 | 130     | _         | 5                 | 160                                          | 40                | (17<br>  18 |
| 480                       | 70          | 640                        | 15  | 420              | 40      | 750           | 10        | 1 050 | 60      | 600       | 25                | 720                                          | 20                | 19          |
| 520                       | 140         | 760                        | 70  | 1 020            | 190     | 1380          | 40        | 2580  | 190     | 600       | 30                | 880                                          | 60                | . :         |
| 80                        | _           | 40                         | 10  | 2 010            | 610     | 570           | 1.10      | 2 190 | 450     | 300       | 70                | 80                                           | 20                | 20          |
| -                         |             | -                          | -   | <b> </b>         |         | —             | —         |       |         | -         |                   | -                                            | _                 | 21          |
| 3 200                     | 160         | 640                        | 8   | 1 260            | 60      | 1 200         | 100       | 1350  | 80      | 3 000     | 250               | <u>                                     </u> |                   | 22          |
| 3 280                     | 160         | 680                        | 18  | 3 270            | 670     | 1 770         | 240       | 3 540 | 530     | 3 800     | 320               | 80                                           | 20                |             |
| <u> </u>                  | _           |                            |     | <u> </u>         | _       |               | —         |       |         | I _       |                   |                                              |                   | 23          |

# post-glacial regression

363

• • • •

# ERNST ANTEVS.

# [April 1917.

| puen-neus nom me sere | ero- |
|-----------------------|------|
|-----------------------|------|

|          | T o f t e r n a A |            |        |     |       |      |       |          |                |      |              |        |              |            |
|----------|-------------------|------------|--------|-----|-------|------|-------|----------|----------------|------|--------------|--------|--------------|------------|
|          |                   |            |        |     |       | p. 3 | 08    |          |                |      |              |        | р. 3         | 308        |
|          |                   |            |        |     |       | 8 (1 | .4) • |          |                |      | c. 8.        | 5 (14) |              |            |
|          | 2                 |            | 3      |     | 4     |      | 5     |          | (              | 3    |              | 7      | c.           | 7.5        |
|          | 243               | 5          | 21     | 9   | 16    | 0    | 18    | S        | 25             | õ    | 2            | 50     | 2.           | 42         |
| · · ·    | 60                | )          | 60     |     | 4     | 0    | 5     | 0        | Ē              | 5    |              | 45     | 137<br>43    |            |
|          | 1/25              | 1/5        | 1/25   | 1/5 | 1/25  | 1/5  | 1/25  | 1/5      | 1/25           | 1/5  | $^{1}/_{25}$ | 1/5    | 1/40         | 1/10       |
| <u></u>  | 1-2               | 2 <        | 12     | 2 < | 1-2   | 2 <  | 1-2   | $3 \leq$ | 1 - 2          | 2<   | 1-2          | 2 <    | 1-2          | 2 <        |
| 1        | ·                 |            |        |     |       |      |       |          |                |      |              |        |              | -          |
| 2        | 50                | 1          | .42    | +   | 17    |      | 8     |          | 4              |      |              |        |              |            |
| 3        | _                 | +          | +      | +   | _     | _    |       | ·_       | —              | _    | _            | —      | · _          | 1          |
| 4        | 125               | 3          | 875    | 68  | 2075  | 165  | 1 925 | 255      | 500            | 50   | 125          | 45     | 200          | 210        |
| 5        |                   |            | —      | -   |       | —    | -     | -        |                | —    | -            | -      | -            | -          |
| 6        | 13                | 5          | +      | ទ   | 25    | 3    | 13    | 3        | . –            |      | _            | -      | -            | -          |
| 7        | 13                | 3          |        | _   | —     | _    | -     | <u> </u> | 13             | _    |              | _      |              | -          |
| 8        |                   | -          | -      |     | —     | -    |       |          |                | —    | ·            | _      |              | -          |
| 9        | -                 | -          | -      | -   | -     |      | -     | _        | -              | i –i |              |        | -            | _          |
| 10       |                   |            |        | _   | -     |      |       |          |                |      | 200          |        | 100          | 100        |
| 11       | 475               | 30         | . 929  | 20  | 400   | 55   | 673   | 79<br>   | 920            | 55   | 500          | 20     | 100          | 180        |
| 12       | cael              | <br>       | 1 100  |     | 0.550 |      | 0.010 |          | 1 029          | 105  | 495          |        | 200          |            |
| •••      | 020               | 41         | 1 400  | 50  | ~ 550 | 220  | 2 013 | 000      | 1 030          | 105  | 440          | 10     | .            | ວນບ        |
| 13       |                   |            | —      | 5   |       |      |       |          |                | -    |              | -      | -            | -          |
| 14       |                   |            |        |     | -     |      | -     |          |                | -    |              | -      | -            |            |
| · · 15   |                   |            |        |     | -j    |      |       |          |                |      |              |        |              | _          |
| 10       | -                 |            | Ŧ      |     |       | -    |       |          |                |      |              |        |              |            |
| · · 17 ( |                   |            | 25     |     | —     | -]   | 475   | 20       | 500            | 10   | 525          | õ      | 240          | 70         |
| 19       | 2 500             | 25         | 1500   | _   | 1 700 | 10   | 2625  | 35       | 1 750          | 15   | 1 500        |        | 640          | 50         |
|          | 2 500             | 25         | 1 525  | 5   | 1 700 | 10   | 3 100 | 55       | $2250^{1}_{1}$ | 25   | 2025         | 5      | SS0          | 120        |
| 20       | +                 | õ          | 100    | 5   | +     | 5    | 500   | 155      | 325            | so   | _            | 30     | $40_{1}^{ }$ | <b>4</b> 0 |
| 21       | 25                | +          | 25     | +   | _     | 10   | +     | +        | _              | _    |              | 15     | _            | -          |
| 22       | 10 750            | <u>895</u> | 11 625 | 180 | 9 750 | 140  | 8 625 | 235      | 4 4 50         | 185  | 650,         | 40     | 760          | 240        |
|          | 10 775            | 400        | 11750  | 185 | 9 750 | 155  | 9 125 | 390      | $4775^{ }_{ }$ | 265  | 650          | 85     | 800          | 280        |
| 23       | _                 | _          | +      | _   | _     | -    | +     | _]       | +              | !    | +            |        | _            | _          |
|          |                   |            |        |     | `.    |      | 364   |          |                |      |              |        |              |            |

. . .

| _       |     |                | _    |          |       |        |            |       |        |        |          |             |                  |     |              |     |
|---------|-----|----------------|------|----------|-------|--------|------------|-------|--------|--------|----------|-------------|------------------|-----|--------------|-----|
|         | Νü  | i t h          | o 1  | me       | n     | A      |            | Nö    | 5 t h  | o l m  | в        | Rös<br>Lång | ssö-<br>zö A     |     |              |     |
|         |     |                | թ. ք | 310      |       |        |            |       |        | p. 310 | )        |             | p. 8             | 313 |              |     |
|         |     |                | 5 () | 14)      |       |        |            |       |        | 8 (14) |          |             |                  | )   |              |     |
| 0.5 1.5 |     |                | 2.   | 5 ;      | 3.3   | 5      | 6.6        | Į     | 7.4    | 7.     | G ·      |             | 3                |     |              |     |
|         |     | 2              | 12   | 2.       | 16    | 25     | 1          | 25    | 2      | 236    | 23       | 5           | 328              |     | • •          |     |
|         |     |                | 10   |          | 52    | 6      | 62         |       | }      | 99     | 5<br>6   | 0<br>0      |                  |     | •••          | ••• |
| 1/20    | 1/5 | $\frac{1}{20}$ | 1/5  | 1/20     | 1/5   | 1/20   | 1/5        | 1/50  | 1/10   | 1/10   | 1/50     | 1/10        | 1/30             | 1/5 | • •          |     |
| 1-2     | 2 < | 1-2            | 2<   | 1-2      | 2 < 1 | 1-2    | 2 <        | 1-2   | 2 < 1  | 2 <    | 1 - 2    | 2 <         | 1 - 2            | 2 < | <u></u>      | • • |
|         |     | _              | _    | _        | _     | _      |            |       |        | _      | . —      | _           |                  | _   | 1.           |     |
| 20?     | 5?  | 10             |      |          |       | 3      |            | _     | _      | _      |          |             |                  |     | 2.           |     |
| _       |     |                |      |          |       | _      |            |       |        | _      |          |             |                  | -   | . 3.         |     |
| 20      | 10  | 480            | 35   | 1 900    | 325   | 900    | <b>9</b> 0 | 75    | 10     | 25     | 50       | 60          | _                |     | 4.           |     |
| -       | _   | _              |      | —        | -     | —      | -          | -     |        | · _    | . –      |             | -                | —   | 5.           | • • |
|         |     | -              | _    | -        |       |        |            | —     | 5      | —      | ·        | _           | -                | _   | 6.           | • • |
| -       | 3?  | -              | —    | -        | -     | _      | -          | _     |        |        |          | _           | -                | -   | 7.           | • • |
| -       | —   | -              | -    | -        | -     |        | _          | -     | _      | _      |          |             | -                | —   | 8.           | • • |
|         | —   | ! —            |      |          |       |        | 3          |       | 5<br>5 |        |          | -           | -                |     | 9.           | ••• |
| 200     |     | 1.020          | 190  | 1 990    | 500   | 1 9 10 | 915        | 300   | i 10   | 190    | 850      | 130         | 180              | 10  | 10.          | • • |
| - 500   |     | 10.0           |      | -        |       | 1240   | - 210      |       |        | 120    |          |             | - 100            |     | 12.          |     |
| 320     | 108 | 1 500          | 155  | 3780     | 825   | 2 150  | 308        | 375   | 195    | 150    | 900      | 195         | 180              | 10  |              |     |
| _       | ·   |                |      | .<br>    | _     | _      | _          | _     | _      | _      |          | _           | —                | _   | 13.          |     |
| _       | _   | -              |      | _        | _     | _      | _          |       | _      | _      | -        |             | _                | _   | 14.          | ••  |
|         | _   |                | -    | -        |       |        | _          | _     | . —    | _      | - 1      |             |                  | 10  | 15.          |     |
|         |     | —              | —    | -        | _     | _      | -          | —     |        | _      | <u>→</u> | -           | —                | -   | 16.          |     |
|         | _   | 40             | 10   | 420      | 60    | 440    | 25         | 100   | 30     | 20     | 400      | 30          | 450              | 60  | ∫17.<br> 18. | ••• |
| 380     | 5   | 840            | 45   | 600      | 15    | 760    | 70         | 500   | 30     | 50     | 1 400    | 40          | 120              | _   | 19.          |     |
| 380     | 5   | 880            | 55   | 1 020    | 75    | 1 200  | 95         | 600   | 60     | 70     | 1 800    | 70          | 570              | 70  |              |     |
| _       | 5   | —              | +    | 60       | 20    | 200    |            | 450   | 120    | 230    | 1 000    | 310         | 210              | 65  | 20.          |     |
| +       | +   | +              |      | . —      | -     | . —    |            | -     | 10     | _      |          | 10          | -                |     | 21.          |     |
| 7 000   | 245 | 2 200          | 45   | S50      | 35    | 2 080  | 90         | 4 500 | 470    | 600    | 4 750    | 530         | 120              | 15  | 22.          |     |
| 7 000   | 250 | 2 200          | 45   | 910      | 55    | 2 280  | 175        | 4 950 | 600    | 830    | 5 750    | 880         | 330              | 80  |              | • • |
| L —     |     | +              |      | <u> </u> |       |        | +          |       |        | ¦      |          | <u> </u>    | I <sup>·</sup> − | —   | 23.          |     |

# post-glacial regression

365

. . . . |

### ERNST ANTEVS.

# [April 1917.

# Shell-beds from the sero-

| _        |                |           |             |                |      |               |              |       |            |          |         |            |               |            |          |               |            |
|----------|----------------|-----------|-------------|----------------|------|---------------|--------------|-------|------------|----------|---------|------------|---------------|------------|----------|---------------|------------|
|          |                | Rös       | ssö-I       | Jångö          | В    |               | $\mathbf{S}$ | v ä   | 1 t        | e        |         | Kje<br>vik | ell-<br>en    | Ke         | bal      | Bagge.<br>röd |            |
|          |                |           | p.          | 313            |      |               |              | р. З  | 25         |          |         | p. 8       | 326           | р. і       | 327      | р. 8          | 328        |
| ۰.       |                |           |             | 9              |      |               |              | c.    |            | 6:       | 3       | c. 1.5     |               | 0.2        |          |               |            |
| •        |                | <u> </u>  |             |                | c. 1 | 5.            | 3            | c.    | 1.2        | 0.5      |         |            |               |            |          |               |            |
| •        | •••            | 270       |             | 275            |      | 16            | 165          |       | 22         | - SC     | 5       | 313        |               | 228<br>120 |          | 254           |            |
| •        | •••            | 92        |             | 96 38<br>92 66 |      | 16 20         |              |       | 10<br>15 - |          | 9<br>19 | 11<br>0    | 10<br>3       |            | 54<br>54 | 58<br>47      |            |
|          |                | 1/50 1/10 |             | 1/50           | 1/10 | 1/30 1/5      |              | 1/40  | 1/10       | 1/30     | 1/5     | 1/40       | 1/10          | 1/50       | 1/20     | 1/40          | 1/10       |
|          |                | 1-2       | 2 <         | 1-2            | 2 <  | 1-2           | 2 <          | 1-2   | 2 <        | 1-2      | 2 <     | 1-2        | 2 <           | 1-2        | 2 <      | 1-2           | 2          |
|          | ,              |           |             |                |      |               |              |       | -          | 1 mm 1 m |         |            |               |            |          |               |            |
| •        | . 1            |           |             |                |      |               |              |       |            |          |         |            |               |            |          |               | -          |
| •        | . 2            |           |             |                |      |               |              | l     |            |          |         |            | <u> </u>      |            |          |               | 3          |
| , .      | . 3            |           |             | -              |      | -             |              |       | +          | _        | _       | -          | -             | _          |          |               | _          |
| •        | . 4            | —         | +           | 50             | 10   | 120           | +            | 200   | 5          | 120      | 10      | 240        | 190           | _          | 40       |               | +          |
| •        | . 5            | —         | _           | —              | —    | -             |              |       | -          | . –      |         |            | -             |            |          |               | -          |
| •        | . 6            | —         |             | -              | - 1  | -             |              | -     | _          | -        | -       | -          | -             | -          |          | -             | 1          |
| ·        | . 7            |           |             | -              | —    | _             |              | -     | ē          |          |         | _          | -             |            | 10       |               | 1          |
| •        | . 0<br>0       | _         | -           | -              | -    |               |              |       | _          | —        | -       |            | -             | -          | _        |               | -          |
| •        | . 10           |           | 5           |                |      |               |              |       |            |          |         |            | _             |            |          |               | 10         |
| •        | . 11           | 200       | 70          | 825            | 15   | 600           | 25           | 560   | 120        | 420      | 20      | 1 360      | 230           | 450        | 300      | 280           | 91<br>40   |
|          | . 12           |           | _           |                |      | _             |              | -     | _          |          | _       | -          |               |            | -        |               |            |
| •        |                | 200       | 75          | 375            | 25   | 720           | 25           | 760   | 130        | 540      | 30      | 1 620      | 420           | 450        | 350      | 280           | 50         |
|          | . 13           | _         | _           |                |      |               | _            | _     | _          |          | _       | _          | -             |            | 60       |               | _          |
| :        | . 14           |           |             | _              |      |               | _            | _     | _          | —        |         | -          | —             |            | 20       | _             | _          |
| •        | . 15           |           | -           |                | —    | -             |              | _     | _          | —        | -       | -          |               | _          | _        | _             |            |
| •        | . 16           | -         | _           |                |      |               | -            | -     | -          | -        | —       | —          | —             | -          |          |               |            |
| •        | . 17)<br>. 181 | 800       | 270         | 800            | 30+  | 150           | +            | -     | +          | 180      | 5       | 280        | 50            | -          | _        | 80            | <b>5</b> 0 |
|          | . 19           | 50        | _           | 100            |      | 360           | 15           | 840   | . 20       | 750      | 20      | 920        | 100           | 350        | 100      |               | _          |
|          |                | 850       | 270         | 900            | 30   | 510           | 15           | 840   | 20         | 930      | 25      | 1 200      | 150           | 350        | 180      | 80            | 50         |
|          | . 20           | 400       | 170         | 800            | 30   | 390           | ō            | 440   | 40         | 390      | 35      | 880        | 200           | 50         | 20       | 360           | 15         |
|          | . 21           |           | 10          |                | -    | -             | +            | 120   | +          | - 30     | 5       | _          |               | _          | 20       | _             | _          |
| •        | . 22           |           | 100         | 850            | 80   | <b>2 16</b> 0 | ō            | 2400  | 160        | 2 040    | - 35    | 12200      | <b>1 0</b> 00 | 900        | 260      | 80            | 10         |
|          |                | 1 200     | <b>2</b> S0 | <b>1</b> 650   | 110  | 2 550         | 10           | 2 960 | 200        | 2460     | 75      | 13 080     | 1 200         | 950        | 300      | 440           | 25         |
| <u>.</u> | . 23           |           |             |                | _    |               |              | -     | _          |          | _       |            | _             | _          | _        |               |            |
| 1.       |                |           |             |                |      |               |              |       | 366        |          |         |            |               |            |          |               |            |

352

# Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015
post-glacial regression

Recent

|             | Mö<br>nult<br>p. 3<br>c. 4<br>c. 4<br>379 | r-<br>II<br>29<br>-6<br>-4 | - N<br> | ordl<br>p. :<br>3.<br>5<br>30 | coste<br>330<br>3<br>28               | er<br>         | Nöd<br>p. 3<br>4<br>4<br>280 | ldö<br>31<br>2<br>2<br>0 | Otte<br>B<br>p. 3<br>c. 5<br>c. 5<br>390 | 2rö<br>15<br>19<br>15 | Ka<br>holn<br>p. 3<br>(<br>(<br>2) | ar-<br>nen<br>332<br>)<br>)<br>)<br>)<br>) | Bratt<br>p. 8<br>0<br>26 | skär<br>133<br>13<br>13<br>13<br>13<br>10 | Gul<br>mar<br>p. 38 | 1-<br>en<br>34 |            | · · · · |     | . Locality: height in $m$ above the sea<br>. Samples: $\rightarrow$<br>. Weight in $gr$ of whole sample, 0.2 $dm^3$ |       |
|-------------|-------------------------------------------|----------------------------|---------|-------------------------------|---------------------------------------|----------------|------------------------------|--------------------------|------------------------------------------|-----------------------|------------------------------------|--------------------------------------------|--------------------------|-------------------------------------------|---------------------|----------------|------------|---------|-----|---------------------------------------------------------------------------------------------------------------------|-------|
| 2015        | 107<br>53                                 | 1/10                       | 1/20    | 26<br>1/5                     | · · · · · · · · · · · · · · · · · · · | $\frac{1}{10}$ | $\frac{12}{6}$               | 1<br>1/10                | 14<br>8<br>1/30                          | 5<br>1/10             | 1/25                               | $\frac{1}{32}$                             | $\frac{12}{9}$           | 0<br>10<br>1/20                           | $\frac{10}{77}$     | 1/5            |            | · · · · | •   | Analysed part of $dm^3$                                                                                             |       |
| M           | -2                                        | $\frac{2 < 1}{1}$          | 1-2     | $2 \leq  $                    | 1 - 2                                 | $2 \leq  $     | 1 - 2                        | 2 <                      | 1-2                                      | <u>2&lt;</u>          | 1-2                                |                                            | 1 - 2                    | 2 <                                       | 1 - 2               | $2 \leq$       | <u> .</u>  | · · ·   | •   | . Coarseness of material in mm                                                                                      |       |
| -Rebrua     |                                           |                            |         |                               |                                       |                |                              |                          |                                          | _                     |                                    |                                            |                          |                                           |                     |                |            |         | •   | 1 Portlandia arctica (GRAY (a)                                                                                      | ited  |
| 5           |                                           |                            |         |                               |                                       |                |                              |                          |                                          |                       |                                    |                                            |                          |                                           | 12                  |                | ŀ          | •••     | •   | 2 Borcochiton marmoreus FABR. (a)                                                                                   |       |
| ĥ           |                                           | -                          | —       | -                             | —                                     | -              | _                            | -                        | -                                        | -                     | —                                  | _                                          | -                        |                                           | -                   | _              | ŀ          |         | •   | 3 Pecten islandicus Müll. (a)                                                                                       |       |
| Ē           | +                                         | 10                         | 10      | 13                            | 13                                    | 40             | 20                           | $\overline{50}$          | +                                        | .10                   | +                                  | 30                                         | 350                      | 260                                       | _                   | 30             | ŀ          | •••     | ·   | 4 Mytilus edulis L. (b)                                                                                             | ft    |
| sla         | ,                                         |                            |         |                               | -                                     | _              |                              |                          |                                          | -                     |                                    | _                                          | - 1                      | _                                         | 38                  | 10             | ŀ          | •••     | •   | 5 Leda minuta MULL. (a)                                                                                             | ante  |
| rie.        | _                                         |                            | 10?     | 5?                            | -                                     |                | _                            | -                        | -                                        | ·                     |                                    | _                                          | · •                      | _                                         | 119                 | -              | ŀ          | •••     | ·   | - Astanta sommersa Norr (a)                                                                                         | ugr   |
| <b>b</b> ra |                                           |                            |         |                               |                                       |                |                              |                          |                                          |                       |                                    | _                                          |                          |                                           | 115                 | _              | ŀ          | •••     | •   | 8 elliptica Brown (a)                                                                                               | um    |
| E           | _                                         | _                          | _       |                               |                                       |                | · _                          | _                        | 30                                       |                       |                                    |                                            |                          |                                           |                     | _              | 1          |         | •   | 9 Macowa, calcaria ('UENN, (a)                                                                                      | nal   |
| B           | _                                         | _                          | _       |                               | _                                     |                | 40                           | 20                       |                                          | ·                     | _                                  | 15                                         |                          |                                           | _                   | 3              |            |         | •   | 10 Mug truncata L. (a)                                                                                              | IOIS  |
| a I         | 240                                       | 20                         | 480     | 45                            | 675                                   | 130            | 160                          | 80                       | 45                                       | 25                    | 75                                 | +                                          | 850                      | 130                                       | 2850                | 125            |            |         |     | 11 Saxicara rugosa L. (a)                                                                                           | gree  |
|             |                                           |                            | _       | _                             |                                       | _              | _                            | _                        |                                          |                       |                                    |                                            | _                        |                                           |                     | _              |            |         | . 1 | 12 Antalis striolata STIMPS. (a)                                                                                    | sur   |
| ľ           | 240                                       | 30                         | 500     | 61                            | 688                                   | 170            | 220                          | 150                      | 75                                       | 35                    | 75                                 | 45                                         | 1 200                    | 390                                       | 3 001               | 168            |            |         |     | Pelecypoda: sum                                                                                                     | al ti |
|             |                                           | _                          |         |                               |                                       |                |                              |                          |                                          |                       |                                    |                                            |                          |                                           |                     | 10             | ĺ          |         | ;   | 13 Leneta caera Vitt (2)                                                                                            | laci  |
| Ę           | _                                         | _                          |         | 5                             |                                       |                |                              |                          |                                          |                       | _                                  |                                            |                          | _                                         |                     | - 10           | Ľ          |         | • • | 14 Puncturella noaching L. (a)                                                                                      | g-11  |
| ad          | _                                         | _                          |         |                               | _                                     | _              |                              | ]                        | _                                        | _                     | _                                  | _                                          | _                        |                                           |                     |                | Ľ          |         | . 1 | 15 Mölleria costulata Mölle. (a)                                                                                    | 1 1   |
| /IIIC       | _ĺ                                        | _                          |         |                               | <u> </u>                              | _              |                              | ]                        | _                                        | _                     | !                                  | _                                          | _                        |                                           |                     | _              |            |         | . 1 | 16 Margarita helicing FABR. (a)                                                                                     | Sn(   |
| ŊQ          | 000                                       |                            |         |                               |                                       |                |                              |                          |                                          | 000                   | 0.24                               |                                            | 0.070                    |                                           |                     | _              | 1          |         | . 1 | 17 Litorina litorea L. (b)                                                                                          | nal   |
| F           | 960                                       | 260                        | _       |                               |                                       | _              | 840                          | 400                      | 790                                      | 200                   | 825                                | 1 100                                      | 2 200                    | 1 200                                     | 150                 | Ð              | K –        |         | . 1 | 18 > rudis Mator (b)                                                                                                | 38510 |
|             | 120                                       |                            | 380     | 35                            | 550                                   | 30             | 320                          | 20                       | 60                                       | _                     | 450                                | 30                                         | 650                      | 20                                        | 300                 |                |            |         | . 1 | 19 Lacuna divaricata FABR. (a)                                                                                      | 5150  |
| 1           | 1 080¦                                    | 260                        | 380     | 40                            | <b>5</b> 50                           | 30             | 1 160                        | 470                      | 810                                      | 200                   | 1 275                              | 1 185                                      | 2 900                    | 1 220                                     | 450                 | 15             |            |         |     | Gastropoda: sum                                                                                                     | al r  |
| ł           | 200                                       | 80                         | 280     | 75                            | 100                                   | 130            | 280                          | 220                      | 90                                       | 30                    | 300                                | 135                                        | 600                      | 340                                       | 825                 | 65             | <b>.</b> . |         | . : | 20 Balanus crenatus Brug. (b)                                                                                       | çlacı |
|             |                                           |                            | _       |                               |                                       | _              | _                            | 30                       | _                                        |                       | _                                  | _                                          | _                        | _                                         | 600                 | 35             | ١.         |         | . : | 21 > porcatus da Costa (a)                                                                                          | d-11  |
|             | 500                                       | 55                         | 600     | 75                            | <u> </u>                              | 10             | 200                          | 50                       |                                          |                       | 625                                | 30                                         | 1 900                    | 480                                       | 32 625              | 200            |            |         | . : | 22 Verruca Strömia Müll. (b)                                                                                        | G01   |
|             | 700                                       | 135                        | 880     | 150                           | $150_{1}^{1}$                         | 140            | 480                          | 300                      | 90'                                      | 30                    | 925                                | 165                                        | 2500                     | 820                                       | 34 050              | 300            |            |         |     | Balanidae: sum                                                                                                      | ft    |
|             |                                           | _                          | _       | _                             | _                                     | _              |                              | _                        | _                                        | _                     | _                                  | _                                          | _                        | _                                         | +                   |                |            |         | . : | 23 Echinus dröbakensis Müll.                                                                                        |       |

24††-170108. G. F. F. 1917.

367

. . . . . . Continued on p.

#### ERNST ANTEVS.

Shell-beds from the primo-post-glacial re-

|                                       | Continued from p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _            |                                                                                                       | 34    | 0        | · ·                |                |                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |     |          |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-------------------------------------------------------------------------------------------------------|-------|----------|--------------------|----------------|----------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----|----------|
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ng    | ycklel<br>p. 284 | у     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Мö    | rhu<br>p. 28 | 1 t<br>85                                                                                             | I     |          | Sur<br>min<br>p. 2 | n-<br>ge<br>86 | Lunr<br>vik<br>p. 28 | ie-<br>I<br>7                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                          |     |          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     |              |                                                                                                       | . 1   |          | <br>1(             |                |                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |     |          |
|                                       | Samples: height in m above the sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c. 22 | •3 c.            | 22.6  | с.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9     |              | <u> </u>                                                                                              | c. 1; | ۶<br>    | л<br>——-           |                | c. 14                |                                                       | с.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                          | с.  | 3        |
|                                       | Coarseness of material in mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-2 2 | 2 <u>&lt;</u> 1− | 2 2 < | 1 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 <   | 1-22         | 2 < 1                                                                                                 | -22   | <        | 1-2                | 2 <            | 1-2                  | $^{2}<$                                               | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 <                                                                                                                        | 1-2 | $^{2} <$ |
| E Pini-glacial regressional immigrant | 1 Lepidopleurus cincrcus L. (l)         2 Craspedochilus marginatus PENN. (b)         3 Boreochiton ruber Lowe (a)         Amphineura: sum         4 Anomia aculeata L. (b)         5 > ephippium L. (b)         6 Ostrea edulis L. (l)         7 Mytilus modiolus L. (b)         9 > sp.         10 Cardium cchinatum L. (l)         11 > edule L. (l)         12 > cf. nodosum TURT. (b)         13 > cf. exiguum GMEL. (l)         14 > cf. minimum PHIL. (b)         15 > sp.         16 Lacvicardium norvegicum SPENGEL (l)         17 Cyprina islandia L. (b)         18 Tapes aureus GMEL. (l) |       |                  |       | 12           7           20           277           40           240           -           -           40           240           -           -           40           210           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - |       | +<br>1       | 3 < 11<br>3 - 7<br>7<br>10<br>100<br>600<br>-<br>-<br>-<br>20<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |       |          |                    |                | 200<br>              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1-2<br>-2<br>35<br>35<br>150<br>480<br>-2<br>-300<br>-2<br>-2<br>-300<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | $\begin{array}{c c} 2 \\ - \\ - \\ 2 \\ \hline \\ 2 \\ - \\ 2 \\ \hline \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ -$ |     | 2 <      |
| ۶<br>fr                               | 20       pullastra MONT. (b)         21       sp.         22       Lacina borealis L. (b)         23       Lepton nitidum TURT. (l)         24       Montacuta bidentata MONT. (l)         25       Scrobicularia piperata BELL. (l)         26       Abra cf. alba Wood (l)         27       > sp.         28       Macoma baltica L. (b)         29       > sp.         30       Solen ensis L. (b)         31       Thracia villosiuscula MACG. (b)         Pelecypoda: sum       .                                                                                                                |       |                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                                                                                                       |       |          |                    |                |                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |     |          |
|                                       | Continued on p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                  | _     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×10'l | 0001         | 0001                                                                                                  | 36    | 58<br>58 | - 0-0 <sub>1</sub> |                |                      | 110                                                   | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                       |     | 20-      |
|                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                                                                                                       |       |          |                    |                |                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |     |          |

354

1) A. striata inclusive.

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

| 0 t t e r ö A<br>- p. 271 - 1 0 5 0 6 0 7 0 75 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'jällbac<br>p. 276<br>3 cc. 168<br><1−22<                                                    | k a<br>Over<br>cc. 17·3 | 1                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------|------------------|
| $ \begin{array}{c c} p & 271 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} p. 276 \\ \hline 3 & cc. 16.8 \\ \hline < 1-2 & 2 \\ \hline \end{array}$ | Over<br>cc. 17.3        | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} p. 276 \\ \hline 3 & cc. 168 \\ \hline < 12 & 2 \\ \hline \end{array}$   | cc. 17.3                | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{3}{   } \frac{   }{   } \frac{1-2}{                                    $              | cc. 17·3                | 11               |
| c. 4 c. 5 c. 7 c. 77 cc. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 1-2   2 < 1                                                                                |                         | •••              |
| 1 - 2   2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    2 <   1 - 2    1 - 2    1 - 2    1 - 2    1 - 2    1 - 2    1 - 2    1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - 2  1 - | <u></u>                                                                                      | 1-2 2 <                 | li<br>li • • • • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | 5 —                     | 1                |
| - 53 - 45 2 24 - 10 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -63                                                                                          | 5 -                     | 3                |
| 5 - 53 - 55 2 32 - 10 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 6 3                                                                                        | 10 -                    |                  |
| 150 130 320 230 420 130 100 100 15 25 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 200 60                                                                                    | 45 23                   | 4.               |
| 1 920 630 2 600 1 000 1 860 580 500 620 45 120 600 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 700 135                                                                                   | 450 195                 | 5                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 6                |
| $15' \ 60 \ 320' \ 150' \ 90' \ 65' \ 50' \ 120' \ - \ 30' \ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 - 30                                                                                      | 75 23                   | .7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 8                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 9<br>10          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   -                                                                                        |                         | 11               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | 30 —                    | 12               |
| 45 - 20 10 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                         | 13               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 14               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 15               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 17               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 18               |
| -   10 -   -   60 -   -   10 -   5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 20 -                                                                                       | 15                      | 19               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 20               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 21               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ 20 _                                                                                       |                         | 23               |
| 15 - 200 - 75 5 75 10 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ 200 _                                                                                      | 90 —                    | 24               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 25               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 26               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                         | 28.              |
| ▌▝▌╶╣╺╣╶╢╺╢╶╢╺╢╺╢╺╢╵ <sub>┯</sub> ┨╺╢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              |                         | 29               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -  -                                                                                         |                         | 30               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                           |                         | 31               |
| [200, 000] 0400, 1000, 2000, 820] 720[ 870] 60[ 200[ 855] 1] 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55] 1 240] 233]                                                                              | 705] 241]               |                  |

| Bd 39. H. 4.] | POST-GLACIAL | MARINE | SHELL-BEDS | IN | BOHUSLÄN. | 355 |
|---------------|--------------|--------|------------|----|-----------|-----|
| •             |              |        |            |    |           |     |

gression and the post-glacial transgression

[April 191.

## Shell-beds from the post-

| · · · · |       |     |              |                  |              |         |                                       | 42                                            |                 |     |      |              |                 |                 |                  |
|---------|-------|-----|--------------|------------------|--------------|---------|---------------------------------------|-----------------------------------------------|-----------------|-----|------|--------------|-----------------|-----------------|------------------|
|         |       | F   | j            | ä l              | l b          | a       | c k                                   | a                                             |                 |     |      | $\mathbf{L}$ | ön              | d a             | , 1              |
|         | Overl |     |              |                  | p. 276       | ;<br>   | · · · · · · · · · · · · · · · · · · · |                                               | <del></del>     |     |      |              | p. 2            | <u>66:</u><br>1 |                  |
|         | cc. 1 | 7.8 | cc. 1        | S <sup>.</sup> 8 | cc. 1        | 9.3     | cc.                                   | 19 <sup>.</sup> 8                             | cc.             | 20  | cc.  | 9.2          | cc. J           | 1:5             | cc. 1;           |
|         | 1-2   | 2 < | 1-2          | 2 <              | 1-2          | $^{2}<$ | 1-2                                   | $^{2}<$                                       | 12              | 2 < | 1—2  | $^{2}<$      | 1-2             | $2 <   _{  }$   | 12               |
|         |       |     |              |                  |              |         |                                       |                                               |                 | •   |      |              |                 | i               |                  |
| 1       | 10    | _   | -            | -                | —            |         |                                       | -                                             |                 |     | 53   | _            | 13              | [               |                  |
| 2       | —     | _   |              | 2                | 10           | •       | 5                                     |                                               |                 | -   |      |              |                 |                 | 7                |
| 3       | 20    |     | 5            |                  |              |         | 0<br>10                               | <u> ·                                    </u> | <u>  </u><br>!! |     | 00   |              | 40 <sub>1</sub> |                 | 40               |
| •••     | 30    |     | 5            | 2                | 10           | . —     | 10                                    |                                               |                 |     | 50   |              | 95              |                 | 47               |
| 4       | 180   | 80  |              |                  | 60           | 35      | -                                     | 13                                            |                 |     |      |              | 120             | 5               |                  |
| 5       | 2 200 | 330 | 900          | 150              | 1 0 50       | 95      | -                                     |                                               | -               | -   |      | 8            | 320             | 110             | 200              |
| 6       |       | +   | 195          | 10               | · 15         |         | 15                                    |                                               |                 |     | 40   | +<br>23      |                 | 5               |                  |
|         | 10    | 20  | 100          |                  | - 10         |         |                                       |                                               |                 |     |      | _            |                 |                 |                  |
| 9       | 15    | _   | _            |                  |              | _       | - 1                                   |                                               |                 |     |      | _            | _               | _               |                  |
| 10      |       | _   | _            |                  |              |         | 1 –                                   | ·                                             |                 | _   |      |              | -               | _               |                  |
| 11      | -     | _   |              |                  | —            | -       | _                                     | —                                             | . –             |     | -    |              |                 | —               |                  |
| 12      | _     |     | —            | <del>.</del> -   | 3            | 15      | —                                     | -                                             | i —             | _   |      | _            | -               | -               | -                |
| 13      | 30    | 15  | -            |                  | 30           |         | 105                                   | -                                             | -               | 3   | 40   |              | -               |                 |                  |
| 14      |       |     |              |                  | -            |         |                                       | -                                             | —               | _   | ·    |              |                 |                 |                  |
| 15      |       |     | 30           |                  | _            |         |                                       |                                               |                 |     |      |              |                 |                 |                  |
| 10      |       |     |              | ]                |              |         | _                                     |                                               |                 |     | -    |              |                 | _               |                  |
| 18      | -     |     | · _          |                  |              |         | _                                     | _                                             | _               |     | _    | _            | -               |                 |                  |
| 19      | -     |     | _            |                  | 15           | —       | 30                                    | <u> </u>                                      | —               |     | 20   | _            |                 | —               | _                |
| 20      | -     | _   |              |                  | —            |         | " –                                   | -                                             | -               | —   | -    | _            |                 | [               |                  |
| 21      | -     | _   | _ <b>1</b> 5 | , <b></b>        | —            |         | -                                     | 3                                             | -               | 3   |      | -'           | 20              | 5               |                  |
| 22      | _     |     |              | ·                |              | -       | -                                     | 3                                             | -               | -   | -    | ·'           |                 |                 | —                |
| 23      | 180   |     | 40<br>260    |                  | 120          |         | 10<br>10                              |                                               | 15              |     | 20   |              | 40              |                 | 20               |
| 24      | 150   |     | 300          |                  | 105          |         |                                       | _                                             |                 | _   |      |              |                 |                 |                  |
| 26      |       | _   | _            |                  |              | _       | _                                     |                                               | _               |     | _    | _            | _               | _               | _                |
| 27      | _     | _   | _            |                  | _            |         | 15                                    | 10                                            | 15              | 5   | _    | _            | -               | _               | _                |
| 28      | -     | _   |              |                  | —            |         | -                                     | -                                             |                 | —   | -    | -            | -               | -               | _                |
| 29      | -     | -   | -            |                  | <del>.</del> | _       | _                                     | 3                                             | -               | _   | -    |              |                 | -               |                  |
| 30      | -     |     | -            | ·                | —            | -       | · —                                   |                                               | -               | _   |      |              | -               | _               |                  |
| 31      |       |     |              |                  |              |         | <u> </u>                              |                                               |                 |     |      |              | 500             | 20]             |                  |
| •••     | 2 650 | 445 | 1 485        | 160              | 1 398        | 145     | 330<br>ຊ                              | 52<br>70                                      | J 30            | 11  | 120, | ្វារ         | 000             | 210             | 220 <sub>1</sub> |
|         |       |     |              |                  |              |         | 0                                     | • V                                           |                 |     |      |              |                 |                 |                  |

|    | -   |      |     |     |         |                                    |                                                                                        |                                      |    |     |         |     |       |                                                      |
|----|-----|------|-----|-----|---------|------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|----|-----|---------|-----|-------|------------------------------------------------------|
|    | 0   | tte  | rΰ  | В   |         | н                                  | v a                                                                                    | alö                                  |    | M ö | rhı     | ılt | II    |                                                      |
|    |     | p. 2 | 271 |     |         |                                    | p. 2                                                                                   | 289                                  |    |     | p.      | 290 |       |                                                      |
| c. | 3·8 | c.   | 4.2 | c.  | 5.5     | c. :                               | 3                                                                                      | c. 5                                 |    | c.  | 3·3     | c.  | 4     |                                                      |
| 12 | 2 < | 1—2  | 2 < | 1—2 | $^{2}<$ | 1-2                                | 2 <                                                                                    | 1-2                                  | 2< | 1—2 | $^{2}<$ | 1-2 | 2 <   | · · · ·                                              |
|    |     |      |     |     |         | 25<br>17<br>80<br>122<br>15000<br> | 5<br>-<br>2<br>7<br>160<br>800<br>+<br>5<br>10<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 40<br>8<br>100<br>148<br>1 5 750<br> |    |     |         |     | 3<br> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|    |     |      |     |     |         |                                    |                                                                                        |                                      |    |     |         |     |       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

#### glacial transgression 343

A. striata inclusive.

|           | I                  |             |                    |      |               |                     |                   | - 1   |            |                   |          |               |                    |         |             |            |        | -        |
|-----------|--------------------|-------------|--------------------|------|---------------|---------------------|-------------------|-------|------------|-------------------|----------|---------------|--------------------|---------|-------------|------------|--------|----------|
| •         | I                  | Rös<br>Jång | sö-<br>gö A<br>279 |      | L             | Rös<br>ång<br>n. 27 | sö-<br>;ö C<br>79 |       | Tor<br>rö  | rse-<br>id<br>281 | S        | mittı<br>p. 1 | myre<br>291        | n       | Fjä<br>p. 2 | lla<br>282 | N. H   | olt<br>3 |
|           |                    | 1/. ^       |                    |      |               | P• -                |                   |       |            |                   |          | -             |                    |         |             |            |        | -        |
| • • •     | 7                  |             | 7.9                | )    | 7             |                     | -7                | 8     | cc.        | 0.2               |          | )·G           | - 30               | <br>.5  | 3           | 1          | e. 31  | 5        |
| . <b></b> | 1-2                | 2 <         | 1-2                | 2<   | $1-2^{1}_{1}$ | 2 <                 | 12                | 2 <   | 1-2        | 2 < 1             | 1-2      | 2 <           | 1-2                | $^{2}<$ | 1—2         | 2 <        | 1—2    | 2 <      |
|           |                    |             |                    | T    |               | - 1                 |                   |       |            |                   |          |               |                    |         |             |            |        |          |
| 1         | -<br>+ (?)         | _           | +(?)               | ·    | _             |                     |                   | _     |            | _                 |          |               | _                  |         | +           |            |        | 1        |
| 2         | +                  | _           |                    |      | _             |                     | -                 |       | -          | _                 | õ        | _             |                    | —       | -           | -          | 6      | 2        |
| 3         |                    |             | 16                 | _    | 37            | 1                   | 33                | -     | 40         | —                 | 5        | !             | 20                 | 5       |             |            | 15     |          |
|           | +                  | 1           | 16                 | -    | 37            | 1                   | 33                | _     | 40         |                   | 10       | _             | 20                 | 5       | +           | _          | 21     | 2        |
| 4         | ·                  | _           | _                  | _    | 25            |                     | -                 | _     | _          | 15                | 15       | . 40          | 60                 | 20      |             | -          | 11 125 | 70       |
| 5         | 100                | 55          |                    | 15   | 1 - 1         |                     | 100               | 100   | 540        | 310               | 1750     | 1.990         | 1.120              | 1 680   | 12          | 3          |        | 600      |
| . 6       | _                  | 20          | _                  |      | <b>5</b> 1    | 55                  | 100               | 100   | _          | -30               | 150      | 1 000         | 420                | - 000   | -           | 18         |        | 60       |
| 7         |                    |             | 13                 | 3    |               | -                   | -                 | -     |            | 5                 | 45       | _             | -                  | 5       | -           |            | -      |          |
| 8         | -                  |             | —                  |      |               | +                   | -                 | 3     | —          | -                 |          |               | -                  |         | +           | 6          |        |          |
| 9         | · • ·              | -           |                    |      |               |                     | —                 | _     |            | -                 |          | -             | -                  |         | -           | -          | -      | -        |
| 10        | -                  | —           |                    | -    |               | _                   | —                 |       | -          |                   | —        |               | -                  |         | -           | . 3        |        |          |
| 11        | -                  | -           | -                  | -    |               |                     | -                 | -     |            |                   | _        | -             | -                  | -       | -           |            |        |          |
| 12        | -                  | '           |                    | - 88 | 25            | 8                   | 38                | -     | 30<br>20   | 10                |          | -             | -                  | _       |             |            | _      |          |
| 13        | -                  |             | 20                 | Э    |               | -                   | -                 |       | <b>ə</b> 0 |                   |          |               |                    |         |             |            |        |          |
| 14        | -                  | -           |                    | _    |               |                     |                   | 15    |            |                   |          |               | _                  | _       |             | _          | _      | -        |
| 16        |                    |             |                    | _    |               |                     | _                 |       |            |                   |          | _             | ·                  | _       |             | _          | _      | -        |
| 10        | <u> </u>           |             |                    | _    |               | _                   | _                 |       | _          |                   | -        | _             | _                  |         | _           |            | l      | _        |
|           | .   _              | -           |                    | _    | _             | _                   | _                 |       | _          |                   |          |               | _                  | _       |             | _          |        | -        |
| 19        | ,                  |             |                    |      | -             | _                   | _                 | _     |            | 5                 | -30      | -             | ] —                |         |             | ·          | -      | -        |
| 20        | ) _                |             | _                  | _    | -             | _                   | _                 | _     |            | _                 | -        | _             | _                  |         | -           |            | -      | +        |
| 21        | ı                  |             | _                  | +    | _             | _                   | _                 | _     |            | 10                | -        |               | - 1                | -       |             |            | -      | -        |
| 23        | 2   '              | 5           | _                  | 3    | - 1           | _                   |                   | 3     |            | 20                | -        | -             | -                  |         | -           |            | -      | 10       |
| 28        | 3 63               | -           | 25                 |      | 50            | <u> </u>            | 25                | ¦' —  | - 30       | -                 |          |               | —                  |         |             |            | 18     | -        |
| 2-        | t 63               | -           | 200                | 3    | - 38          | ÷                   | 150               |       | 105        | 5                 | 30       | i —           | 30                 | -       | • •         | i          | 18     | -        |
| 24        | 5    —             | -           | -                  | -    | -             |                     | -                 | -     |            |                   |          | -             | -                  | -       | -           | -          |        | -        |
| · · 20    | ·   -              | 5           | _                  | -    | _             | 3                   | -                 | 60    |            |                   | - I      | -             | 1 -                | i       | -           |            | -      | -        |
| 2         | i   28             | '           | 50                 | -    | -             |                     | 50                | ή —   | 15         |                   | -        |               |                    | -       | 1           | "          |        |          |
| 2         | 3 -                | -           |                    |      | -             |                     |                   | -     | -          |                   |          | -             |                    |         |             |            |        |          |
| 2         | '   <sup>`</sup> - | i           |                    | -    | 1 -           | -                   | -                 | -     |            |                   | <u> </u> |               |                    |         |             |            |        | _        |
| 3         |                    |             |                    |      |               |                     |                   |       |            |                   |          |               |                    | F       | ;  -        | .  _       |        |          |
| 1         |                    | 0           | 919                | 67   | 1 100         | 60                  | 209               | 191   | 750        | 1.07              | 870      | 1 1 200       | <u>"</u><br>ປີ 510 | 710     | <u>)</u> 9. | 1 30       | 1 191  | 76       |
| 1         | 1 201              | 4 00        | a oro              | 1 01 | 1 100         | 1 00                | 1 000             | 1 101 | 1 100      | 372               | 1 010    | 1             | 1 010              | 1       | -1 -        | -1 54      |        |          |

### Shell-beds from the post-glacial transgression

#### pd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 359

Shell-beds from the post-glacial transgression maximum

345

|           |                                                                                                                                                                          |          |         |             |        |          | 340         |                                                                                                                                 |         |                                                                                                                                                                                                           |           |                                    |                        |       |                 | •••                                                                                                                                                                                                                                               | <u>· ·</u> |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------------|--------|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------|------------------------|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Me<br>vik | ed-<br>A                                                                                                                                                                 | ۲.       | fedv    | ik B<br>292 |        |          |             | I                                                                                                                               | ı u n   | n e v<br>p. 2                                                                                                                                                                                             | vik<br>94 | : 1]                               |                        |       |                 |                                                                                                                                                                                                                                                   |            |
| <u> </u>  |                                                                                                                                                                          |          |         |             |        |          | 7.0         | <u></u>                                                                                                                         | o       |                                                                                                                                                                                                           |           | . 9                                | a                      |       |                 |                                                                                                                                                                                                                                                   |            |
| c.        | 26                                                                                                                                                                       | e.       | 29      | с.          | 51<br> | c, 2     |             | e. 2                                                                                                                            | 5'ə<br> | C. (                                                                                                                                                                                                      |           | c. 5                               | 2'0  <br>              | c     | ): <u>1</u><br> | •••                                                                                                                                                                                                                                               | •••        |
| 1 - 2     | 2 < 1                                                                                                                                                                    | 1 - 2    | $^{2}<$ | 1—2         | 2 <    | 12       | 2 < 1       | 1-2                                                                                                                             | 2<      | 1-2                                                                                                                                                                                                       | 2<        | 1—2                                | 2 <                    | 1-2   | $2 \leq$        | • •                                                                                                                                                                                                                                               | •••        |
|           | $ \begin{array}{c} 10 \\ - \\ 10 \\ 35 \\ 170 \\ 10 \\ - \\ - \\ 5 \\ 5 \\ - \\ - \\ + (?) \\ - \\ 15 \\ - \\ - \\ 15 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ |          |         |             |        |          |             | $ \begin{array}{c} 10\\ 13\\ 17\\ 40\\ 100\\ 1 200\\ 40\\ -\\ -\\ -\\ 30\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$ |         | $ \begin{array}{c} 10 \\ - \\ 33 \\ 43 \\ 60 \\ 1 \\ 40 \\ 40 \\ - \\ - \\ 30 \\ 10 \\ - \\ - \\ 10? \\ - \\ 10? \\ - \\ 40 \\ - \\ - \\ - \\ 30 \\ 40 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ |           | 50 7 17 74 60 $$00$ 10 10 10 10 10 |                        |       |                 | $\begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}$ |            |
|           | <u> </u>                                                                                                                                                                 | <u> </u> |         | <u> </u>    |        | <u> </u> |             | <u> </u>                                                                                                                        | 15      |                                                                                                                                                                                                           | 20        | <u> </u>                           | 18                     |       | 10              | 31                                                                                                                                                                                                                                                | . : .      |
| 685       | 240                                                                                                                                                                      | 180      | 72      | 105         | 20     | \$ 890   | ) 143<br>87 | <b>1</b> 460<br>3                                                                                                               | 431     | 1 620                                                                                                                                                                                                     | 465       | 988                                | 8 <mark>  3</mark> 86] | 1 100 | 180             |                                                                                                                                                                                                                                                   |            |

[April 1917.

| <u>···</u>  |       |     |          |       |       |          |       |          |              |        |              | <u> </u> |      |     |
|-------------|-------|-----|----------|-------|-------|----------|-------|----------|--------------|--------|--------------|----------|------|-----|
|             |       |     |          | R     | ÜS    | S        | ö     |          |              |        | Häl          | lan      | Häl  | leI |
|             |       |     |          |       |       | <u> </u> |       | 3        |              |        | P            |          | p. : | 208 |
|             | c. 2  | 21  | c. 21    | l•7   | c. 2  | 2.2      | c. 2  | 3.3      | c. 23        | 3.0    | r. 3         | 6.2      | с.   | 89  |
| :<br>••     | 1-2   | 2 < | 1-2      | 2 <   | 1-2   | 2<       | 1-2   | 2<       | 1-2          | 2 <    | 1 - 2        | 2 <      | 1-2  | 2<  |
|             |       | F   | <u> </u> |       | i     |          |       | ï        |              |        |              |          |      |     |
| . 1         | 8     | 1   | 42       | _     | 13,   |          | 4     | ]        | 17           | _      |              |          | _    | _   |
| . 2         | _     | _   | 4        | 1     | 8     | _        | 8     | _        | 4            |        |              | _        | _    | _   |
| . 3         | 21    | _   | 29       | ]     | 33,   | 3        | 23    |          | 87           | 1      | + (?)        |          |      |     |
|             | 29    | 1   | 75       | 1     | 54    | 3        | 35    | _        | 108          | 1      | + (?)        |          |      | _   |
| . 4         | 125   | 70  | 500      | 95    | 250   | 65       | 150   | 35       | . 225        | 50     | 25           | 7        | _    |     |
| . 5         | 3 000 | 450 | 6 750    | 500   | 2 375 | 375      | 1 950 | 300      | <b>2</b> 250 | 325    | 350          | 18       |      |     |
| . 6         |       | _   | -        |       |       | 10       |       | —        | _            | —      |              |          |      | 40  |
| . 7         | —     | 5   | —        | 20    |       | 5        | -     | 10       | -            | —      | 25           | _        | 23   | 3   |
| . 8         |       | -   |          | +(?)  |       | -        | _     |          | —            |        | ·            | —        |      | -   |
| . 9         | —     | —   | —        | -     | —     |          | —     |          | —            | _      | _            | -        |      | -   |
| . 10        |       | '   | —        |       | -     | -        |       |          | -            |        | -            | -        |      |     |
| . 11        |       | · _ | -        | -     |       | -        | _     | _        |              | 7      | -            | -        |      | -   |
| . 12        | - 10  |     |          | _     |       | -        |       |          | 150          | 9<br>5 | · _          |          | - 95 |     |
| . 13        | _ 1ð  | 0   | 10       | э<br> | 20    |          | 20    |          |              |        | · _          |          | ~0   |     |
| 15          |       |     |          |       |       |          |       |          | _            | _      | _            | _        |      | _   |
| . 16        |       |     | _        | _     | _     | _        |       |          |              | ·      | _            |          | -    |     |
| . 17        | -     |     | _        | · _   |       | _        | _     | _        |              | —      | -            | _        | _    | _   |
| . 18        | _     | _   | _        | 3     | _     | _        | —     | _        | _            | 3      |              | _        | 100  | 10  |
| . 19        | _     | _   |          | _     | -     | 7        | - 38  |          | —            | . —    |              | -        | _    | -   |
| 20          | - 1   | -   |          | _     |       | _        |       | _        | —            |        |              | -        |      |     |
| 21          | 13    | 3   | 25       |       |       | _        | -     | +        | -            | -      | -            |          |      | _   |
| 22          |       | -   | -        |       | —     | —        | -     |          | -            |        |              | -        | -    | -   |
| 23          | -     | -   | 63       | —     | -     | _        | -     |          |              | -      | 50           | 1 -      | 75   | -   |
| . 24        | 63    |     | 63       |       | 25    | _        | 63    |          | 70           | 10     | 20           | -        |      | _   |
| 25          | -     | -   | -        |       | -     | _        |       |          |              | 10     |              |          |      | _   |
| 26          | -     | -   | -        |       |       |          |       |          |              |        | 1            |          |      |     |
| •••21<br>98 |       |     |          |       |       |          |       |          | -            | _      | _            | -        |      |     |
| 20          |       |     |          |       |       | _        | _     |          | _            | . —    | - 1          | _        |      | -   |
| 30          | _     | -   | _        | _     | _     | _        | _     | <u>-</u> | _            | 3      | <sup>-</sup> |          |      |     |
| 31          |       | j 5 | -        | 7     |       |          |       | _        | _            | 5      |              | 14       |      |     |
|             | 3 214 | 536 | 7 476    | 628   | 2 676 | 462      | 2 226 | 845      | 2 700        | 413    | 475          | 39       | 248  | 108 |

## Shell-beds from the post-glacial 346

360

. . .

.

|   |               |       |       | <u></u> |        |              |      |          |       |            |      |       | _       | _   |
|---|---------------|-------|-------|---------|--------|--------------|------|----------|-------|------------|------|-------|---------|-----|
|   | ,<br>,        | Sti   | ar e  |         | s      | a n          | d    | bo       | g e   | n          | Efv  | enås  |         |     |
|   |               | թ.    | 302   |         |        |              | p.   | 303      |       |            | р.   | 304   |         |     |
|   |               | 31    | c.    | 32      | <br>C. | 34           | c.   | 85       | с.    | B6         |      | 3·5   |         |     |
|   |               |       |       |         |        |              | 1 0  |          | 1 0   |            |      |       |         | ••• |
|   | -2            | 2<    | 12    | 2<      | 1-2    |              | 1—¤  | 2<       | 1-2   | 2<         | 1    | 2<    | • •     | ••• |
|   |               |       |       |         |        |              |      |          | 1     |            |      |       |         |     |
|   |               |       |       | -       | 6      | _            | i —  |          | -     |            |      |       | 1.      | ••• |
| 1 | _             |       | 10    | · _     |        | -            | 7    |          | 18    | , ə<br>    |      |       | 2.<br>3 | ••• |
|   |               |       | 15    |         | 6      | <u>_</u>     | 7    |          | 18    | 3          | <br> | ·     | Ű.      | ••• |
|   | _             |       | 10    |         | ľ      | · ·          | •    |          |       | 1          |      |       |         | • • |
|   |               | -     |       | _       | _      | 10           | 60   | 10       | 1 040 | 040<br>600 | 18   | : _   | 4.5     | ••• |
| } | $125^{ }_{ }$ | 175   | 150   | 150     | _      | -            |      | -        | 1010  | 20         | - 10 | : _   | 6.      | ••• |
| ľ |               | _     | ·     | -       | -      |              |      | _        | -     | -          | 18   | :<br> | 7.      |     |
|   |               | _     | -     |         |        | _            |      |          | -     |            |      | ·     | 8.      |     |
|   |               | _     | _     | -       | —      | <sup> </sup> | —    | ;        | -     | —          | -    | . —   | 9.      |     |
|   | _             |       | —     | _       | - 1    | _            | _    |          |       | —          |      | _     | 10.     | • • |
|   |               |       |       |         |        |              | -    |          |       | -          | —    | S     | 11.     | • • |
| ļ |               |       | 50    | 10      | _      |              |      |          | -     |            |      |       | 12.     | • • |
|   |               |       |       | _       | _      | _            |      |          |       |            |      |       | 14.     | •   |
|   | _             | _     | _     |         | _      | _            |      | -<br>    | -     | _          | _    | _     | 15.     |     |
|   | _             | _     | —     | —       |        | ·            | _    | _        | · —   | _          | _    | —     | 16.     |     |
|   | _             |       | !     | —       | -      | _            | —    | _        | -     | —          |      | -     | 17.     | • • |
|   | -             | 8     | -     | —       |        |              | —    | -        | -     | -          |      | 8     | 18.     | • • |
|   |               | -     | · _   |         | -      |              | -    | <u> </u> | -     | —          | —    |       | 19.     | • • |
|   | -             |       | _     | -       |        |              | -    |          | _     |            |      | -     | 20.     | • • |
|   |               | +     | τ<br> |         | ~0     | _            | _    | _        |       |            |      |       | 21.     | ••• |
|   | _             | _     | 15    | ·       | _      |              | _    | _        | 20    | _          |      | _     | 23 .    |     |
|   | _             |       | 30    | _       | _      | _            | i _  |          | 40    |            | 18   | _     | 24.     |     |
| [ | _             | -     |       | _       | -      |              | —    | <u> </u> |       |            |      | _     | 25.     |     |
|   | -             | -     |       | —       | —      |              | -    | _        | -     |            | -    | —     | 26.     | • • |
|   | -             | . —   |       | -       | -      | <del>-</del> | —    |          |       |            | 35   | ¦ —   | 27.     | ••• |
| 1 | -             | _     | -     | -       | · —    |              | '    | _        |       | -          |      | 8     | 28.     | • • |
|   |               | _     |       |         | -      |              | _    |          |       |            |      |       | 29.     | ••• |
|   |               | <br>( |       |         |        |              |      | _;       | _     | · 10       |      |       | 31.     | · · |
| F | 175           | 208   | 225   | 160     | 20     | 20           | 60   | 10       | 1 160 | 680        | 124  | 47    |         |     |
|   | 1             |       | 0,    | 200     | ~0     | 2°,<br>375   | , ., |          | - 100 | 000        |      |       |         |     |

### transgression maximum

#### ERNST ANTEVS.

[April 1917]

#### Shell-beds from the sero-348

|        |                   |        |              |       |       |        |             |               |              |                                               |                    |          |            |         |                                              | -              |
|--------|-------------------|--------|--------------|-------|-------|--------|-------------|---------------|--------------|-----------------------------------------------|--------------------|----------|------------|---------|----------------------------------------------|----------------|
|        | Kila              | rna    | $\mathbf{L}$ | u     | n     | d      | Holke<br>ki | edals-<br>len | $\mathbf{S}$ | k                                             | ä                  | 1 1      | <b>e</b> : | r ö     | d                                            |                |
|        | p. 9              | 06     |              | р.    | 315   |        | р. ;        | 316           |              |                                               |                    | р. З     | 17         |         |                                              |                |
| •••    | c. 5              | 22     | c. 23        | 5-1   | с. 2  | 5.0    | - 27        | 5.8           | c. 2         | 1.6                                           | c. 2               | 2.6      | c. 2       | 35      | с. 2                                         | 3.8            |
| •••    | 1-2               | 2<     | 1-2          | 2 < 1 | 1-2   | 2<     | 1-2         | 2<            | 12           | 2 <                                           | 1-2                | 2 <      | 1-2        | 2 <     | 1-2                                          | 2              |
|        | 1                 |        |              |       |       |        | 1           | 1             |              |                                               |                    |          | <u> </u>   |         | ·                                            |                |
| •<br>• | _                 |        | s            | 1     | 65    |        | 15          |               |              |                                               | _                  | -        |            |         |                                              |                |
|        | -                 | _      |              | ]     | 90    | -      |             | 3             | -            | _                                             | 27                 | _        | 16         | $2^{ }$ | 13                                           |                |
| 3      | 17                | 3      | 32           |       | 8     | 10     | 10          |               | 5            | _                                             | 27                 | 3        | 13         | _       | _                                            | _              |
|        | 17                | 3      | $40^{1}$     | ·i    | 163   | 10     | 25          | 3             | 5            |                                               | 54                 | 3        | 29         | 2       | 13                                           |                |
|        | 95                |        |              |       | 50    | 5      | 15          | 10            | 80           |                                               | 160                | 45       | 10         | 90      |                                              |                |
|        | 250               | 200    | 300          | 100   | ) 00  |        | 1.5         |               | Ġ            | 45                                            | 1 800              | 230      | 810        | 160     |                                              | 35             |
| 6      |                   | ++     |              | 20    | 850   | 170    | 150         | 220           | <u> </u>     |                                               |                    |          |            | _       | _                                            | 16             |
|        | 13                | +      | I            |       |       | -      | _           | 10            | _            | _                                             | 45                 | !        | 40         | _       |                                              | _              |
| 8      |                   |        | _            | +     | ·     | _      |             | -             |              | _                                             | -                  |          |            |         |                                              |                |
| 9      |                   | -      | _            |       | _     | -      | -           | -             | ·            |                                               | . –                | _        | —          | _       | _                                            |                |
| 10     | 1 -               | _      | _            |       |       | -      | <u> </u>    | -             |              | -                                             | - 1                | _        | -          |         |                                              | _              |
| 11     |                   | -      | _            |       |       | -      |             |               | -            | -                                             | —                  | _        | -          |         | -                                            | _              |
| 12     | 100               |        | 200          | 10    | 125   | 30     | 30          |               | -            | -                                             | 20                 | ¦        | 120        | 30      | 60                                           | 30             |
| 13     | f  <sup>100</sup> | 40     | -            | _     | —     | -      | —           | 20            |              | -                                             | 120                | 10       | -          | -       | 140                                          | 60             |
| 14     |                   |        | -            |       |       | -      | —           | -             | -            | -                                             | - 1                | i –      |            | -       | -                                            | _              |
| . 15   | -                 |        | -            | _     | —     | —      |             |               | -            |                                               |                    | -        | -          |         | -                                            |                |
| 16     | -                 |        |              |       | —     |        | -           | -             |              | -                                             | -                  | -        |            | -i      | -                                            | -              |
| 17     | -                 | -      | -            | -     | —     |        | -           | -             |              | -                                             | -                  | i —      | -          |         |                                              | , –            |
| 18     | 13                | 10     | -            |       |       | 1 0    |             | 15.00         | 1.5          | -                                             |                    | -        |            |         | 20                                           | 55             |
| 19     | '                 |        |              |       |       |        | 10(?        | )  10(?)      |              | -                                             | 40                 | -        |            |         | -                                            | 1              |
| 20     | -                 | -      |              |       |       | -      |             |               |              |                                               |                    |          |            |         |                                              | _              |
| 21     |                   | 10     |              | 40    |       |        |             | 10            |              |                                               |                    |          |            |         |                                              | 5              |
|        | 28                |        | 100          |       | 125   |        | 15          |               | 45           | <u> </u>                                      | 60                 | _        |            | _       | _                                            | . <del>.</del> |
| 24     | 50                | 10     | 25           |       | 50    |        | 15          |               |              | İ _                                           | 40                 | _        | 80         |         | 160                                          |                |
| 25     |                   |        |              |       |       | ·      |             | _             |              |                                               | - I                | _        |            |         |                                              | -              |
| 26     | -                 |        |              | 10    | _     | -      |             | _             | -            |                                               | ¦                  | _        | _          | _       |                                              |                |
| 27     | 63                | 20     | ) _          |       | 25    | -      |             |               |              |                                               | 20                 | -        | <u> </u> _ | —       |                                              | -              |
| 28     | -                 | -      | _            |       |       | .   _  |             |               |              | -                                             | -                  | _        | ·          | —       |                                              | . –            |
| 29     | -                 | -      | ·  –         | _¦    |       | -      | ·           |               |              | -                                             | -                  | _        | -          |         | -                                            |                |
| 30     | -                 | ! –    | -            |       |       | -      |             |               | -            | -                                             |                    | · -      | -          | -       | -                                            | -              |
| 31     |                   | ·      | <u> </u>     |       | 125(  | (?) 10 | <u> </u>    | 20            | 15           | <u>                                      </u> | <u> </u>           | <u> </u> | <u> </u>   |         | <u>                                     </u> |                |
| · · ·  | 559               | 2] 290 | 625          | 180   | 1 350 | 120    | 240         | 305           | 165          | 45                                            | <sup>r</sup> 2 305 | 285      | 1 180      | 210     | 380                                          | 29             |
| !      |                   |        |              |       |       |        |             | 376           |              |                                               |                    |          |            |         |                                              |                |

|                    |                 |                    | -                 |        |           |              | ,<br>     |          |         |                   |                  |                |                   | • •          | •          |
|--------------------|-----------------|--------------------|-------------------|--------|-----------|--------------|-----------|----------|---------|-------------------|------------------|----------------|-------------------|--------------|------------|
| Prä<br>äng<br>p. 3 | st-<br>en<br>18 | Lej<br>käl         | on-<br>lan<br>320 | т      | 0         | г s<br>р. 3  | е 1<br>07 | ö        | d       | Sy<br>kos<br>p. 8 | d-<br>ter<br>322 | Gr<br>da<br>p. | an-<br>len<br>323 |              |            |
| 21                 |                 | 2                  | 2                 | cc.    | 1.2       | cc.          | 3·5       | cc.      | 5:5     | c. 1              | 15               | c.             | 14                |              | •          |
| 1-2                | 2<              | 1-2                | 2 <               | 12     | 2 <       | 1-2          | 2<        | 1-2      | 2<      | 1-2               | 2<               | 1-2            | 2<                |              | •          |
| 21                 | -               | _                  |                   | 5      | _         |              | _         | 10       | _       |                   | 1                |                |                   | 1.           |            |
|                    | - 3             | 13                 |                   |        | _         | - 30         |           |          |         | 20                | 1                | 15<br>80       |                   | 2.           | •          |
| 119                | 3               | 13                 |                   | 65     |           | 30           |           | 55       |         |                   | 1                | 45             |                   |              | •          |
| L 1 000            | 60              | -                  | -                 | 45     | 15        | 45           | Б         | 90       | 30      | -                 | 3                | -              |                   | 4.           | • •        |
|                    | 230             | 180                | · 85<br>15        | 810    | 150<br>10 | 825<br>—     | 75<br>20  | 900<br>  | 160<br> | 120               | 50               | _              |                   | 5.           | • •        |
| 20                 | —               | _                  | _                 | _      | 5         | 15           | 10        | 5        | -       | _                 | ′ –              |                | _                 | 7.           | •          |
| -                  | _               | _                  | _                 | _      |           |              |           | _        |         |                   | _                |                |                   | 8.<br>9.     | •••        |
| -                  | ÷               |                    |                   | ·      | _         | -            | -         | -        |         | _                 | -                |                | -                 | 10.          | • •        |
| 60                 | 40              | 280                | <b>4</b> 5        | 45     |           |              | 40        | 45       | _       | 180               | 15               | _              | _                 | 11.<br>12.   | •••        |
|                    | 15              | 60<br>—            | 23<br>            | 45<br> | 25        | 15           | _         | 150<br>— | 10      | _                 | 3                | 120            | 10<br>20          | 13.<br>14    | •••        |
| _                  | _               |                    | _                 |        | _         | -            | _         | -        | ·       |                   | -                | -              | _                 | 15.          | •••        |
|                    | -               |                    |                   |        |           | _            | _         |          |         |                   | _                | -<br>-         | _                 | 16.<br>17.   | •••        |
| -                  | _               | 80                 | 5                 | 180    | 60        | - 30         | 20        | 30       | -       | _                 | 5                |                |                   | 18.          |            |
|                    | _               |                    | -10               | _      | _         | <br>         | _         |          | о<br>—  | _                 |                  | _              | _                 | 19.<br>20.   | · ·        |
| -                  |                 |                    |                   | _      | _         | _            |           |          | —       |                   | _                | -              |                   | 21 .<br>22   | •••        |
| -40                | _               | 20                 | _                 | 15     | -         | 15           | -         | · _      | _       | 30                | _                | 40             | +<br>             | 22 ·<br>23 · | •••        |
|                    |                 | 280                |                   | 180    | 5         | 150          |           |          | _       | 90]<br>           | -                | 80<br>         | _                 | 24. $25$ .   | •••        |
|                    | -               | 40                 | 8                 | _      |           | -            | _         |          | -       | 30                | 3                | •              | _                 | 26.          | •••        |
|                    | _               | _                  |                   | 30<br> | 10        |              | 5         | 30       |         |                   | _                | 120            | 20                | 27.<br>28.   | •••        |
|                    | -               | -                  | -                 |        | . 5       | 15           | 5         | -        | _       | _                 | -                |                | -                 | 29.          | • •        |
| 40?                |                 |                    | 10                |        |           | _            |           |          | _       | . 60              | 25               |                |                   | 30.<br>31.   | · ·<br>· · |
| <b>1</b> 1 180     | 845             | 940 <mark>,</mark> | 201               | 1350   | 315 I     | 1 155<br>377 | 180]      | 1 250    | 205     | 510               | 124              | 360            | 100               |              | • •        |

### post-glacial regression

<sup>1</sup>A. striata and A. patelliformis inclusive.

#### Shell-beds from the sero-350

| <u> </u>                                                                                                                                |         |                                                |         |     |        |       |                                                                  |                                 |        |     |     |     |           | -              |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|---------|-----|--------|-------|------------------------------------------------------------------|---------------------------------|--------|-----|-----|-----|-----------|----------------|
|                                                                                                                                         |         |                                                | ſ       | Ľo  | ft     | е     | r n                                                              | a                               | A      |     |     |     | Toft<br>( | erna<br>C      |
|                                                                                                                                         |         |                                                |         |     |        | p. 30 | )8                                                               |                                 |        |     |     |     | p. 8      | 808            |
|                                                                                                                                         | 2       |                                                | 3       |     | . 4    |       | อี                                                               |                                 | 6      |     |     | 7   | c.        | 7.5            |
|                                                                                                                                         | 1-2     | $^{2}<$                                        | 1-2     | 2 < | 1-2    | 2 <   | 1-2                                                              | $^{2}<$                         | 1-2    | 2<  | 1-2 | 2 < | 1-2       | <u>.</u><br>?< |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | 183<br> | <br><br>135<br>650<br><br>8<br><br>8<br><br>48 | 113<br> |     | 42<br> |       | 25<br>-<br>200<br>225<br>450<br>3 250<br>-<br>-<br>-<br>-<br>200 | 2<br>90<br>575<br>10<br>-<br>18 | 38<br> |     |     |     |           |                |
| $\begin{array}{c} 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \end{array}$ |         |                                                |         |     |        |       |                                                                  |                                 |        |     |     |     |           |                |
| •••                                                                                                                                     | 6 276   | 859                                            | 4751    | 758 | 2 550  | 271   | 4 110<br>378                                                     | [ 701                           | 1188   | 217 | 276 | 126 | 250       | j 50a          |

<sup>1</sup> C. fasciatum inclusive.

## Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 365

|     |       |          |                   |       |       |        |            |              | _   |             |       |            |             |              |                   |     |
|-----|-------|----------|-------------------|-------|-------|--------|------------|--------------|-----|-------------|-------|------------|-------------|--------------|-------------------|-----|
| Ī   | N     | öth      | ol                | тe    | e n   | A      |            | Ν            | öth | oln         | nen   | <b>B</b> . | Rös<br>Lång | ssö-<br>gö A |                   |     |
|     |       |          | р.                | 310   |       |        |            |              |     | p. 31       | 0     |            | p. 1        | 813          |                   |     |
| 0.  | 5     | 1.       | 5                 | 2.    | 5     | 3.     | 5          | 6.0          | ;   | <b>7</b> ·4 | 7.    | 6          |             | 3            | • •               |     |
| 1-2 | 2<    | 12       | 2<                | 1-2   | 2 <   | 1-2    | 2<         | 1-2          | 2 < | 2 <         | 1-2   | 2<         | 1-2         | $^{2}<$      | • •               | • • |
|     |       |          |                   |       |       |        |            |              |     |             |       |            |             |              |                   |     |
| -   | 5?    | 17       | -                 | —     | 1     | 3      |            | <u>3</u> 3 · | —¦  |             | 8     | -          | —           | -            | 1.                | • • |
| -   | -     | —        |                   | _     | _     |        |            | 17           |     | _           | 33    | -          | —           | -            | 2.                | • • |
|     |       | <u> </u> |                   |       |       |        |            | 50           |     | 2           | 8     | 2          |             |              | 3.                | • • |
| -   | 5?    | 17       |                   | -     | 1     | 3      | —          | 100          | 2   | 2           | 49    | 2          | -           |              | • •               | ••• |
| -   | 85    | 160      | 40                | 60    | 35    | 40     | <b>2</b> 5 | 25           |     |             |       |            | —           |              | 4.                | • • |
| 810 | 490   | 1 700    | 210               | 1 260 | 330   | 960    | 215        | 200          | 320 | 80          | } 100 | 120        |             |              | 5.                | • • |
| +   | +     | 10       | 8                 | . 10  | 115   | +      | 10         |              | 20  | 10          | )     |            |             | 10           | 6.                | · . |
|     | 150   |          | 3<br>9            | _     | 5     | _      | _          |              | 5   | -           | -     | -          | _           | -            | 7.                | •   |
|     | 197   |          |                   | _     |       | _      |            |              |     |             |       | -          |             |              | 8.<br>0           | ••• |
|     |       |          |                   | · _   |       |        | _          |              |     |             |       |            | _           | _            | 10                | ••• |
| _   |       |          |                   | _     | _     | _      |            |              | _   | _           | _     | _          | _           | _            | 11.               | ••• |
|     | _     | -        | _                 | _     |       | _      | _          | 200          | 15  | 15          | 125   | 5          | _           |              | 12.               |     |
| _   | —     | 20       | _                 |       | _     |        | -          | 25           | 25  | 10          | 25    | 30         | _           |              | 13.               |     |
| _   |       | -        | _                 | _     | _     | -      | _          | -            | -   | _           |       |            | _           | _            | 14.               |     |
| 110 | 35    |          | -                 |       | —     | —      | -          | -            | _   |             |       | -          | +           | 8            | 15.               | ••• |
| -   |       |          | _                 |       |       | -      | -          |              | _   |             | -     | -          | -           | -            | 16.               | • • |
|     |       |          | —                 | -     |       | _      |            |              |     | -           | -     |            | -           |              | 17.               | • • |
| -   |       | -        |                   | _     |       | -      |            | 20?          | -   | 10?         |       | 15         | -           | 5            | 18.               | ••• |
|     |       |          |                   |       |       |        |            | _            |     | — I         |       |            | _           | -            | 19.               | ••• |
|     |       | 10       |                   |       | 4     | 10     |            |              |     |             |       | _          |             | _            | 20 .<br>91        | ••• |
| +   | 5     |          | 3                 | _     | 3     | _      | +          | _            | 10  | _           | ·     | _          | _           | _            | $\frac{22}{22}$ . | · · |
| _   |       |          |                   | _     | _     | 20     | _          | 100          | _   | _           | 50    | -          | -           | _            | 23 .              |     |
| _   | —     | 60       | 3                 | 180   | _     | 200¦   |            | 50           |     | —           | 200   | õ          |             |              | 24.               | • • |
| -   | _     | _        |                   |       | -     | -      |            | —            |     | —           |       |            | —           | —            | 25.               | • • |
| -   | —     | -        | -                 | . —   |       |        | -          | 50           | 20  | 30          | 125   | 30         | _           |              | 26.               | • • |
|     |       |          | -                 |       | -     | ·      | -          | -            |     | -           |       | ~          |             |              | 27.               | ••• |
| -   | 3     | -        |                   | —     |       |        | -1         | -            |     |             | -     | -          | —           |              | 28.               | ••• |
|     |       | -        | _                 |       |       |        | -          |              |     | -           |       |            |             |              | 29.               | ••• |
| 50  | 10    |          |                   |       |       |        |            | _            |     | 5           |       |            |             |              | 3U.<br>31         | • • |
| 970 | 643   | 1 960    | - <u>.</u><br>970 | 1 510 | 191   | 1.930  | 250        | 675          |     | 160         | 625   | 910        |             |              | 31.               | ••• |
| 1   | 510 [ | 1 - 0001 | ~•••]             | 1010  | 101.] | 1 2001 | 379        | 010          | 110 | 100         | 0.01  | ~10        | -1          | ~0           |                   | ••• |

# post-glacial regression 351

[April 1915]

### Shell-beds from the sero-

| <u></u> |          |                                               |          |    |          |              |       |          |             |       |               |             |                |      |           | -             |
|---------|----------|-----------------------------------------------|----------|----|----------|--------------|-------|----------|-------------|-------|---------------|-------------|----------------|------|-----------|---------------|
|         | Rö       | ssö-L                                         | ângi     | ъВ |          | S            | vä    | 1        | t e         |       | Kj<br>vil     | ell-<br>sen | Keb            | al   | Bag<br>rö | ge<br>d       |
|         | <u> </u> | . p. t                                        | 313      |    |          |              | p. 3  | 25       |             |       | _p.           | 326         | <u>p. 3</u>    | 27   | p. 3      | 28            |
|         | <b>s</b> | •3                                            | 8∙       | 7  | c. 1     | •4           | с. З  | •4       | <b>c.</b> 4 | 1     | 5             | 3           | c. 1           | .'5  | 0.3       | 2             |
|         | 1-2      | 2<                                            | 1-2      | 2< | 1-2      | 2 <          | 1-2   | 2<       | 1-2         | 2<    | 1-2           | 2<          | 1-2            | 2<   | 1-2'      | $\frac{1}{2}$ |
|         | İ        | 1                                             |          |    | <u> </u> |              |       |          |             |       |               |             |                |      |           | -             |
| 1       |          |                                               | · -      |    | —        |              | 13    | 2        | 5           | _     | -             |             | _              | _    | 7         | -             |
| 2       | -        | —                                             |          | —  |          | -            | -     | _        | —           | -     | -             |             | -              | —    |           | -             |
| 3       |          | <u>                                      </u> | <u> </u> |    |          | 1            | 40    |          | 15          |       | 7             |             | 58;            |      | 40        |               |
|         |          |                                               |          | -  | _        | . 1          | 53    | - 2      | 20          | -     | 7             | -           | 58             | -    | 47        | -             |
| 4       | -        | —                                             | -        |    | 150      | -80          | 200   | 50       | 60          | 20    | $ _{240}^{1}$ | 35          | 1 <sup>1</sup> | 100  |           | -             |
| 5       | -        | 1 <sub>30</sub>                               | 25       | _  | 1 590    | 95           | 1 320 | 330      | 750         | 55    | J             | 180         | 1000           | 540  | 80        | ;             |
| G       | -        | 1                                             | —        | 63 |          |              |       | ·        | —           | 8     | -             | 50          | 1              | }    |           |               |
|         | -        |                                               |          |    | 50       | 6-<br>       | 60    | 0        | _           | _     |               | _           |                | 10   |           | -             |
|         |          | _                                             | _        | ÷  | ·        |              | _     | _        | _           | _     | _             | _           |                | 10   |           |               |
| 10      | 1        | —                                             |          | _  | _        |              |       | _        | _           |       |               |             |                | ÷    |           |               |
| 11      | _        |                                               | _        | _  |          | -            | -     | -        |             | -     | _             |             |                | —    | _         |               |
| 12      |          | 5                                             | 125      | 10 | ' 150    | 5            | 60    | 5        | 270         | 55    | 200           | 30          | 25             |      | -         |               |
| 13      | -        | 10                                            | -        | -  | _        |              | —     | -        | —           |       | —             | _           |                |      | 80        | (             |
| 14      | -        | —                                             | -        | -  | 15       | -            | -     | -        |             |       |               | . –         |                | -    | ·         |               |
| · · 15  | -        | -                                             | _        | -  |          |              |       | _        | _           |       |               |             |                |      | _         |               |
| 10      |          | _                                             |          | _  |          | - T          | _     |          |             | 8     |               |             |                | -    |           |               |
| 18      | 25(?)    | 25(?)                                         | _        |    | -        |              |       | _        | _           | _     | 20            | _           |                | _    |           |               |
| 19      |          | - 1                                           | [        | _  |          | 3            | _     | _        |             |       |               | _           | _              | _    | _         |               |
| 20      | _        |                                               | -        |    | —        | _            | ·     | _        |             |       |               | _           | _              | _    |           |               |
| 21      |          | - ;                                           | 25       | +  | _        | _            | —     | -        |             |       | —             | -           | -              | _    |           |               |
| 22      | -        |                                               |          |    | —        | -            | -     |          | —<br>• • •  | 15    |               | _           | -              | -    |           |               |
| 23      | 100      | -                                             | 100      | -  | 50       | -            | 40    |          | 150         |       | 20            | _           |                |      |           |               |
| · · 24  | 100      | _                                             | 100      | _  |          |              |       |          | 40          | о<br> | 00            | _           |                |      | 40        |               |
| 26      |          |                                               | 50       | 5  |          | _            | _     |          | _           |       | _             | _           | _              | _    |           |               |
| 27      | 75       |                                               | _        |    |          | _            | _     |          |             | 3     | 40            | _           |                | _    | S0        |               |
| 28      | -        |                                               |          | _  | ·        | _            | -     | -        |             |       | _             | -           |                |      |           |               |
| 29      | -        |                                               | -        |    | ÷        | -            |       | -        | -           |       |               | _           | —              |      |           |               |
| 30      | -        | -                                             | -        | -  |          | -            |       | -        | -           | 3     | -             | -           |                |      | -         |               |
| 31      | <u> </u> |                                               |          |    | —  <br>  | <u>[</u>     |       | <u> </u> |             |       |               | 5           | <u> </u>       | 20   |           |               |
| ••••    | 200      | 70                                            | 325      | 95 | 1 965    | <b>1</b> 36] | 1 740 | - 395]   | 1 275]      | 16S   | 580           | 300         | 1 025          | 670¦ | 280       | 1             |
| :•••.•  |          |                                               | _        |    |          |              |       | 38       | v           |       |               |             |                |      |           |               |

<sup>1</sup> A. striata inclusive.

| Bd 39. H. 4.] POST- | GLACIAL MARINE | SHELL-BEDS | IN | BOHUSLÄN. |
|---------------------|----------------|------------|----|-----------|
|---------------------|----------------|------------|----|-----------|

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                            |                                                                 |           | post-glacial regression Recent                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       |           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Continued from p.                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| c. 14       25       3       4-2       c. 55       0       03                                                                                                                                                                                                      |                                                                 | Mörl<br>I | -<br>hult<br>I<br>329                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ord                                                   | koste<br>330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er                 | Nö                                                                                                                                                                                                                                                                                                                                                                       | ddö<br>331                                                                                                                            | Otte      | rö B<br>315                             | Ka:<br>holm<br>p. 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r-<br>en | Bra<br>ski | att-<br>är<br>333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gu<br>mar<br>p. | ıll-<br>ren<br>834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                             |                                                                 |           | <br>[·4                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - ·<br>3           | 4                                                                                                                                                                                                                                                                                                                                                                        | •2                                                                                                                                    | <br>c. i  | j:5                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0.         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>-</u>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Samples: height in <i>m</i> above the sea |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                              | ĺ                                                               | 12        | 2<                                                    | $1 - 2^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<                                                    | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<                 | 1-2                                                                                                                                                                                                                                                                                                                                                                      | 2 <                                                                                                                                   | 1-2       | 2<                                      | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<       | 1-2        | 2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-2             | 2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coarseness of material in mm              |  |
| -       -       -       -       -       -       5       31 Thracia villosiuscula MACG. (b)         380       145       260       157       526       225       380       200       60       15       163       15       275       220       17       515       550 | Ownloaded by IVirginia Fech Lihraries at 01:50 27 February 2015 |           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 - 2<br>3<br>- 2<br>10<br>$10^{-1}$<br>$- 10^{-1}$<br>- 2<br>- 2 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c} 1-2 \\ 12 \\ 25 \\ 25 \\ 25 \\ 25 \\ 62 \\ \\ \\ 100 \\ 25 \\ \\ 100 \\ 25 \\ \\ 100 \\ 175 \\ \\ 100 \\ 175 \\ \\ 50 \\ \\ \\ 100 \\ 175 \\ \\ 50 \\ \\ \\ 100 \\ 175 \\ \\ 50 \\ \\ \\ \\ 100 \\ 175 \\ \\ \\ \\ 100 \\ 175 \\ \\ \\ \\ 100 \\ 175 \\ \\ \\ \\ \\ 100 \\ 175 \\ \\ \\ \\ \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 1$ |                    | 20?<br>20?<br>20?<br>20?<br>20?<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>20<br>-<br>-<br>20<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\begin{array}{c} 2 \\ + \\ - \\ - \\ - \\ 30 \\ 10 \\ - \\ + \\ - \\ - \\ 50 \\ 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $ |           | 1 1 1 0. 1 1 1 0. 1 1 1 1 1 1 1 1 1 1 1 | S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?)<br>S(?) |          |            | $\frac{2}{4}$<br>$\frac{4}{4}$<br>$\frac{4}{120}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}{10}$<br>$\frac{1}$ | 1               | 1       1       175       315       50       5       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> |                                           |  |
|                                                                                                                                                                                                                                                                    |                                                                 | 380       | <br>145<br>25†-                                       | <br>260 <br>1701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 157<br>05.                                            | <br>] 526 <br>G. F. J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —<br>225<br>F. 191 | 380<br>7.                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                   | 60<br>381 | <br>15                                  | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15       | 275        | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>  17 515    | 5<br>550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pelecypoda: sum                           |  |

Continued from p. . . . . . . . . . . . . . . .

Shell-beds from the primo-post-glacial re-

|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nyckleby                                              | Mörhult 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sum-<br>minge v                                       | unne-<br>vik I                                       |                                                       |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p. 204                                                | p. 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p. 200                                                | p. 201                                               |                                                       |
|                                                                                                 | Samples: height in m above the sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c. 22·3 c. 22·6                                       | c. 9 c. 10 c. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                    | c. 17                                                | <u>c. 2</u> c. 3                                      |
|                                                                                                 | Coarseness of material in mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-2 2< 1-2 2<                                         | 1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 <   1 - 2   2 < | 1-2 2< 1-                                             | -2 2<                                                | 1-2 2< 1-2 2<                                         |
| y [Virginia Tech Libraries] at 01:50 27 February 2015<br>sturalium; pruoissadoa [viovla-juu;] ج | 1 Patella vulgata L. (b)         2 Tectura virginea MCLL. (b)         3 Gibbula cineraria L. (b)         4 • tumida MONT. (b)         5 Lunatia intermedia PHIL. (l)         6 Litorina obtusata L. (b)         7 Hydrobia ulvae PENN. (b)         8 Onoba striata MONT. (b)         9 • aculcus GOULD. (b)         10 Rissoa interrupta AD. (b)         11 Rissostomia membranacea AD. (l)         12 Skenea planorbis FABR. (b)         13 Aporrhais pes pelecani L. (l)         14 Parthenia spiralis MONT. (l)         15 Clathurella linearis MONT. (l)         16 Pylotropa lapillus L. (b)         17 Nassa reticulata L. (l)         19 • sp. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| fr fr                                                                                           | 20 Utriculus umbilicatus Moxr. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                              |                                                      | <u> </u>                                              |
| di di di di di di di di di di di di di d                                                        | Gastropoda: sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 190 320 7 100 425                                   | f 1  240 ig 220 ig 5  800 ig 500 ig 7  360 ig 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 820 380 5                                           | 180 190                                              | 4 590 130 4 950 300                                   |
| lloa                                                                                            | 21 Amnhidetus sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + + - +                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | + +                                                  |                                                       |
| E nrt                                                                                           | 29 Lonhurus albus I. * (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                      |                                                       |
| 6 prt<br>  ≡ ч                                                                                  | 22 Lophyrus albus L.* (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                      |                                                       |
| Id p                                                                                            | 24 > striata Broccin (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -60 - 20                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | + 35                                                 | _ 5 _ 8                                               |
| o-po                                                                                            | 25 Pecten varius L. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                      |                                                       |
| in st-                                                                                          | 26 > septemradiatus Müll. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                      |                                                       |
| gla                                                                                             | 27 3 tigrinus Müll. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                      |                                                       |
| cial<br>gray                                                                                    | 28 Vola maxima L. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                      |                                                       |
| ans<br>ats                                                                                      | 29 Modiolaria discors L. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 3                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | _ 5                                                  | 30 - 30 1                                             |
| gres                                                                                            | 30 Nucula tumidula MALM (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ! _ ] _ !                                             |                                                      |                                                       |
| ssio                                                                                            | 31 Portlandia sp. (cf. tenuis PHIL.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                    |                                                      |                                                       |
|                                                                                                 | 32 Cardium cf. fasciatum Mont. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 10 - 10                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 90 15                                                |                                                       |
|                                                                                                 | Continued on p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • • • • • • • • • • • •                               | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • •                                                 | 20, 20                                               |                                                       |

|         | gression and the post-glacial transgression           |        |       |         |     |        |       |            |     |       |     |        |       |        |         |                  |     |
|---------|-------------------------------------------------------|--------|-------|---------|-----|--------|-------|------------|-----|-------|-----|--------|-------|--------|---------|------------------|-----|
| (       | <br>) t                                               | t e    | r     | ö       | A   |        |       |            |     |       | Fј  | ä111   | ) a c | k a    |         |                  |     |
| <b></b> |                                                       | p      | . 271 |         |     |        | •     |            |     |       |     | p. 5   | 276   | (      | )ver!   |                  |     |
| i c     | 4                                                     | c.     | 5     | c. (    | 3   | c. 7   | '     | c. 7       | 7   | cc. 1 | 6.3 | cc. 1  | 6.8   | cc. 17 | 7.3     | • . •            |     |
| 1-2     | $\overline{ 2< }$                                     | 1-2    | 2 <   | 1-2     | 2 < | 1-2    | 2 < 1 | 1-2        | 2 < | 1-2   | 2 < | 1-2    | 2 <   | 1-2    | $^{2<}$ |                  |     |
|         |                                                       | -      |       | _       | _   |        | _     | _          |     |       | 10  | 40     | 10    | 60     |         | 1.               |     |
| 210     | 260                                                   | 320    | 20    | 300     | 40  | 200    | 60    |            | 70  | 360   | 90  | 240    | 30    | 270    | 120     | 2.               |     |
| 420     | \$0                                                   | 1 200  | 20    | 90      | 20  | 250    | 100   | 120        | 130 | 150   | 20  | 160    | 45    | 420    | 90      | 3.               |     |
| - 1     |                                                       | —      | -     |         |     | —      |       | —          | _   | -     |     |        |       |        | —       | 4.               |     |
| - 1     | -                                                     | 40     |       | -       |     | 50     | ]     | 60         | 60  | -90   | -   | 40     | 15    | 30     | 15      | 5.               | ۰.  |
|         |                                                       |        | -     | -       |     |        |       | _          |     | —     | _   |        | 15    | 60     | 15      | 6.               | ••• |
| -       | -                                                     | -      |       | —       | —   |        |       |            | -   | . –   | —   |        |       |        | _       | 7.               | ••• |
| 1 590   | -                                                     | 2 280  |       | 1 4 4 0 | -   | 250    |       | 750        | -   | 90    | —   | 480    | -     | 510    |         | 8                | ••• |
| 60      | -                                                     | 560    | -     | 210     | -   | 250    | -     | 300        |     | 60    |     | 120    | '     | 21     |         | 9.               | ••• |
| 8 100   |                                                       | 17 200 | _     | 11 400  | -   | 5 500  |       | 5 550      |     | 4 550 |     | 6 000  |       | 9 000  |         | 10.              | • • |
| -       | -                                                     |        |       | 20      | -   | 50     |       | 120        | 60  |       | _   | -      | _     | -      |         | 11.              | • • |
| -       |                                                       |        |       | 50      | _   | 00     |       |            | _   | ~     | ·   |        | 15:   | _      |         | 12.              | ••• |
|         |                                                       |        |       |         | -   |        |       |            |     |       |     |        |       | _      |         | 13.              | ••• |
| _       |                                                       | _      |       |         | _   |        |       | _          | _   | _     |     | . +    |       |        |         | 15.              | ••• |
| 90      | 60                                                    | 120    | 10    | - 30    | +   |        |       | _          | 40  | 120   | 30  | +      | 45    | 120    | +       | 16.              |     |
| _       | _                                                     | _      |       |         | _   | ,<br>i | _     |            | 50  | _     | _   | -<br>- | _     |        |         | 17.              |     |
| - 1     | _                                                     |        |       | _       | _   |        | _     |            |     | _     | _]  |        | _     |        |         | 18.              |     |
| 60      | -                                                     | -      | _     | 30      | -   | -      | 20    | <b>3</b> 0 |     | 60    | 10  |        |       | 30     | _       | 19.              |     |
|         |                                                       | i      |       |         |     |        | [     |            | _   |       |     | _40    | _[    |        |         | 20.              | ••. |
| 10 530  | 410                                                   | 21 722 | 50    | 13530   | 60  | 6 550  | 180   | 6 930      | 410 | 5220  | 160 | 7 120  | 180   | 10710  | 240     |                  | • • |
|         |                                                       |        |       |         | +   |        |       |            | _   |       | ;   |        |       |        | _       | 21.              |     |
|         |                                                       |        |       |         | +   |        | _     |            |     |       |     |        |       |        |         | 22.              | • • |
|         | 20                                                    | -      |       | 30      | 15  | -      |       | _          | _   |       |     |        | _     |        | !       | $\frac{1}{23}$ . |     |
| -       | -                                                     | -      | õ     | —       | _   |        | _     |            | 5   | ·     | -   | _      | -[    | -      | _       | 24 .             | • • |
| -       | —                                                     | —      |       | _       | -   | _      |       |            | ÷   |       |     |        |       |        |         | 25 .             | • • |
| -       |                                                       |        |       |         |     |        |       |            | -[  | -     | -   | -      |       | -      | _       | 26.              | • • |
|         | -                                                     |        | -     | —       | -   |        |       |            |     | —     | -   |        |       | —      |         | 27.              | • • |
|         |                                                       | 100    | 100   | —       |     |        |       | -          |     | -     | -   | -      |       |        |         | 28.              | • • |
|         | Э                                                     | 100    | 100   | 210     | 79. | 250    | 100   | 60         | 15  |       | _   | -      | +     | 15     | 15      | 29.              | • • |
|         |                                                       | ·      | -     |         | _   |        |       | -          |     |       |     | -i     | _     |        | -       | 90.<br>91        | ••• |
|         | 5                                                     |        |       |         |     |        |       | 15         | 10  |       |     |        |       |        |         | 32 .             |     |
|         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |        |       |         |     |        |       |            |     |       |     |        |       |        |         |                  |     |

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

[April 1917]

#### Shell-beds from the post-

| <u> </u> | ·        | ••   |        |      |        |          |              |       |       |            |             |    | -        |                      |              |          |       |          |
|----------|----------|------|--------|------|--------|----------|--------------|-------|-------|------------|-------------|----|----------|----------------------|--------------|----------|-------|----------|
| :        |          |      |        |      | I      | F j ä    | 11 b         | a e l | i a   |            |             |    |          | 1                    | ΰn           | d a      | 1     |          |
|          |          | i    | 0ver   | !    |        | - 1      | p. 27        | 6     |       |            |             |    |          | <u> </u>             | p. 2         | 288      |       |          |
| ۰.       | ·        | •••• | cc. 1  | 17.8 | cc. 1  | 8.3      | cc. 1        | 9.3   | cc. 1 | 9.8        | ce.         | 20 | <u>.</u> | 9.5                  | cc.          | 11.2     | cc.   | 13.2     |
| _        | ·        | • •  | 1-2    | 2 <  | 1-2    | $2 \leq$ | 1-2          | 2 <   | 1-2   | 2 <        | 1-2         | 2< | 1-2      | $2 \leq \frac{1}{2}$ | 1 - 2        | 2 <      | 1-2   | 2<       |
|          |          | 1    |        |      | _      |          |              |       |       |            |             |    |          |                      |              | 10       |       |          |
| ••       | •        |      | 330    | 50   | 150    | 40       | 90           | 20    | 60    |            |             | 10 | 80       | 75                   | 200          | 20       | 160   | 10<br>20 |
|          | •        | . 3  | 540    | 30   | 210    | 30       | +            | 30    | +     | +          | 60          | õ  | 400      | 15                   | 280          | 50       | +     | 45       |
|          |          | . 4  | _      | _    | —      |          |              | _     | • –   | _          | -           | _  | _        | _                    | —            | -        |       | _        |
|          |          | . 5  | 30     | 10   | 30     | -        | 90           | —     | 150   | _          | _           | _  | 40       | 15                   | 40           | 20       | _     | 15       |
| •        | •        | . 6  | 30     | _    | 30     | —        |              | -     | —     |            | -           | -  | -        |                      |              | -        | -     | -        |
| · •      | •        | . 7  |        | '    | _      | -        |              | -     |       |            |             | -  |          | — i                  |              |          | -     | -        |
| ۰.       | •        | . 8  | 1 290  |      | 1 950  | -        | 600<br>180   |       | 420   | -          | 60<br>60    | -  | 720      |                      | 1 840        |          | 160   | -        |
| ·        | •        | · 9  | 10 900 |      | 450    |          | 180<br>5 950 |       | 5 100 |            | 50          |    |          |                      | 000<br>6 900 |          | 40    | -        |
| •        | ·        | 11   | 10 200 |      | 15 000 |          | 0 ~00        | 10    | 90    | 110        |             | 15 | - 100    | 15                   | 40           | 70       | 1020  | 1.       |
|          | :        | . 12 | 120    | _    | 120    | _        | _            |       | _     | _          | _           |    | 40       |                      |              |          | -     | 10       |
|          |          | . 13 | _      | _    |        | _        | _            |       | _     | _          | _           | _  | _        | _                    |              | -        | i _   | -        |
| •        |          | . 14 | -      |      | —      | _        | 60           |       |       | _          |             |    |          |                      |              | _        | _     | -        |
| •        | •        | . 15 | -      | -    | +      | 10       | -            |       | 30    | -          | - 1         | -  | ÷        | _                    | -            | -        | 40    |          |
| •        | •        | . 16 | 210    | +    | 150    | +        | 30           | —     | -     | • +        | -           | -  | 40       | 45                   | 80           |          |       | +        |
|          | •        | . 17 | -      |      | -      | +        |              |       |       | ð          | -           | 15 | -        |                      | -            | 10       | -     | 15       |
| ·        | ŀ        | . 18 | 90     |      |        | · —      |              |       | 190   | 20         |             |    |          |                      |              |          |       | -        |
| •        | •        | . 10 |        |      | _      |          |              |       | 1~0   |            |             | _  |          | _                    |              |          |       | _        |
|          |          |      | 12 900 | 90   | 18 090 | 80       | 6 300        | 60    | 6 030 | 135        | 960         | 45 | 800      | 165                  | 9 080        | 180      | 1 800 | 135      |
| ,        |          | 21   | _      |      |        |          | _            |       |       |            | _           |    |          |                      | 4            |          |       | +        |
| -<br>-   | <u>.</u> | . 22 |        |      |        | _        |              |       |       |            |             |    |          |                      | · ·          | <u> </u> |       | <u> </u> |
|          | ,        |      |        |      |        |          |              |       |       |            |             |    |          |                      |              | ''       |       | <u> </u> |
| •        | ٠        | . 23 |        |      |        |          |              |       |       |            |             |    |          |                      |              |          |       |          |
| •        | •        | . 25 |        |      |        | ~        |              |       |       |            |             | _  | _        |                      |              |          |       | _        |
|          |          | . 26 |        |      |        | _        | -            |       | _     | _          | i —         | _  |          | _                    | _            | _        |       | ¦        |
|          | •        | . 27 | _      |      | -      | _        | _            | —     | _     | _          |             |    | -        |                      | -            | _        | -     | - 1      |
|          |          | . 28 | i —    | _    | _      | _;       | —            | _     | —     |            | -           | -  | -        | -                    |              | -        | -     |          |
| •        | •        | . 29 | -      | -    | 15     | 10       | 75           | 10    | 30    | ¦ —        | -           |    | -        | -                    | 100          | 15       | 20    |          |
| •        | •        | . 30 | -      |      | -      | -        | . —          |       | -     |            | —           | -  |          |                      |              |          | -     |          |
| •        | ·        | , 31 |        | -    | -      |          | -            |       | · —   |            | <del></del> | -  | -        |                      | -            |          | -     |          |
| •        | ·        | . 32 |        |      | . –    | Đ        |              | ¦     | !     | —<br>  384 | ; —         | i  | I —      | i —                  | . —          | I —.     |       | 1        |
| · ·      | •        | • •  |        |      |        |          |              |       |       |            |             |    |          |                      |              |          |       |          |

| _            |       |        |          |       |          |       | <u> </u>   |       | _     |       |              |          |       | <u> </u>            |          |
|--------------|-------|--------|----------|-------|----------|-------|------------|-------|-------|-------|--------------|----------|-------|---------------------|----------|
|              | 0     | tte    | rö       | В     |          |       | Ηv         | a l ö |       | M ö   | rhu          | ılt I    | I     |                     |          |
|              |       | p. 2   | 271      |       |          |       | p          | 289   |       |       | p. :         | 290      |       |                     |          |
| c. 8         | 3.8   | c      | 1.2      | e. i  | 5.2      | c.    | 3          | c.    | 5     | c. 5  | 3.3          | ° C. (   | 4     | •••                 | • •      |
| 1-2          | 2 <   | 1-2    | 2 <      | 1-2   | 2 <      | 1-2   | $2 \leq  $ | 1-2   | 2<    | 1 - 2 | $2 \leq  $   | 1-2      | 2 < 1 | · · ·               |          |
|              |       |        |          | Ī     |          |       |            | 1     |       |       | 10           |          |       |                     |          |
|              |       |        |          | 100   |          |       |            | 1 150 | 100   |       | 10           | _        |       | 1                   | • •      |
| 180          | 105   | 200    | 20<br>50 | 220   | 20<br>10 | 250   | 500        | 1 100 | . 100 | 20    |              |          | 20    | 2                   | • •      |
| 500          | 95    | 500    | 50       | 000   | 10       |       |            |       |       |       |              | т<br>—   |       | 4                   | •••      |
|              |       | 120    | 20       | 150   | 30       |       | 20         | 50    | 10    | _     | 5            | _        |       | 5.                  | •••      |
| _            |       |        | _        |       | _        | -     | ·!         | _     | _     |       |              | _        |       | G.                  |          |
|              |       | _      | _        |       | _        |       |            | _     | _     | _     |              | _        |       | 7                   | • •      |
| 1 0 50       |       | 390    | _        | 750   | -        | 2000  | _          | 1850  |       | 60    |              | 440      |       | 8                   | •••      |
| 90           |       |        | _        | 90    | _        | 200   |            | 150   | _     |       |              | 120      |       | 9                   | • • •    |
| 5 100        | _     | 1 020  | _        | 4500  | -        | 3000  |            | 4 000 | —     | 60    | —            | 920      |       | 10                  | •••      |
|              | 15    | —      | 45       |       | 60       | _     | ¦          | -     | _     |       | _            | —        | • 10  | 11                  |          |
| _            | _     | —      | —        | -     | -        | —     |            |       | _     |       |              | —        |       | 12                  | • •      |
|              |       | —      | _        |       | -        | _     |            |       |       | _     |              |          |       | 13.                 | •••      |
|              | _     |        | _        | -     | _        | —     |            |       | —     | -     | -            | —        |       | 14.                 | • • •    |
| _            |       |        | 10       | —     | 10       | —     |            | 150   |       | -     | _            |          |       | 15.                 |          |
| 90           | 10    | 60     | _        | 30    | 10       |       | 10         |       | _     | _     | . +          | _        | 70    | 16                  | • • •    |
| -            | 6<br> | -      | 5        | -     | 20       |       |            | -     |       | -     |              | -        | 10    | 10                  | • • •    |
|              |       | 120    |          | 970   | 100      | _     |            | 50    | 10    |       | -            | 190      |       | 10.                 | •••      |
| 00<br>60     |       | 120    | 40       | 210   | 100      |       |            |       |       |       | -<br>-       |          |       | 20 .                |          |
| <u>c 000</u> | 920   | 9 1 60 | 100      | c 220 | 960      | 8 200 | 110        | 7.450 | 190   | 150   | 15           | 1 600    | 190   |                     |          |
| 0 500        | 200   | 2 100  | 150      | 0.000 | 200      | 0.200 | -110       | 1 400 | 100   | 100   | 10           | 1000     | 1~0   |                     |          |
|              | +     |        |          |       |          |       |            |       |       |       |              | <u> </u> |       | 21.                 | <u> </u> |
|              |       |        |          |       |          |       |            |       |       |       |              |          |       | 22                  | •••      |
| _            |       |        | _        | _     |          | 1     |            |       |       | r –   | _            | _        |       | 23                  |          |
|              | 18    | `      | 10       | _     | _        | +     |            | +     | 70    | ί –   | 30           |          | 20    | 24 .                |          |
|              |       |        | 13       | -     | õ        | —     | 5          | 25    | 10    | -     | <del>.</del> | —        |       | 25                  |          |
|              | +     | —      |          | _     | _        | —     |            | —     | -     | -     | —            | _        |       | 26.                 |          |
| _            |       | _      |          |       | -        | —     |            |       | -     | —     | _            | —        |       | 27.                 |          |
| _            |       | -      | -        |       | -        |       |            | —     |       | —     | -            |          |       | 28.                 | •••      |
| 60           | 33    | -      |          | -     | · —      | i     | -          | —     | -     | i —   | —            |          |       | 29.                 | •••      |
|              |       | -      |          | '     | -        |       |            | -     | -     | -     | -            |          | 5     | 30                  | •••      |
|              | '     |        | -        |       | -        | -     |            |       |       | -     |              | -        |       | 31<br>25            | •••      |
| -            |       | _      | I —      | -     |          | 25    | i —i       | 200   | i 19  |       | I —          |          |       | 1 <sup>52</sup> • • | •••      |

glacial transgression - 357

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

ŧ

371

. . . . .

•

# Shell-beds from the post-glacial transgression 358

| <u></u>                         |       |               |          |                                               |                                              |                     |                                              |         | 358                                          |                   |                  |                  |                                               |                |          |            |               | _               |
|---------------------------------|-------|---------------|----------|-----------------------------------------------|----------------------------------------------|---------------------|----------------------------------------------|---------|----------------------------------------------|-------------------|------------------|------------------|-----------------------------------------------|----------------|----------|------------|---------------|-----------------|
|                                 | Röss  | sö-L          | ångö     | A                                             | Röss                                         | sö-La               | ângö                                         | С       | Tors<br>röc                                  | se-               | Sm               | ittı             | nyre                                          | n              | Fjäl     | la         | N. H          | olt             |
|                                 |       | p. 2          | 49       |                                               |                                              | p. 2                |                                              |         | p. 2                                         | 51                |                  | p. 2             | .91                                           |                | p. 28    | <u>~</u>   | p. 23         | 53<br>—         |
| ••••                            | 7     |               | 7·       | 9.                                            | 7                                            |                     |                                              | 3       | cc. (                                        | ).5               | 30%              | ;<br>            | <u> </u>                                      | )              | 31       |            | c. 31         | :*5             |
|                                 | 1-2   | 2<            | 1-2      | 2 <                                           | 1-2                                          | 2<                  | 12                                           | 2<      | 12                                           | 2 <               | 1-2              | 2<               | 1-2                                           | 2 <            | 1 - 2    | 2<         | 1-2           | 2⊲              |
| · 1<br>· 2<br>· 3<br>· 4<br>· 5 |       | 45<br>40<br>— |          | 40<br>15<br>                                  | 225<br>25+<br>                               | •<br>25 +<br><br>10 | 825<br>200<br><br>100                        |         |                                              | <br>100<br>50<br> | <br>60<br>60<br> | <br>30<br>30<br> | <br>90<br>240<br>                             | 60<br>150<br>— |          | +          | 10<br>315<br> | 10<br>120<br>80 |
| 0                               |       | -             |          |                                               | -                                            | -                   | _                                            | _       | · 30                                         | _                 | -                |                  |                                               | 10             | -        | -          | -             |                 |
| 7                               | 175   |               |          | -                                             | - 100                                        | -                   | 100                                          | . –     | 570                                          |                   | 1.950            |                  | 1 410                                         | -              |          | _          | 1 690         | 10              |
| 'č                              | 470   |               | 210      |                                               | 400                                          |                     | 400                                          |         | 510                                          |                   | 1 000            | _                | 1410                                          |                |          |            | 1000          |                 |
| 10                              | 125   |               | 175      |                                               | 225                                          |                     | 200                                          |         | 3 750                                        |                   | 6 900            | _                | 6 4 8 0                                       |                |          | _          | 5 250         | 90              |
| 11                              |       |               |          | ! _                                           |                                              |                     | _                                            | _       | _                                            | 20                | _                | _                | _                                             | _              | _        |            |               | 30              |
| 15                              |       |               |          | _                                             | -                                            | _                   | _                                            |         |                                              |                   |                  |                  | _                                             | _              | _        |            | - 1           |                 |
| 18                              | _     | _             |          | _                                             | -                                            | +                   |                                              |         | _                                            | _                 | _                | —:               | _                                             |                | -        | 6          | - 1           |                 |
| 14                              |       | _             |          | _                                             |                                              | _                   |                                              |         | - 30                                         |                   | _                | —                | -                                             |                | -        | _          | -             |                 |
| 18                              | 25    |               |          | _                                             | +                                            | - ·                 | _                                            | _       | -                                            | 20                |                  | _                |                                               |                |          | -          | 35            | 10              |
| 10                              |       | -             |          | -                                             |                                              | -                   | -                                            | _       | 60                                           | 20                | _                | <u> </u>         | :                                             | 10             | — —      | -          |               | +               |
| i <del>.</del>                  |       | +             |          | -                                             | 75                                           | - 30                | 150                                          | 45      | _                                            | 10                | _                | _                | . —                                           | 10             | —        | -          | -             | 60              |
| 18                              | - 1   | -             |          |                                               | -                                            | -                   | -                                            |         |                                              | —                 | _                |                  | ; —                                           | —              | -        | -          | -             | -               |
| 19                              | 125   | 40            | 75       | 25                                            |                                              | -                   | —                                            |         | 30                                           | ,                 | -                |                  | -                                             |                | -        |            | 280           | ¦ −             |
| 20                              | '∣    |               | <u> </u> | <u>                                      </u> | <u>                                     </u> |                     |                                              | <u></u> | <u>                                     </u> |                   |                  |                  | <u>                                      </u> | <u> </u>       | <u> </u> | <u>  —</u> | 70            | ( <u>-</u>      |
| ••••                            | 1 250 | 125           | 1 100    | 85                                            | 1 000                                        | 120                 | 1 375                                        | 145     | 4 920                                        | 220               | S 370            | 60               | 8 220                                         | 240            | 12       | 6          | 7 745         | 410             |
| 21                              |       | _[            |          |                                               |                                              | _                   | <u>                                     </u> |         | _                                            |                   |                  |                  | _ +                                           |                | —        |            |               |                 |
| 2                               |       | <u></u> ]     |          |                                               |                                              | _                   | 8                                            | +       |                                              |                   |                  | _                |                                               |                |          |            |               |                 |
| 9                               |       | _             |          | _                                             |                                              |                     |                                              | 3       |                                              |                   | _                |                  | _                                             |                | _        | 3          |               |                 |
| 2:                              |       | 5             |          | 3                                             | _                                            | 30                  | ·                                            |         | _                                            | _                 | _                | 5                | _                                             | 15             | _        |            | _             | ŀ               |
| • 2                             | 5     | +             | .+       | +                                             | _                                            | 10                  | I _                                          | +       | _                                            | _                 | [ _              | _                | -                                             | Ŀ.             |          | +          | _             |                 |
| 20                              | ; —   |               | _        | _                                             |                                              | _                   | _                                            | _       |                                              | _                 |                  | _                | —                                             | Í —            |          |            |               | _               |
| 21                              | - 1   | _             |          | _                                             | _                                            | _                   |                                              | _       |                                              |                   | ]                | _                | -                                             |                | _        | 3          | _             |                 |
| 28                              | 3 —   |               |          |                                               |                                              | -                   | - 1                                          | _       |                                              |                   | _                | -                | _                                             |                |          |            | -             | ·               |
| 29                              |       | -             |          |                                               |                                              |                     |                                              | -       | _                                            | _                 | 30               | 25               | 30                                            | 30             |          |            | -             | -  5            |
| 30                              | - 10  | ·_!           |          | ¦ –                                           |                                              | -                   |                                              |         | i –                                          | —                 | —                | _                | -                                             |                | -        |            |               | ¦-              |
| 3                               | l 13  | ¦ _:          | —        |                                               | -                                            | -                   |                                              | -       | -                                            | -                 | l <sup>:</sup> — | -                | . —                                           |                | . —      | ¦ —        | -             | -               |
| 3                               | 2 50  | 13            | 50       | ) - D                                         | 13                                           | 15                  | !                                            | -       | -                                            | —                 | _                | ! —              | -                                             |                | 24       | 12         |               | -               |
| 1                               |       |               |          |                                               |                                              |                     |                                              |         | 386                                          |                   |                  |                  |                                               |                |          |            |               |                 |

1. . . .

shell-beds from the post-glacial transgression maximum

|             |           |       |              |             |            |          | 309 | <u>-</u> |      | -          |                     |       |     | -        |        | • •        | <u> </u> | • •        |
|-------------|-----------|-------|--------------|-------------|------------|----------|-----|----------|------|------------|---------------------|-------|-----|----------|--------|------------|----------|------------|
| Med<br>A    | vik<br>92 | У     | fedv<br>p. : | ik B<br>292 |            |          |     | Lι       | ın   | ne<br>p. 2 | <b>v i</b> 1<br>194 | k I   | I   | <u> </u> |        |            |          |            |
| 1           | <br>6     |       | 9            | c. 3        | 1          | c. 2     | 7.2 | c. 5     | 28.5 | -<br>c. 1  | <u>30 - 1</u>       | c. 3  | 2.5 | c. 1     | 34     |            |          |            |
| e. 2<br>1-2 | 2<        | 1-2   | 2 <          | 1-2         | 2<         | 1-2      | 2<  | 1-2      | 2 <  | 1-2        | 2<                  | 1-2   | 2<  | 1-2      | 2<     |            | •        | •••        |
|             | 5         |       | 10           |             | 19         |          | 5   |          | 5    |            |                     |       |     |          | 15     |            |          |            |
|             | _         | 225   | 175          | 30          | 78         | 300      | 170 | 140      | 70   | 160        | 80                  | 40    | 45  | 120      | 25     | 1.<br>9    | •        | •••        |
| 155         | 50        | 200   | 40           | 150         | <b>6</b> 9 | 100      | 20  | 160      | 35   | 120        | 20                  | 40    | 45  | 280      | <br>15 | - ·<br>3 . | •        | •••        |
| 400         | _         |       |              |             |            | _        |     |          |      |            |                     |       |     |          |        | 4.         |          | •••        |
| 70          |           |       | _            | _           | _          | 60       | 15  | 40       | 20   | 20         | 5                   | 60    | 5   | 20       | _      | 5.         |          |            |
| 105         | 30        | 50    | 60           | 60          | 32         | _        | _   | _        | 10   | 40         | 5                   | 20    | L   | _        | 10     | 6.         |          |            |
|             | _         | —     |              | _           | _          | 20       | _   | 20       | _    | _          | _                   | —     | _   |          | _      | 7.         |          |            |
| 770         | _         | 250   |              | 240         | _          | 380      | _   | 480      |      | 540        | _                   | 440   | _   | 520      | _      | 8.         |          |            |
| 175         |           | 200   |              | 150         |            |          | _   |          | _    | _          | _                   | —     | _   | _        | ·      | 9.         |          |            |
| 4 585       |           | 3125  |              | 1440        | _          | $2\ 100$ | _   | 2900     | _    | 2500       | _                   | 2200  | _   | 480      | _      | 10.        |          |            |
| _           | 20        | —     | —            | _           |            |          | . 5 | 80       | 5    | 40         | 10                  |       | _   |          |        | п.         |          |            |
|             | -         | 50    | -            |             | —          | +        |     | —        | _    |            | _                   | —     | _   | +        | _      | 12.        |          |            |
| -           | -+        |       | _            | —           | -          | -        | 5   | _        |      | 20         | _                   |       |     | 20       | _      | 13.        |          |            |
| -           | _         | _     |              | _           | _          |          | _   | —        | -    | .—         | <u> </u>            | —     | _   |          |        | 14.        | •        |            |
| -           |           | —     | —            |             |            |          |     | _        | _    |            | _                   |       | ·   | _        | _      | 15.        |          |            |
| 105         | +         | —     | 35           | .30         | 30         | +        | 5+  | 40       | 15   | —          | 5+                  | 60    | 20  | 60       | 35     | 16 ;       | •        |            |
| -           | —         | —     | _            |             | 40         | —        |     | —        | —    | —          | _                   | -     | 20  | -        | -      | 17:        | •        | • •        |
| -           | —         |       | —            | · —         | · —        | _        |     |          | 25,  |            | 25                  | —     | _   | -        | _      | 18 :       | •        | • •        |
|             | -         | —     |              | 140         | _          | 440      | 20  | 100      |      | 140        | _                   | S0    |     | —        | —      | 19.        | ٠        | •••        |
|             |           |       |              |             |            |          |     |          | !    |            |                     |       |     |          |        | 20.        | •        | • •        |
| 6 200       | 105       | 4 100 | 320          | 2240        | 261        | 3 400    | 245 | 3 960    | 185  | 3 580      | 150                 | 2 940 | 140 | 1 500    | 100    | • •        | •        | •••        |
|             |           | +     | . —          |             |            | +        |     | +        | +    | +          | +                   | +     | +   |          | +      | 21.        | <u> </u> | <u>· ·</u> |
|             |           |       |              |             |            |          |     |          |      |            |                     |       |     |          | -      | 22.        | ·        | •••        |
| -           |           | _     | 15           | <u> </u>    |            | _        | 45  | _        | 10   | —          | 20                  | 10    | 3   | 30       | 13     | 23.        |          |            |
| -           | -         | —     | 2            |             | _          | —        | _   | —        |      | _          | - 3                 | —     | 10  |          | _      | 24 .       | •        | ••••       |
| -           | —         |       | _            | —           |            |          |     | -        |      |            | _                   | -     | -   |          |        | 25.        | •        |            |
| -           | -         | -     | _            |             |            | -        | _   |          | _    | -          |                     | —     |     | -        |        | 26.        | •        | • •        |
| -           | -         | -     | —            |             | —          | . —      |     |          |      |            | _                   | —     |     |          | —      | 27.        | -        |            |
|             |           | —     | —            | _           | _          |          |     |          | -    | -          |                     | —     |     | —        |        | 28.        | ·        | • •        |
| -           |           | -     |              | _           | -          | · _      |     | _        | _    | _          |                     | —     |     | —        | —      | 29.        | •        | •••        |
| -           | _         |       |              | _           | _          | -        | _   | _        | —    | —          | _                   | _     |     |          | _      | 30.        | •        | •••        |
| -           | _         |       |              |             |            | -        |     | -        |      | -          |                     | —     | _   | —        | —      | 31.        | •        | • •        |
| -           |           |       | '            |             |            |          |     |          | —    |            | 16                  | -     | '   | -        |        | 32.        | •        | •••        |

387

. . . . .

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

.....

[April 1917]

# Shell-beds from the post-glacial $\frac{360}{360}$

|          |       |          |            | R        | ö s   | s                                             | ö        |          | -        |          | Häl  | lan                                           | Hälle          |           |
|----------|-------|----------|------------|----------|-------|-----------------------------------------------|----------|----------|----------|----------|------|-----------------------------------------------|----------------|-----------|
|          |       |          |            |          | p. 2  | 96                                            |          |          |          |          | p. 2 | 97                                            | p. 2           | -<br>98   |
|          | c.    | 21       | c. 2       | 1.7      | c. 2  | 2.2                                           | c. 2     | 3.3      | c. 23    | 3.6      | c. 8 | 6.2                                           | c. {           | 39        |
|          | 1-2   | 2 <      | 1-2        | 2 <      | 1-2   | 2 < 1                                         | 1-2      | 2 <      | 1-2      | 2<       | 1-2  | 2 <                                           | 1:             | 2<        |
|          |       |          | <br>       |          |       |                                               |          |          |          |          |      |                                               |                |           |
| 1        |       |          | -          | _        | —     |                                               | -        |          |          | 5        | —    | _                                             |                | -         |
| 2        | 250   | 55       | 150        | 30       | 100   | 35                                            | 125      | 35       | 625      | 145      | 50   | 7                                             | 50             | 1         |
| 3        | 275   | 15       | 300        | 10       | 75    | 30                                            | 150      | 35       | 625      | 60       | 100  | +                                             | 250            | 25        |
| 4        |       |          |            | -        | -     |                                               | -        |          |          |          | -    | _                                             | -              | -         |
| 5        | 50    | ð        | 75         | 10       | 50    |                                               | 50       |          | 50<br>95 | 10       | 50   |                                               |                | -         |
| 6        | -     |          | $ \cdot -$ |          | -     | _                                             | -        | _        | 20       |          | _    |                                               | 00<br>950      | $ ^{-16}$ |
|          | 495   |          | 500        |          | 975   |                                               | 500      |          | 900      |          | 500  |                                               | - 500<br>- 950 | -         |
| o        | - 440 |          | 25         |          | 75    | _                                             | 125      |          | 125      |          | 200  | _                                             | ~50            |           |
| 0        | 2 500 | _        | 4 125      | _        | 1 750 |                                               | 3 500    | _        | 8 2 5 0  | !        | 1750 |                                               | 1250           |           |
| 11       | -     |          |            | _        | _     | _                                             | _        | _        | 25       | 5        |      | _                                             | 50             | 1.7       |
| 12       | _     | _        | _          |          | +     |                                               | _        | _        | +        | -        | ·    | _                                             |                | -         |
| 13       | -     | _        |            |          | -     | _                                             |          | -        | -        | _        | _    | -                                             | -              | _         |
| 14       | _     |          |            | _        | -     | _                                             |          |          |          |          |      | -                                             |                |           |
| 15       |       | -        |            | -        | —     | _                                             | . –      | -        | 1. —     | ] _ —    | -    | -                                             | ] —            | -         |
| 16       | 25    | 5        |            |          |       | +                                             |          | -        | i —      | 15       |      |                                               |                | ;         |
| 17       | -     | _        | —          | -        |       |                                               |          | -        |          | 15       |      | +                                             | ] —            |           |
| 18       |       | 5        | -          | 5        |       | -                                             |          | -        | -        |          | ]    | -                                             | -              | -         |
| 19       | 50    | -        | -          | -        | 0ē    | i —                                           | +        | +        | 20       | -        | -    |                                               | 00             | 1 1       |
| 20       |       |          | <u> </u>   | <u> </u> |       |                                               | <u> </u> |          | <u> </u> |          |      | <u> </u>                                      |                | <u> </u>  |
| • • • •  | 3 600 | 85       | 5175       | - DO     | 2379  | 6a<br>                                        | 4 4:00   | 1 70     | 11 020   | 240      | 2600 |                                               | 2 500          | 1 '       |
| 21       | +     | +        | +          | +        | +     | +                                             | <u>+</u> | +        | +        | +        | +    | <u>                                      </u> | +              | <u> </u>  |
| 22       |       | <u> </u> | <u> </u>   |          |       | <u>                                      </u> |          | <u> </u> |          | <u> </u> |      |                                               |                |           |
| 23       | 13    | 20       | 75         | 20       | 100   | 25                                            | _        | 5        | ¦        | 5        |      | ·                                             |                | -         |
| 24       | - 1   | 3        | -          |          |       | 3                                             | _        | _        | - 1      | 3        |      | _                                             | -              |           |
| 25       |       |          |            |          | -     | -                                             |          | -        | i —      | -        |      |                                               | -              | -         |
| 26       |       |          |            | -        |       |                                               | -        | -        | -        | -        |      | -                                             |                | -         |
| 27       | -     |          |            | -        |       |                                               | -        |          | —        | -        |      | -                                             | -              | -         |
| 28       |       |          |            | -        |       | -                                             |          | -        | i —      | -        |      | -                                             |                | - · -     |
| 29       | 25    | 1 -      | 25         | 20       | +     | 10                                            | 125      | 13       | 1 —      | 3        | 20   |                                               | -              | 1 -       |
| 30       | -     |          | - 1        | -        |       |                                               | -        | -        |          | -        |      |                                               |                | ] [       |
| 31<br>90 |       |          |            |          | i     |                                               |          |          | ↓ +<br>_ |          |      | ] _                                           |                |           |
| 32       | ı —   | 1        | il 🗌       | 1 Đ      |       |                                               | <b>1</b> |          | u —      | · -      | i –  | ·                                             | 1              | •         |

. . . .

-

| transgression | maximum |
|---------------|---------|
|---------------|---------|

|       |             |                                              |        |       | 80  | 51          |          |            | •    |              |             | <u> </u> | <u> </u>     |
|-------|-------------|----------------------------------------------|--------|-------|-----|-------------|----------|------------|------|--------------|-------------|----------|--------------|
|       | Sta<br>p. 8 | ıre<br>602                                   |        |       | S a | ndb<br>p. 3 | og<br>03 | e n        |      | Efve<br>p. 3 | enås<br>804 |          |              |
| с.    | 31          | c.                                           | 32     | c.    | 34  | c.          | 35       | с.         | 36   | 28           | •5          | ·        |              |
| 1-2   | 2 <         | 1-2                                          | 2 <    | 1-2   | 2<  | 1-2         | 2<       | 12         | 2 <  | 1-2          | 2<          | •••      | •••          |
|       | 5           |                                              |        |       | 60  |             |          |            | _    |              |             | 1        | •••          |
|       | _           | —                                            | 20     | 120   | 260 | 40          | 40       | 200        |      | -            | 10          | 2        | • •          |
| +     | +           | +                                            | 10     | Z40   | 160 | 240         | 80       | 40         | 40   | +            | -+-         | 3        | • •          |
|       |             |                                              |        |       |     | 80          |          | 120        | _    | , _          |             | ±        | • •          |
| _     | 10          |                                              | 10     |       | 100 |             |          | 1~0        | _    |              | _           | 6.       | •••          |
|       |             |                                              |        |       |     | _           | _        | _          | _    |              | 105         | 7.       | · · ·        |
| 275   | _           | 30                                           |        | 280   | _   | 80          |          | <b>S00</b> | _    | ·            |             | 8        |              |
| 150   |             | 90                                           | ·<br>— |       | _   | —           |          | 120        | _    | -            | 70          | 9        |              |
| 1 875 | _           | 900                                          |        | 1 480 |     | 4 200       |          | 5 000      |      |              | —           | 10       |              |
| 200   | 135         | 150                                          |        |       |     | 40          | 20       | —          |      | 35           |             | 11.      | . <u>.</u> . |
|       |             |                                              |        |       | —   | . —         |          | 40         |      |              |             | 12       | • • •        |
|       |             |                                              |        |       |     | · —         |          | —          | ~    |              | -           | 13       | •••          |
| 25    |             |                                              | -      |       |     |             | —        | 40         | —    | <u> </u>     |             | 14.      | •••          |
| -     |             |                                              | —      | —     | —   |             | _        |            | . —  |              | _           | 15       | • • •        |
| -     | —           | -                                            | —      | +     | 40  | +           | +        | 40         | 20   | _            | -           | 16.      |              |
| 25    | 115         |                                              | 10     | —     | —   |             | —        |            |      | 70           | 15          | 17       | •••          |
| _     |             |                                              |        |       |     | · -         | —        |            |      |              | -           | 18.      | •••          |
|       |             | 30                                           | —      | . 50  | +   | 160         |          | 40         | - 40 | _            |             | 19       | · • •        |
|       |             | <u> </u>                                     |        |       |     | <u> </u>    |          |            | 100  | 107          | 005         | 20       |              |
| 2 550 | 265         | 1 231                                        | ə0     | 2 200 | 620 | 4 840       | 140      | 6440       | 100  | 105          | 205         |          |              |
|       |             | <u>                                     </u> |        |       |     | <u> </u>    |          |            |      | —            | +           | 21.      | <u>· · ·</u> |
|       |             |                                              |        |       |     |             |          |            |      |              | <u> </u>    | 22       |              |
| _     |             |                                              | _      | _     |     |             |          |            |      |              | -           | 23 .     |              |
|       |             |                                              |        | _     | _   | _           | _        | —          | 20   |              | -           | 24 . :   |              |
|       |             |                                              |        | _     |     | - 1         | -        |            |      |              | -           | 25       |              |
|       |             | —                                            | -      |       | _   | -           |          | - 1        | -    |              | -           | 26.      |              |
| ·     |             |                                              | -      |       | -   |             |          | -          | -    |              | -           | 27.      | •••          |
|       | -           |                                              | -      | -     | -   |             | -        |            |      |              |             | 28.      | <b>.</b>     |
|       | -           |                                              |        |       | _   |             |          | —          | -    |              | -<br>i –    | 29 .     | •••          |
| -     | -           |                                              | -      |       | -   | } —<br>⊫    |          |            | —    | -            |             | 30.      | • • •        |
|       | ! —         |                                              | -      | -     | -   | 1           |          |            | -    | -            |             | 31.      | •••          |
|       | -           | l. —                                         |        | -     | . – | li          | 1 —      | . —        |      | 1 –          |             | 32.      | •••          |

389

#### 861

26-170108. G. F. F. 1917.

#### ERNST ANTEVS.

[April 1917

# Shell-beds from the sero-

|                       |                  |                                               |                                               |          |       |     |                |            | ·~.       |      |          |            |          |      |          | -         |
|-----------------------|------------------|-----------------------------------------------|-----------------------------------------------|----------|-------|-----|----------------|------------|-----------|------|----------|------------|----------|------|----------|-----------|
|                       | Kila             | rna                                           |                                               | Lu       | n d   |     | Holkee<br>kile | lals-<br>n |           |      | Sk       | ä 1 1      | ler      | öd   |          |           |
|                       | p. 3             | 06                                            |                                               | р.       | 315   |     | р. З           | 16         |           |      |          | р.         | 317      |      |          |           |
|                       | c. 2             | 2                                             | c. 2                                          | 5.1      | c. 2  | 5.0 | 25.            | 9          | c. 2      | 1.6  | c. 2     | 2.0        | c. 2     | 3.2  | c. 2     | 3.8       |
|                       | 1-2              | 2 <                                           | 1-2                                           | 2 <      | 1-2   | 2 < | 1-2            | 2 <        | 1-2       | 2<   | 1-2      | 2 <        | 1-2      | 2 <  | 1-2      | $\approx$ |
|                       | Ì                |                                               |                                               |          |       |     |                |            |           |      |          |            |          |      |          |           |
| ••••                  | u                | -                                             | —                                             | —        | -     |     |                | 10         | —         | -    |          | _          | -        |      |          |           |
| :                     | 2 225            | 180                                           | 250                                           | 180      | 350   | 170 | 240            | 130        |           | 30   | 120      | 60         | 160      | 30   | 80       | 40        |
|                       | 3 125            | 120                                           | 150                                           | 80       | 350   | 90  | 150            | 70         | 60        | . 10 | 280      | 20         | 50       | 20   | 40       | .20       |
|                       | 4 —              | -                                             |                                               |          | -     | -   |                |            | -         |      |          |            | -        | 10   | -        | -         |
|                       | 5                | 40                                            | 100                                           | 20       | 250   | 10  | 30             | 30         |           | 10   | 00       |            |          | 10   | _        | - 50      |
| '                     |                  | -                                             |                                               | _        | -     |     |                | -          |           |      |          | _          | · _      |      | _        | -         |
|                       |                  | 90                                            | 1 000                                         |          | 2 950 |     | -270           |            | -<br>• 10 |      | 1 720    |            | 3 200    |      | 280      |           |
| • • • •               |                  | <u>~</u>                                      | 1000                                          |          | ~ ~00 |     |                |            |           |      | 50       | _          |          |      |          |           |
|                       | 2 500            |                                               | 1 000                                         |          | 5 000 | _   | 1 050          |            | 660       |      | 6 200    | _          | 12 000   | 10   | 2 400    |           |
| 1                     | 1                | _                                             |                                               | 40       | 50    | 10  |                | 40         | _         | _    | 160      | <b>S</b> 0 | 520      | - 30 | -        | 160       |
| 1                     | 2 —              |                                               | _                                             | _        |       |     | _              | _          | _         | _    | -        | _          |          | -    | _        | -         |
| 1                     | 8                | -                                             |                                               | +        | —     | -   | _              | —          | —         |      | -        |            | -        | _    |          | _         |
| 1                     | 4 25             | -                                             | 50                                            | ¦ —      |       |     |                |            | —         | -    |          | -          | S0       | —    | -        | -         |
| 1                     | 5 —              | 20                                            | -                                             | 20       | 100   | -   | —              | 20         | —         | -    |          | -          | i —      | . —  | _        |           |
| 1                     | 6 25             | -                                             |                                               | +        | -     | -   | -              | 10         |           | _    | 40       | 10         |          |      | 80       |           |
| 1                     | 7 -              | +                                             |                                               | +        |       | -   | —              | 80         |           |      | -        | +          |          | -    | -        | 10        |
| 1                     | 8                |                                               |                                               | -        | -     | -   |                | -          | -         | _    |          |            |          | -    | -        | -         |
| 1                     | 9 100            | 40                                            | 250                                           | 20       | 150   |     | 150            | -          | - 30      | j j  | 120      | 30         | i 160    | 10   | 160      | 100       |
| $\cdot \cdot \cdot 2$ | °]               | <u>i —</u>                                    | <u> </u>                                      | <u> </u> |       |     |                | -          |           |      |          |            |          |      |          |           |
| ••••                  | 3 700            | 420                                           | 2 800                                         | 360      | 8 500 | 280 | 1 890          | 390        | 960       | 60   | 8 800    | 220        | 16 200   | 110  | 3 040    | 360       |
| 2                     | <u>ı –</u>       | <u>                                      </u> | <u>                                      </u> |          | +     | +   |                |            |           |      | <u> </u> | +          | <u> </u> | _    | <u> </u> |           |
| 2                     | 2                |                                               |                                               |          |       |     |                |            |           |      |          | -          |          |      |          |           |
| 2                     | 3 —              | ! _                                           | -                                             | _        |       | _   |                | _          |           |      | _        | _          |          | _    | —        | -         |
| 2                     | 4                | 40                                            | _                                             | 10       | 25    | 20  | 15             | 40         | —         | _    |          |            |          | -    | . —      |           |
| ••••••                | 5 —              | _                                             | - 1                                           | -        | -     | +   |                | +          |           | _    |          | _          |          | -    |          | -         |
| 2                     | 6                |                                               | _                                             |          | —     |     | -              | -          | -         |      | -        | -          | —        |      | -        | -         |
| 2                     | <del>7</del>   - |                                               | -                                             | -        |       | -   | -              |            |           | -    | -        | -          |          |      |          | -         |
| 2                     | 8 —              | -                                             | -                                             | -        | -     |     |                | -          | -         |      |          | -          | <u> </u> | -    |          | 1         |
| 2                     | 9 -              | -                                             |                                               | -        | - 1   |     | i –            | -          | 30        |      | 50       | -          | 20       | · —  |          | 17        |
| 3                     | 0 —              |                                               |                                               | -        | -     | -   | -              | -          | -         | —    | -        |            |          | -    |          |           |
| 3                     | 1 -              |                                               |                                               |          | -     | -   |                |            | -         | -    |          | -          | —        | -    | . —      |           |
| 3                     | 2 <b> </b> -     | ·                                             | I —                                           | ı —      | 1 25  | -   | ı —            |            | I –       |      | II —     | 1 —        | i:       | 1 -  | ü —      | 1         |

· · · · · ·

363 Lejon-Syd-Präst-Gran-Torseröd källan koster dalen ängen p. 307 p. 320 p. 322 p. 323 p. 318 22 cc. 1.5 cc. 3.5 c. 15 cc. 5.5 c. 14 21 2 < |1 - 2|2 <1 - 22 <-2 1 - 22 <1 - 2|2 <1-2 | 2 <2 <1. 1 - 21. ----80 20180 60 180 360 20560480 160 30 2060 \_  $\mathbf{2}$ 280 95 60 70 150 10 330 24060 80 120 24040 40 3. \_ 4 240 80 10 10 60 2080 120 ----------- $\mathbf{5}$ 20---6 \_\_\_\_ \_ \_\_\_\_ 120 150 --------7 ----800 780 \_  $1\,050$ 1 800 ----120 560 $1\ 200$ **...**. ----8 120 330 120 160 9 -------\_\_\_\_ 1 000 3 600 6 900 3 4 4 0 11 580 1 640 960 \_ -----10 \_ 10 40 15040 5010 ----2011. \_ 30 -12 ---10 ----13. -\_ 90 ----14. 40 40 5 30 15. -----120 20 180150 20 5 16. \_ -----\_ \_\_\_\_ \_ 120 204090 50+ 17 -------------+ 18 --------160 80 90 150 \_ 24040 19 20. -4 890 300 40 14 970  $5\,520$  $2\,480$ 4208 760 180  $2\,480$ 2640260 . 210 135 .\_\_i| 21. + + ++? ------------------------. . ----\_ \_ 22 . . \_\_\_\_ ------------ $\mathbf{5}$ 5 23. ----+ 20201513 \_\_\_ 24 . ------ō 3 10 25 . \_ ÷ + ÷ ----\_ \_\_\_\_\_ 26. ------------\_\_\_ -------------\_\_\_\_ 27 \_\_\_\_ 28. ----\_ --------29. --------------30. \_ -------------------------31 - 32 . .

#### post-glacial regression

377

391

.

[April 1917]

#### Shell-beds from the sero-364

| <u> </u> | •••  |           |     |            |     |           |            | .,,,       | 7   |        |     |       |          |            | _   |
|----------|------|-----------|-----|------------|-----|-----------|------------|------------|-----|--------|-----|-------|----------|------------|-----|
| -        |      |           |     |            | Тс  | o f t     | t e        | r n        | a   | А      |     |       |          | Tofte<br>C | rna |
|          |      |           |     |            |     |           | р.         | 308        |     |        |     |       |          | р. З       | 08  |
|          |      | 2         | ;   | 3          | 6   | 4         |            | Ē          |     | 6      |     | 7     | ,        | c. 7       | .5  |
|          |      | 1-2       | 2 < | 1-2        | 2 < | 1-2       | 2 <        | 1-2        | 2 < | 1-2    | 2 < | 1-2   | 2<       | 1-2        | 2 < |
| -        |      |           |     |            |     |           |            |            |     |        |     |       |          |            | _   |
|          | . 1  | -         |     | _          |     | -         |            | -          | —   |        | -   | —     | —        | -          | -   |
| •        | . 2  | 2 625     | 440 | 2 600      | 340 | 1 675     | 195        | 1 075      | 205 | 375    | 75  | 225   | 70       | 40         | 140 |
| •        | . 3  | 1 400     | 35  | 1 375      | 25  | 675       | 20         | 800        | 65  | 725    | 55  | 425   | 40       | 40         | 30  |
| •        | . 4  |           | -   | —          | -   |           | -          |            |     |        |     |       |          |            | 10  |
| •        | . 5  | 500       | 20  | 75         | i — | 75        | —          | 25         | 10  | 125    | 25  | 475   | 5        | -          | 10  |
| •        | . 6  | -         | -   | -          | -   |           | <br>       | -          |     | -      |     | —     | -        |            |     |
| •        | . 7  | -         |     | -          | —   | _         | -          |            |     | -      |     | _     |          | —          | -   |
| ·        | . 8  | 2 750     |     | 2 000      |     | 1 875     | 'ــــ<br>ا | 2 700      |     | 1 425  |     | 2 125 | -        | 200        | 1   |
| •        | . 9  | -         |     | 125        | ·   | 150       | -          | 225        | -   | 525    |     | 275   | -        |            | -   |
| •        | . 10 | c. 87 500 |     | 'c. 56 250 |     | e. 57 500 |            | 23 750     |     | 13 750 |     | 5 625 | _        | 2 000      | -   |
| •        | . 11 | -         |     | -          | —   | —         |            |            |     |        | 25  | _     | 10       | _          | 1   |
| •        | . 12 | -         |     | . –        |     |           | -          | 15         | -   | 100    |     | 25    | . —      | . —        | -   |
| •        | . 13 | -         | _   | -          | -   | -         | -j         | -          | -   |        | -i  | - 20  | 0        | -          | +   |
| •        | . 14 | —<br>~    |     | ·          |     | -         |            |            | —   |        |     |       |          |            | ~   |
| •        | . 15 | 20        | ) D | 10         | 0   | 20        | 6          | 00         |     |        |     | 100   | _        |            | 10  |
| •        | . 16 | -         |     | +          | +   | +         |            | —          | +   | 00     |     | 100   | · +      | _          | -   |
| •        | . 17 | -         | 100 | -          |     | -         |            |            | _   | _      |     | _     | _        | _          | -   |
| •        | . 18 | 1 750     | 100 | 0.05       | 60  | 450       |            |            |     |        | 0   |       |          |            | 10  |
| •        | . 19 | 1 750     |     | 929        | -   | 400       | +          | 420        | 9   | 200    |     | 200   | 20       | 40         | -   |
| :        | . 20 |           |     | 1 00 107   |     |           |            |            |     | 17.025 |     | 0.550 |          | 0.000      |     |
| •        | • •  | 96 550    | 600 | 63 420     | 430 | 62 425    | 220        | 29 065     | 280 | 17 525 | 190 | 9 550 | 155      | 2 320      | 210 |
| <u>.</u> | . 21 | +         | +   | +          | +   |           | +          | +          | +   | +      | +   |       | <u> </u> |            |     |
| •        | . 22 | 8         |     |            |     |           |            |            |     |        |     |       |          |            |     |
|          | . 23 | 50        | 155 | 13         | 80  | 25        | 35         | 13         | 35  |        | 3   | -     | 5        | —          |     |
|          | . 24 | -         | 10  |            | +   | -         | 3          | —          | —   |        | 13  |       | —        | _          | 120 |
|          | . 25 | -         | _   | —          |     | —         | —          | _          | —   | —      | +   | —     | —        |            | 15  |
|          | . 26 |           |     |            | +   | -         | -          |            | -   | —      | _   | _     |          | _          |     |
|          | . 27 |           | 3   | —          | +   |           |            |            |     |        | —   | —     |          | -          | -   |
|          | . 28 | - 1       |     |            |     | —         |            |            | -   | -      | _   | -     | -        |            | -   |
| •        | . 29 | - 1       | _   | - 1        | _   | · _       | _          | . <u>.</u> | +?  | i      | —   | - 1   |          |            | -   |
|          | . 30 | -         | -   | _          | -   |           |            | -          | _   | —      | —   | —     | _        | -          | -   |
|          | . 31 | -         |     |            | -   | —         | —          | -          |     |        | —   | —     | -        | _          | -   |
|          | .32  |           | -   | ·          |     |           | —          | . —        | _   |        | !   |       |          |            | 10  |

### Bd 39. H. 4.]

379

.

. . . .

|    |           |     |       |             |              |     | 36    | 5      |          |         |                |          |     |                   |                     | <u></u>    | <u>.</u> . |
|----|-----------|-----|-------|-------------|--------------|-----|-------|--------|----------|---------|----------------|----------|-----|-------------------|---------------------|------------|------------|
|    |           | N   | öth   | ıol<br>p. 8 | те<br>310    | n.  | A     |        | N ö      | t h     | 0 l n<br>0. 31 | ıen<br>0 | В   | Rös<br>Lång<br>p. | 58ö-<br>5ö A<br>313 |            |            |
| ì  | 0.5       |     | 1.    | 5           | 2.           | 5   | 3.7   |        | 6:0      | 6 l     | 7.1            | 7.       | 6   |                   | 3                   |            |            |
|    | 1_9       | 2<  | 1-2   | 2 <         | 1-2          | 2<  | 1-2   | 2 <    | 1-2      | 2<      | $\frac{1}{2}$  | 1-2      | 2<  | $\frac{1}{1-2}$   | 2<                  |            | •••        |
|    |           |     |       |             |              |     |       |        |          | <u></u> |                |          |     |                   |                     |            |            |
|    |           |     |       | _           | -            |     |       | -      |          |         | _              | _        | _   | -                 |                     | 1.         | • •        |
|    | 720       | 175 | 380   | 145         | 140          | 35  | 120   | 35     | 50       | 40      | 60             | 50       | 70  | - 30              | 20                  | 2.         | •••        |
|    | 180       | 140 | 440   | 65          | 380          | 90  | 220   | 35     | 350      | 40      | 40             | 550      | 120 | 150               | 5+                  | 3.         | •••        |
|    |           |     | _     | _           | _            |     |       |        |          |         |                | _        |     |                   |                     | 4.         | • •        |
|    | -j        | 20  | _     | _           | 40           |     |       | ð      | 100      | 30      | 10             | 50       | 20  |                   | _                   | 5.         | •••        |
|    |           | Ð   | 20    |             | 20           |     | 20    |        | 50       |         | _              | 50       | 10  |                   | õ                   | 6.         | •••        |
|    |           |     | -     |             |              |     |       | _      |          |         | -              |          | _   |                   | —                   | 7.         | • •        |
|    | 160       | -   | 1 320 |             | 1 040        |     | 1 100 |        | 700      |         | -              | 750      |     |                   | -                   | 8.         | • •        |
|    | -         | _   | . 320 |             | 500<br>~ 000 |     | 360   | -      | 100      |         |                | 1 000    |     | 00                | -                   | 9.         | •••        |
|    |           | _   | 1 100 |             | 7 000        | -   | 1 100 |        | 1 200    | 10      | 20             | 1 290    | 20  | 270               | _                   | 10.        | • •        |
|    |           |     | _     | _,          |              |     |       |        | _        |         | _              |          | 10  | -                 | _                   | 11 .<br>10 | •••        |
|    | ;         |     | _     |             | ÷            | -   | +     |        |          |         |                | -        |     |                   |                     | 12.        | • •        |
|    |           |     |       | _           | 20           |     |       |        |          |         |                | _        |     | _                 |                     | 10.        | •••        |
|    |           | 5   | 90    | 5           | 20           | 5   |       |        | 50       | 10      |                |          | _   |                   |                     | 15         | •••        |
|    |           | _   |       | 10          | 40           | 10  | 100   |        | 100      | 10      | 50             |          | 10  |                   |                     | 10.        | •••        |
|    | _         |     | _     |             |              | 20  | ·     | т<br>5 | - 100    | 90      | 80             | _        | 50  |                   | 20                  | 17         |            |
|    |           | 25  |       | 10          | 40           |     |       | 5      |          |         |                |          | _   |                   | -                   | 18.        |            |
|    |           |     | 40    | _           |              |     |       | _      | 100      |         | _              | 100      | _   | 60                | _                   | 19.        |            |
| ł  | _         |     | _     | _           |              |     | _     | _      |          |         |                | _        | _   | _                 | _                   | 20.        |            |
|    | 1.060     | 370 | 3 700 | 235         | 9 020        | 160 | 9 640 | 85     | 2 900    | 230     | 260            | 3 800    | 310 | 570               |                     | •          |            |
|    | 1000      | 0.0 | 0.00  | ~00         | 00-0         | 100 | 5010  | 6      | 2000     | ~00     | 200            | 0.00.9   | 010 |                   | 00                  |            | •••        |
|    | <u>+1</u> |     |       | +           |              | +   |       | +      | <u> </u> |         |                |          |     |                   |                     | 21.        | <u>· ·</u> |
|    |           |     |       |             |              |     |       |        |          |         |                |          |     | !                 |                     | 22.        | • •        |
|    |           | _   | _     | 15          |              | 3   | _     | -      |          |         |                |          | _   | _                 | _                   | 23.        |            |
| ĺ, | 220       | 25? | _     | 3           |              | 3   | _     | 5      |          | 5       | 20             | _        | -   | _                 | -                   | 24 .       | ••••       |
|    | +         | 10  | 20    | +           | 20           | 8   |       | 5      | _        | 5       | +              | —        | +   |                   | +                   | 25.        |            |
|    | _         | -   | _     | _           | _            |     | —     | _      | _        |         | -              |          | _   | -                 | _                   | 26.        | • •        |
|    | -         | _   | _     |             | —            | '   |       |        |          |         | _              | —        |     |                   | -                   | 27.        |            |
|    | !         |     | _     | _           | -            |     | —     |        | -        |         | _              | _        | —   | -                 | —                   | 28.        | • •        |
|    | -         | —   | _     |             |              | ·;  | —     | —      | -        | -1      | —              | -        | —   | -                 | -                   | 29.        | • •        |
|    |           | ·   | _     | _           |              |     | —     | -      | -        |         |                | -        | . — | -                 | —                   | 30.        | • •        |
|    | -         |     |       | -           | —            |     | —     | _      | 50       | ]       |                | -        |     | - 1               | —                   | 31 .       | • •        |
| ł  | _         |     |       | _!          | 10           |     |       |        | —        | ៍       |                | !        |     | 1!                |                     | 32.        |            |

393

#### post-glacial regression

[April 1917]

### Shell-beds from the sero-

| _      |   |              |       |        |       |     | · · · - · - · - · - · - · · · · · · · · |      |          | 000                   |          |          |                                               |            |                |     |           | -             |
|--------|---|--------------|-------|--------|-------|-----|-----------------------------------------|------|----------|-----------------------|----------|----------|-----------------------------------------------|------------|----------------|-----|-----------|---------------|
| :      |   |              | Rä    | issö-I | Jångi | i B |                                         | S v  | ' ä      | 1 1                   | t e      |          | Kje<br>vik                                    | ell-       | Kel            | bal | Bag<br>rö | ge.<br>d      |
| 1      |   |              |       | p. 8   | 313   |     |                                         |      | р. З     | 25                    |          |          | р. 1                                          | 326        | p. 8           | 327 | р. 8      | 328           |
| 1      |   |              | 8     | 3      | 8     | .7  | с.                                      | 1.4  | c. :     | 3.4                   | c.       | 4        | 5.                                            | 3          | <b>c.</b> 1    | 1.2 | 0.        | 2             |
| :<br>; |   |              | 1-2   | 2<     | 1-2   | 2 < | 1-2                                     | 2 <  | 12       | 2<                    | 1-2      | 2 <      | $\frac{1}{1-2}$                               | 2 <        | 1 - 2          | 2 < | 1-2       | 2<            |
| :      | - |              |       |        |       |     |                                         |      |          |                       |          |          |                                               |            |                |     |           | $\rightarrow$ |
| £ .    |   | . 1          |       | _      | —     |     | —                                       |      |          | _                     |          | -        |                                               | 20         |                | _   |           | -             |
|        |   | . 2          | 50    | 10     | 150   | 20  | 210                                     | 10   | 320      | 160                   | 300      | 10       | -40                                           | 60         | 400            | 360 | - 80      | 30            |
|        | • | . 3          | 450   | 70     | 100   | 10  | +                                       | 5    | 160      | 20                    | 90       | 15       | 120                                           | 20         | 200            | 320 | 160       | 60            |
|        | • | . 4          | —     |        | -     |     | -                                       |      | -        | · —                   |          | -        | -                                             | —          |                | 40  | —         | 10            |
|        | • | . 5          | 50    | 10     | 50    |     | 120                                     | —    | 80       | 10                    | 60       | 15       | 40                                            | i —        |                | 80  | 120       | ¦ -           |
| :      | • | . 6          | - 1   |        |       |     |                                         | -    | -        | —                     | -        |          | 40                                            | -          |                | -   | 80        | 10            |
|        | • | . 7          | -     | —      | -     | -   | -                                       |      |          |                       | <u>-</u> |          | -                                             | ! —        | _              | _   | —         | -             |
| ۲      | • | . 8          | 550   |        | 350   | 10  | 660                                     | _    | 1 640    | -                     | 630      | -        | 1 000                                         | , <u> </u> | 1 500          | -   | 240       | i -           |
| ·      | • | . 9          |       | _'     | 50    | —   | 30                                      |      | 160      |                       | 210      | -        | 360                                           |            |                |     |           | -             |
|        | • | . 10         | 1 000 | i —    | 700   | -   | 3 450                                   | -    | 7 000    | i —                   | 3 600    | i —      | 2 480                                         |            | 750            | _   | 40        | -             |
|        | • | . 11         | -     |        | -     | 10  | -                                       | -    | —        | _                     |          |          | -                                             | 30         |                | 20  |           | 10            |
| •      | • | . 12         | -     | -      | -     |     | -                                       | -    | -        | -                     |          |          | -                                             | -          | -              |     |           |               |
| ÷      | • | . 13         | -     |        | -     | -   | -                                       |      | -        |                       |          | -        | -                                             | -          |                |     |           | -             |
|        | • | . 14         | -     |        | -     | _   | -                                       |      | -        | -                     | _        | -        | -                                             | -          |                | -   |           | _             |
|        | • | . 15         |       |        | -     | -   |                                         |      | -        |                       | 60       |          | —<br>10                                       | 90         |                | _   | . —       |               |
|        | • | . 16         | 100   | 10     | -     | 10  |                                         |      | -        | 10                    | 60       | 9<br>л   | 40                                            | 20<br> .   |                |     |           | -             |
|        | • | . 11         | 100   |        |       | 10  |                                         |      |          | 10                    |          |          |                                               |            |                |     |           |               |
|        | • | . 10<br>10   |       |        | 200   |     |                                         |      | 160      | 9 <u>0</u>            | 190      | _        | - 40                                          |            | _              | _   | 80        |               |
|        | • | • 15<br>• 90 |       |        | 200   |     | _                                       |      |          | ~0                    |          | _        |                                               | _          | _              | _   |           | _             |
|        |   | • = •        | 2 950 | 960    | 1 600 | 60  | 1 170                                   | 15   | 9 520    | 220                   | 5 070    | 50       | 4 160                                         | 150        | 2 850          | 820 | 800       | 120           |
|        | • |              | - ~00 | 200    | 1 000 |     | 1                                       |      | -        |                       |          |          |                                               |            |                | _   |           |               |
|        | • | . 21         |       |        | ·     |     | <u>+</u><br>                            |      | · •      |                       | <br>     | <u> </u> | <u>                                      </u> |            | 1              |     |           |               |
|        | • | . 22         |       |        |       |     |                                         |      |          |                       |          |          |                                               |            |                |     |           |               |
|        | • | . 23         |       |        | —     | -   | -                                       |      | i —      |                       |          | _        |                                               | -          | \ <sub>+</sub> | 80  | ( —       | -             |
|        | • | . 24         | —     |        | _     | -   | -                                       |      | -        | —                     |          | 10       | -                                             | 60         | IJ .           |     | 1 -       | ¦             |
|        | • | . 25         | - 1   | อี     | +     | +   |                                         | -    | <b>·</b> | 5                     |          | +        | -                                             | 10         | +              | 10  |           | 5             |
|        | • | . 26         | -     |        | -     |     |                                         | —    | -        |                       | -        | -        | -                                             |            | -              |     |           |               |
|        | • | . 27         |       | _      |       |     |                                         | -    | -        | -                     |          | -        | -                                             | -          |                |     | _         | i —           |
|        | • | . 28         |       |        | -     | -   |                                         |      |          |                       |          | -        | -                                             | -          | -              | -   | -         | -             |
|        | • | . 29         |       | _'     | -     |     | 75                                      | 5    | 60       | Ő                     | 10       | ·        |                                               | : —<br>    |                | -   | -         | -             |
|        | • | . 30         |       | _      |       |     | -                                       |      |          |                       |          |          | _                                             |            | 95             | -   |           |               |
|        | • | . 31<br>95   |       |        | . —   |     | _                                       | -    |          |                       | . —      |          |                                               |            | - 40<br>50     | 70  |           | 3             |
|        | • | . 32         |       |        | . —   | _   |                                         | . —i | . —      | 1 <u>- 1</u><br>1 - 1 | . –      |          | I —                                           | , <u> </u> | 1 00           | 10  | j ~0,     | , or          |
|        | • |              |       |        |       |     |                                         |      |          | 003                   |          |          |                                               |            |                |     |           |               |

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

|             | post-glacial regression<br>367 |       |       |          |     |       |            |           |        |             |               |            |            | Rec          | ent           | ;          |     |       |          |                                           |                              |
|-------------|--------------------------------|-------|-------|----------|-----|-------|------------|-----------|--------|-------------|---------------|------------|------------|--------------|---------------|------------|-----|-------|----------|-------------------------------------------|------------------------------|
|             |                                |       |       |          |     |       | 36         | 7         |        | · · · · ·   |               |            |            |              |               |            | •   |       | •        | . Continued from p.                       |                              |
| Mör         | hult                           | N     | lordk | oster    | •   | Nöd   | ldö        | Otte      | erö    | Ka          | r-            | Bra        | tt-        | Gul          | <u>l</u> -    |            |     |       |          |                                           |                              |
| .د  <br>: ر | L<br>129                       |       | р. 1  | 330      |     | n. 3  | 81         | D<br>n. 3 | 15     | nom<br>v. 3 | ien<br>32     | SKa<br>n 3 | tr<br>33   | mar<br>n 3   | en<br>81      |            |     |       |          |                                           |                              |
| <u> </u>    | <u></u>                        |       | - F   | 1 9      |     |       | 0          |           |        |             |               |            | <br>>      | - P. O.      |               |            |     |       |          | Complete Lateration and the second        |                              |
| c.          |                                | 1 0   | 0     | \<br>1 0 | 0 - |       |            |           |        |             |               | 1 0        | <u>}</u>   | 1 0 1        | 0             | ŀ          | • • | •••   | •        | Samples: height in <i>m</i> above the sea |                              |
| 1-2         | ~                              | 1-2   | ~ ~   | 1        | 2<  | 12    | <u>z</u> < | 1-2       | z <    | 12          | $\frac{z}{z}$ | 1-2        | 2<         | 1-2          | $\frac{z}{z}$ | ŀ          | • • | _ • • | •        | . Coarseness of material in mm            |                              |
|             | _                              |       |       |          |     |       |            |           |        |             |               |            |            |              |               |            |     |       |          | Datalla milanta T (b)                     |                              |
|             |                                | 160   | 55    | 250      | 150 |       | 40         |           | 10     | -200        | 45            | 250        | 60         | 9 950        | 70            | <b>]</b> · | •   |       | ر<br>د . | Tatella viligala L. (b)                   | 0                            |
| 120         | +                              | 140   | 35    | 100      | 30  | 200   | 90 ±       | 60        | 10     | 75          | 40            | 200        | 00<br>60   | 2 200<br>995 | 15            | <u>[</u> ` | •   | •••   | · 2      | e Gibbula cinevaria L. (b)                | fr                           |
| 1.00        |                                |       |       |          | _   | ~~~   |            |           | -<br>- |             |               | ~00        |            | ~~0          |               | ľ          | •   | •••   |          | tunida Morr (b)                           |                              |
| 120         | 20                             | _     | ō     | 75       | _   | 40    | 10         |           |        | 75          | 30            | 100        | 60         | 150          | _             | Ľ          | •   | •••   | ,<br>,   | 5 Lunatia intermedia Put (1)              |                              |
|             |                                | - 1   |       | _        | _   | _     | 20         |           | _      | 50          | 75            |            | 20         |              | -             | Ľ          |     |       | . 6      | <i>Litorina obtusata</i> L <sub>(b)</sub> | 70                           |
| _           |                                |       |       |          |     | 80    | _          |           |        | 500         | _             |            | _          | _            | _             |            |     |       | 7        | Hudrobia ulrae PENN. (b)                  | unte                         |
| 400         |                                | 520   | -     | 750      |     | 400   |            | 90        |        | 300         |               | 500        | _          | 3 600        | _             | ].         |     |       | 5        | 3 Onoba striata MoxT. (b)                 | uigr                         |
|             | _                              | //-   | _     | ·        | _   |       |            |           | _      |             | _             | 100        | -          | _            | _             |            |     |       | 9        | > aculcus Gould. (b)                      | umi                          |
| 1 000       |                                | 3 200 | _     | 3 875    |     | 1 800 | _          | - 90      | _      | 100         |               | 1 000      | _          | 1 725        | -             | .          |     |       | 10       | Rissoa interrupta AD. (b)                 | al                           |
| -           | 20                             | _     |       |          | 10  | _     |            |           | -      | 25          | 15            | 100        | _          | _            |               |            |     | . · . | 11       | Rissostomia membranacea AD. (1)           | sion                         |
| _           |                                |       |       | —        | _   |       |            |           |        | _           |               |            | _          | _            | _             |            |     |       | 12       | 2 Skenea planorbis FABR. (b)              | rcs                          |
|             |                                |       |       | _        |     | ·     | _          | —         |        | _           | _             |            | _          | _            | _             |            |     |       | 13       | 3 Aporrhais pes pelecani L. (1)           | reg                          |
| _           |                                | 20    |       | : _      | _   |       | _          | _         | _      |             | _             |            | _          |              |               |            |     | •••   | 14       | Parthenia spiralis Moxr. (b)              | cial                         |
|             |                                | 40    |       | 25       |     | _     | 20         |           |        |             | _             | 50         |            | 300          | -             |            |     |       | 15       | 5 Clathurella linearis Mosr. (1)          | isla.                        |
| 40          | _                              | i∸    | +     |          | —   |       |            |           | _      |             | _             |            | <b>S</b> 0 |              |               |            |     |       | 16       | 3 Polytropa lapillus L. (b)               | ini.                         |
|             | 10                             |       | -     |          |     |       | 10         |           | 20     | _           | 15            |            |            |              |               |            | • • |       | 17       | 7 Nassa reticulata L. (1)                 | A                            |
| -           |                                |       |       | ·        | 140 | —     | -          | _         |        |             | _             |            | _          |              | •             |            |     |       | 18       | з » incrassata Ström (b)                  |                              |
| S0          | -                              | 20    | —     | . 100    | 10  | 40    | 50         | ·         | -      | - 75        | -             | 50         | 20         | 675          | õ             |            | :   |       | 19       | ) > sp.                                   |                              |
|             |                                |       |       |          | `   |       |            |           | _      |             |               |            |            |              |               |            | •   |       | 20       | ) Utriculus umbilicatus Mort. (1)         |                              |
| 1 760       | 50                             | 4100  | 95    | 5 175    | 340 | 2600  | 170        | 240       | 30     | 1400        | 195           | 2350       | 300        | 8 925        | 90            | ).         | •   |       |          | Gastropoda: sum                           | fr                           |
| _           | · _                            |       |       | - 1      | +   | _     | _          |           | _      | _           |               |            |            | +            |               |            |     |       | 21       | Amphidetus sp.                            |                              |
|             |                                |       |       | <u> </u> |     |       | _          |           | `      |             |               | ·          | _          |              | _             |            |     |       | 22       | 2 Lophyrus albus L.* (a)                  | prt                          |
|             |                                |       | _     |          |     |       | _          | _         |        |             |               |            |            |              |               |            |     |       |          | 3 Anomia natelliformis I. (1)             |                              |
|             |                                |       | ō     |          | 20  | _     | 10         | ·         |        |             |               |            | 20         | _            | _             |            |     |       | 24       | striata Broccu (l)                        | loni                         |
| I           | +                              |       | 10    | +        | 20  |       | +          | +         | +      | +           | +             | _          | +          |              |               |            | •   |       | 25       | 5 Pecten varius I. (1)                    | ress                         |
| _           | _                              | [ _ ' |       | · -      |     | · ·   |            |           | ·<br>_ |             | _             |            | ·<br>      |              | -             |            |     |       | 26       | septemradiatus Müll. (b)                  | regi<br>ts                   |
|             |                                |       | · · _ |          | _   |       | _          |           | _      |             |               |            | +          | 38           | 15            |            |     |       | 27       | tigrinus Mülle (b)                        | tran                         |
|             |                                | _     |       |          |     |       |            | _         | _      | _           | -             | _          |            | _            | _             |            | •   |       | 28       | 3 Vola maxima L. (1)                      | çlac.<br>Cial<br>mi <i>e</i> |
|             |                                |       |       | _        |     |       |            |           | -      |             |               | _          | _          | 75           |               |            |     |       | 29       | ) Modiolaria discors L. (b)               | glac<br>in g                 |
| _           |                                |       |       | _        | •   | ·     |            |           |        |             | _             |            | ]          |              | 3             |            |     |       | 30       | ) Nucula tumidula MALM (b)                | o-po<br>iost-                |
|             |                                |       | _     | —        | -   |       |            |           |        |             |               | _          | _          |              |               |            |     |       | 31       | Portlandia sp. (cf. tenuis Phil.)         | d p                          |
| _           | . —                            | 10    | 3     | _        | _   | 40    | —          |           |        | 100         | -45           |            | _          | 113          | 40            |            |     |       | 32       | 2 Cardium cf. fasciatum Mont. (b)         | I II                         |
|             |                                |       |       |          |     |       | 39         | 5         | e.     |             |               |            |            |              |               |            |     |       |          | Continued on p.                           |                              |

26†-170108. G. F. F. 1917.

.

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

# Shell-beds from the primo-post-glacial re-368

| ·          |                                                                              |         |           | -     |                      |        |            |                 | Sum-   | Lunne         | .1          |            |                 |
|------------|------------------------------------------------------------------------------|---------|-----------|-------|----------------------|--------|------------|-----------------|--------|---------------|-------------|------------|-----------------|
| 1          |                                                                              | Nyo     | c k l e b | у -   | Мб                   | j r h  | u l        | t I             | minge  | vik I         |             |            |                 |
|            |                                                                              | I       | p. 284    |       |                      | p. 3   | 285        |                 | p. 286 | р. 287        | _           |            |                 |
|            | Samples: height in m above the sea                                           | c. 22·3 | c. 22     | · G   | c. 9                 | с.     | 10         | c. 12           | 10     | c. 17         | <b>c.</b> 5 | 2 с.       | 3               |
| !          | Coarseness of material in $mm$                                               | -2 2<   | <  1-2    | 2 < 1 | l-2 <sup>'</sup>  2< | < 1-2  | 2 < 1      | 1-2 2<          | 1-2 2< | 1-2 2<        |             | 2 <  1 - 2 | $\overline{2<}$ |
| l          | 1 Venus galling L (b)                                                        |         |           |       |                      |        |            | 20 -            |        |               |             |            | ;               |
| pri        | $2 \rightarrow 80$                                                           |         |           |       |                      |        |            |                 |        |               |             |            |                 |
| 5          | 3 Timoclea orata PESS. (b)                                                   | 15 -    | - 25      | 13    | 40                   | 0 60   | 40         | 140 30          | 60     | 75 1          | 5           | - 15       | 8               |
| 201        | 4 Tapes decussatus I. (1)                                                    |         |           | i     |                      |        |            |                 |        | <b>i</b>      |             |            | _               |
| Å          | 5 Lucinonsis undata PENN. (1)                                                |         |           |       | _! .                 |        |            |                 |        | l! -          |             |            |                 |
| uai        | 6 Axinus flexuosus Most. (b)                                                 |         |           | _     | _  .                 |        |            |                 |        |               |             |            | !               |
| Ę.         | $7 \rightarrow Sarsi Pull (b) \dots \dots \dots$                             |         |           |       | _! .                 | _! _   |            |                 |        |               |             |            |                 |
| H-E        | 8 > sp                                                                       |         |           |       |                      |        |            |                 |        | _  -          |             |            | _               |
| 1-01<br>   | 9 Cyamium minutum FABR. (b)                                                  |         |           |       |                      |        |            | 40 -            |        | _! -          |             |            |                 |
| 5:4        | 10 Lasaea rubra Moxt. (1)                                                    |         |           | -     |                      |        |            |                 | 15 -   |               |             |            | -1              |
| 0 tr       | 11 Kellia suborbicularis MoxT. (b)                                           | -   -   |           | _     |                      |        |            |                 |        |               | 5           |            |                 |
| -fs        | 12 Montacuta substriata MONT. (b)                                            |         |           | _     |                      |        |            |                 |        | { _¦ -        |             |            | _               |
| arie       | 13 Tellimya ferruginosa Mont. (b)                                            | -       | -   _     |       |                      | -1     |            |                 |        | -             |             |            |                 |
| sorg       | 14 Mactra elliptica BROWN (b)                                                |         |           |       |                      |        | _          | 40 75           |        |               |             |            | -               |
|            | 15 > subtruncata da Costa (1)                                                |         |           |       |                      | -1     | _          |                 |        |               |             |            |                 |
| 13 Int     | 16 Abra cf. nitida Müll. (b)                                                 | _       |           |       | _  -                 |        |            |                 |        |               |             |            | -               |
| H a        | 17 Tellina pusilla Pun.* (b)                                                 | -   -   | -  -      |       | _  .                 |        |            |                 |        |               | -           |            |                 |
|            | 18 Psammobia vespertina CHEMN. (1)                                           | -   -   | -[ _]     | -     |                      |        |            |                 |        | { - \ -       |             |            |                 |
| Hire       | 19 Thracia papyracea Pola (l)                                                |         |           |       |                      |        | ~          |                 |        |               |             |            | -               |
| 15         | $20 \rightarrow sp. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | _  -    |           | -     | -  -                 | -20    |            | 20 —            |        | ┨_¦-          |             |            |                 |
| <u>f</u>   | 21 Corbula gibba ()                                                          |         |           |       | •                    |        | -          | - 8             |        | -             | - 15        |            | _               |
| Å H        | 22 Antalis entalis L. (b)                                                    | -   -   |           |       |                      | -  -   | -          |                 |        | _  -          |             |            | -               |
| loa<br>3su | 23 Siphonentalis lofotensis M. SARS (b)                                      |         |           |       | !                    |        | ,          |                 |        | <u>  _  -</u> |             |            |                 |
| ress<br>Um | Pelecypoda: sum                                                              | 60 7    | 0 25      | 46    | 40 2                 | 20 100 | 70         | 260 113         | 90 20  | 165 7         | 5 45        | 25 - 45    | 46              |
| Å I        | 24 Nacella pellucida L. (b)                                                  |         |           |       |                      |        | _          |                 |        | _  -          |             |            | 15              |
|            | 25 Emarginula fissura L. (1)                                                 |         |           |       | _   -                |        |            |                 |        | _! -          |             |            | _               |
|            | 26 Capulus hungaricus L. (1)                                                 | 1       | 0         | 10    |                      | _ !    |            |                 | - 10   |               |             |            | _               |
| gra        | 27 Lacuna pallidula DA COSTA (b)                                             | 90 -    | - 50      | 35    | _ :                  | 20 80  | 60         | 100 30          | 90 -   | <b>-</b>      | - 60        |            |                 |
| nts        | 28 Alvania reticulata MONT. (1)                                              |         |           |       |                      |        | _]         |                 |        | -             | -]          |            | _               |
|            | 29 <i>punctura</i> Mont. (1)                                                 |         | - 450     | [     |                      | - 520  | !          | 40 -            | 150 -  | 180 -         | - 30        | 30         | -               |
|            | 30 Rissoa violacea DESM. (1)                                                 | _  -    |           |       |                      |        | _          |                 |        | _  _          |             |            |                 |
|            | 31 > parva da Costa (l)                                                      | 750 -   | - 1 000   |       | 120 -                | - 520  |            | 320 -           | 60 -   | 660 -         |             | 120        | _               |
|            | 32 > inconspicua ALD. (1)                                                    | _  _    | - 50      |       |                      | _ 120  |            | 200 -           |        | 90 -          |             |            | _               |
| pri        | t 33 Turritella terebra L. (1) :                                             |         |           | _     |                      |        | _          |                 |        | _  -          |             |            |                 |
| 1          | 34 Bittium reticulatum DA COSTA (1)                                          |         | - 100     | 25    | _  -                 | _      | _ <u> </u> | 40 <sup>1</sup> |        | 600 42        | 0 30        |            | _               |

Continued on p. . . . . . . . . . . . .

gression and the post-glacial transgression  $$_{369}$$ 

383

. . . .

|         |                 |           | <u> </u> |            |     |            |       | 369          |       |                 |      |       |       |            |        |                   | • • |
|---------|-----------------|-----------|----------|------------|-----|------------|-------|--------------|-------|-----------------|------|-------|-------|------------|--------|-------------------|-----|
| <u></u> | 0               | t t       | ; e      | r          | ö   | A          |       |              |       |                 | Fj   | i     | ) a c | k a        |        |                   |     |
|         | -               |           | p. 2     | 71         |     |            |       |              |       |                 | v    | թ. 2  | 76    |            | Over   | !                 |     |
|         | 4               | с.        | 5        | c.         | 6   | c.         | 7     | с.           | 7.7   | ce.             | 16·3 | cc. 1 | 6.8   | cc. J      | 7.3    |                   |     |
| 1-2     | $\overline{2<}$ | 1-2       | 2<       | 1-2        | 2 < | 12         | 2 <   | 1-2          | 2 <   | 1-2             | 2 <  | 12    | 2 <   | 1-2        | 2 <    |                   |     |
|         |                 |           | 1        | <u></u>    |     |            |       | <u> </u>     |       | <u> </u>        |      |       |       |            |        | <u> </u>          |     |
| -       | ·               |           |          |            | O   |            |       | -            | -     | —               | _    |       | _     |            | _      | 1.                | ••• |
| - 45    | 5               | 20        |          | 30         | 5   |            | _     | _            | 5     | 30              |      | 60    | 8     |            | 15     | 3.                | ••• |
|         |                 | _         |          |            | _   | —          | _     | —            |       | -               |      | _     | _     |            | _      | 4.                |     |
| ·       |                 |           | -        | -          | -   | —          | . —   | —            |       | _               | —    | _     | —     |            | _      | 5.                |     |
| _       |                 |           | -        | -          | . — | -          | —     | -            |       |                 | —    | 20    | _     |            | . —    | 6.                | ••• |
| -       |                 | -         | -        | -          | -   |            | —     |              | —     | '  <br> بر      |      |       | —     | -          |        | 7.                | ••• |
| -       | _               | -         |          |            |     |            |       | _            | _     | • 15            |      |       |       |            |        | 8.                | • • |
|         |                 |           |          |            | _   |            | _     |              | _     | 15              | _    | 60    |       | 75         |        | 10.               | ••• |
|         |                 |           | - 1      |            | _   |            | _     |              |       | _               | _    |       | _     |            | _      | 11.               |     |
|         |                 |           |          |            |     |            |       |              | -     | _               |      | _     | —     |            | -      | 12.               |     |
| _       | _               |           | -        |            |     | —          | —     | —            | —     | -               |      | -     | —     | -          |        | 13.               |     |
|         |                 |           | -        |            | -   | —          |       |              | _     |                 | -    | -     | _     |            | _      | 14.               | • • |
| -       | -i              | _         |          |            |     |            |       |              | 10    | ·               |      |       | _     | _          | _      | 15.               | • : |
|         |                 |           |          |            |     |            |       |              |       |                 |      |       |       |            |        | 17.               |     |
| ·       | _               |           | _        | -          | _   | _          | —     | _            | _     | _               | _    | i _   |       | _          | _      | 18.               |     |
|         | _               | -         |          |            | -   | 25         | _     |              |       | -               |      | 40    | _     | 30         | _      | 19.               |     |
| _       |                 |           |          | -          |     | - 1        |       | -            | -     | _               | -    |       | —     |            | _      | 20.               |     |
|         | _               |           | -        |            |     | —          | -     |              | -     | 45              | 5    | 20    | S0    | 45         | 23     | 21.               | • • |
|         | _               | -         |          | -          | -   | -          | _     |              | -     |                 |      |       | —     | -          |        | 22 .              |     |
| 45      | <br>            | 190       | 105      | 970        | 100 | 275        | 100   | 1<br>  75    | 50    | 105             |      | 200   |       | 195        | <br>53 | 40 .<br>          | • • |
| 10      |                 | 120       |          | ~10        | 100 | ~10        | 100   | 10           |       | 100             |      | ~00   |       | 100        |        |                   | • • |
|         |                 |           |          |            |     |            | _     | · -          |       |                 | 10   |       |       | -          |        | 24 .              | • • |
| _       | _               | _         |          | -          |     | _          | _     |              | _     |                 |      | _     |       |            |        | 26.               |     |
| 30      | 20              | 120       | !        | - 30       | -   | 50         | 40    | 90           | 30    | 30              | 10   | 40    | 30    | - 30       |        | 27 .              |     |
|         |                 | -         |          | -          | -   | _          |       |              | -     | _               | _    | _     | _     |            |        | 28.               |     |
| 30      | <br>            |           |          | 150        | -   | 250        |       | 120          | -     | 60 <sup>'</sup> |      | 160   |       | -          | -      | 29.               | • • |
| 390     |                 | - 10      |          | 200        | -   | =00        | -     | 240          | 40    |                 |      |       | -     |            |        | 30.               | • • |
| 150     |                 | 40<br>190 |          | 600<br>600 |     | 500<br>450 |       | 1 500<br>970 | _     | - 90<br>- 90    |      | 80    |       | - 50<br>80 | _      | 31 .<br>  <br> 39 | ••• |
|         |                 |           |          | - 1        |     | -100       |       |              | _     |                 |      |       | · _   |            | _      | 33.               | ••• |
| -       | _               | _         |          |            | _   | 12 500     | 4 200 | 22 800       | 3 300 | _               |      |       | _     | _          | _      | 34.               |     |

397

.

• •

[April 1917

# Shell-beds from the post-370

| Fjällbacka |       |      |       |     |             |     |             |     |       |      |                  | Löndal   |       |     |       |     |  |
|------------|-------|------|-------|-----|-------------|-----|-------------|-----|-------|------|------------------|----------|-------|-----|-------|-----|--|
| °(         | Over! |      |       | р   | . 276       |     | •           |     |       |      |                  | •        | p. 28 | 88  |       |     |  |
|            | cc.   | 17.8 | cc. 1 | 8.3 | cc. 1       | 9.3 | cc. 1       | 9.8 | cc.   | 20   | ec. 9.5 cc. 11.5 |          |       |     | cc. 1 | 3.2 |  |
|            | 1-2   | 1<   | 1-2   | 2 < | 1-2         | 2<  | 1 <         | 2<  | 1-2   | 2 <  | 1-2              | $^{2}<$  | 1-2   | 2<  | 1-2   | 22  |  |
| . 1        |       | 15   | 15    |     |             | _   | 15          |     | _     | _    |                  |          |       | _   |       |     |  |
| . 2        | _     | _    |       | _   |             | _   |             | _   |       | _    |                  | -,       | _     | _   |       | _   |  |
| . 3        | 330   | 65   | 270   | 5   | 30          | 10  | 30          | _   | —     | 3    | 80               | 23       | 60    | 10  | 80    | 15  |  |
| . 4        | _     | _    |       |     | _           |     | -           | _   | —     | _    |                  |          |       | _   | _     | ~   |  |
| . 5        | _     | _    |       |     | —           |     |             |     |       | -    | <br>             | —        | -     |     | -     | -   |  |
| - 6        | _     | —    | _     |     |             |     |             |     |       | _    |                  |          |       |     |       | -   |  |
| 8          | _     |      | -     |     |             |     |             |     |       | _    |                  |          |       |     |       | _   |  |
| . 9        | 30    | _    | 45    | _   | _           | _   | _           | _   | _     |      |                  |          |       | -   | _     | -   |  |
| . 10       | 120   |      | 15    | _   | _           |     | 15          |     |       | _    |                  |          |       | _   |       | _   |  |
| . 11       | _     | —    |       |     | —           |     | -           |     | —     | —    |                  | _        | —     | _   | -     | -   |  |
| . 12       |       | _    |       | -   | -           | -   |             | -   | —     | —    |                  | _        |       | _   |       | -   |  |
| . 13       |       | —    |       |     |             | -   | -           |     | -     | -    |                  | _        |       |     | -     |     |  |
| . 14       |       |      |       |     |             | 10  |             | 5   | - 15  |      | _                |          | _     |     | _     | _   |  |
| . 15       | _     |      |       |     |             |     | -10         | _   | - 10  | - 10 |                  |          |       |     | -     | _   |  |
| . 17       | _     | _    |       | _   | _           | _   |             | _   |       | _    |                  |          |       | _   | _     |     |  |
| . 18       | ·     | _    | -     | _   | _           | -   | _           | _   | _     | _    | _                |          | -     |     | -     | -   |  |
| . 19       |       |      | 15    | _   |             |     | 90          | 15  | —     | _    |                  | _        | -     |     | —     | -   |  |
| . 20       |       |      |       |     | 30          |     | 15          |     | 15    | —    | 20               | _        |       |     |       |     |  |
| . 21       | 45    | 10   | 45    | 10  | 15          | 10  | 30          | 15  | 15    | 8    | -                |          | —     |     | -     |     |  |
| - 22       |       | —    | _     |     |             |     |             |     |       |      |                  |          |       |     |       | -   |  |
|            | 525   | . 90 | 420   | 35  | 180         | 40  | 270         | 35  | 75    | 26   | 100              | 23       | 160   | 25  | 100   | 15  |  |
| . 24       |       | _    | •     | _   |             |     | _           |     | _     | _    | _                | _        | _     | _   |       | _   |  |
| . 25       |       | _    |       | _   | _           | _   | _           |     | —     | _    |                  | _        |       | _   | _     | -   |  |
| . 26       |       |      | _     | _   | _           |     | i           |     | —     | _    |                  | _        | _     |     |       |     |  |
| . 27       | 60    | 10   | 120   | _   | 90          |     | 30          | -   | —     | -    | ·                |          | 40    | 30  | -40   |     |  |
| . 28       | —     | —    | —     | -   |             | _'  | -           |     | -     | -    | -                |          |       |     | —     |     |  |
| . 29       |       | —    | 60    | —   | 120         |     |             |     | -     |      | 40               | '<br>1.5 | 80    | -   | 190   | -   |  |
| . 30       | 150   |      |       |     | . 50<br>600 | 20  | 00<br>1.650 |     | 180   | 0    | 40               | 10       | 2400  | _   | 720   | _   |  |
| . 31       | 60    |      | 60    |     | 450         |     | 220         |     |       | -    | 160              | ·        | 360   | _   | 80    |     |  |
| . 33       | _     |      | -     | _   | _           | _   | _           | _   | —     |      |                  |          |       |     | _     |     |  |
| . 34       | —     | _    | 30    | 10  | 3 300       | 550 | 2 700       | 375 | 1 650 | 175  | 160              | _        | 7 600 | 720 | 2800  | 405 |  |
|            |       |      |       |     |             |     |             | 398 |       |      |                  |          |       |     |       |     |  |

.

. .

|        |             |             |       |        |       | 371     |                       |       |              |        |     |       |     | <u> </u>  | •   |
|--------|-------------|-------------|-------|--------|-------|---------|-----------------------|-------|--------------|--------|-----|-------|-----|-----------|-----|
|        | 0           | tte         | rö    | в      |       |         | Ηv                    | alö   |              | ·<br>M |     |       |     |           |     |
|        |             | p. 2        | 271   |        |       |         | 289 .                 |       |              |        |     |       |     |           |     |
| c. 1   | <b>3</b> ·8 | с.          | 4.2   | c. 5   | •2    | c.      | 3                     | c.    | 5            | c.     | 3.3 | c.    | 4   |           |     |
| 1-2    | 3<          | 1-2         | 2 <   | 1-2    | 2 <   | 1-2     | $1 - 2 \mid 2 < \mid$ |       | $^{2}<$      | 1-2    | 2 < | 1-2   | 2<  |           |     |
|        |             | 15          |       | _      | -     |         |                       |       |              |        |     |       |     | 1         |     |
|        | _           | _           | - 3   |        |       | _       |                       |       | -            |        | _   |       |     | 2.        | •   |
| 30     | 20          | 45          | 25    | 30     | õ     | 250     | 15                    | 50    |              | 30     | 10  | 40    | 20  | 3.,       |     |
|        | -           | -           | ·     |        |       |         | -                     | —     |              | —      |     | -     | _   | 4         | • . |
| -      | -           | _           | -     | -      |       |         | —                     |       | _            | -      | -[  | —     |     | 5         | -   |
| -      | !           |             |       | —      |       | -       | -                     |       | ō            |        |     | -     |     | 6         | •   |
| -      | <br>;       | -           |       |        | ~     | —       | _                     |       | -            | -      |     |       | _   | 7         | •   |
| -      |             |             |       |        | -     | _       |                       | ,     |              |        |     |       |     | 8         | •   |
| -      | _i          |             |       |        |       |         |                       |       |              |        |     |       |     | 9         | • • |
|        |             |             |       |        | _     | _       |                       | _     |              | _      |     |       |     | 10        |     |
|        | _           | _           | _     | .•     |       | _       |                       | 25    |              | _      | _   | _     | _   | 12        |     |
|        | _           | _           | 10    | _      | 5     | -       |                       | ·     |              |        | _   | _     |     | 13        |     |
|        | _           | —           | _     |        |       | _       | _                     | -     |              |        |     | _     | -   | 14        |     |
| _      | —           | 180         | 18    | 90     | 10    | _       | -                     |       | _            | _      |     | -     |     | 15        |     |
| -      | -           | —           | 10?   |        |       | -       |                       | -     | _            |        | _   |       | _   | 16        | •   |
| -      | _           | ·           | _     | -      | ~-    | -       | 25                    |       |              |        | -   | -     |     | 17        | •   |
|        |             |             | -     |        |       | -       |                       | -     | -            | -      |     | -     |     | 18        | •   |
|        | 3           | —           | _     | —      |       | -       |                       |       |              |        |     |       |     | 19        | •   |
|        | -           | 260         | 59    | 200    | 160   | _       |                       |       | i            | -i     |     | -     |     | 20        | •   |
|        |             | 500         | 50    | 550    | 100   | _       |                       |       |              |        |     |       |     | 41<br>199 | •   |
|        | !           | _           |       |        | _     | _       | _                     |       | _            |        |     |       | _   | 23        | •   |
| 90     | 77          | 600         | 147   | 510    | 185   | 275     | 125                   | 300   | 100          | 30     | 40  | 40    | 45  |           |     |
|        | _           |             | _     | _      | _     |         | _                     |       | _            |        |     |       | _   | 24        |     |
|        | _           |             | _     | _      | ·     |         | _                     | +     | +            | _      |     | _     | _   | 25        |     |
| _      |             | —           | _     |        |       |         | _                     |       | _            | _      |     | _     | —   | 26        |     |
| 30     | 5           | 30          | 15    | 30     | 20    |         | 20                    | 50    | 10           | ·      |     | _     |     | 27        | •   |
| -      | _           | -           | ·     |        |       |         |                       |       | -            | -      |     |       |     | 28        | •   |
|        |             | 120         | _     | 120    |       | 250     |                       | 750   |              | -      |     | _     | -   | 29        | •   |
| 180    |             | 70          | 25    | 480    | . 40  |         |                       |       | _            |        |     | 200   | 20  | 30        | •   |
| 1900   |             | 0 000<br>20 |       | 10 950 | 40    | 7 000   |                       | 2 800 | -            | 390    | -   | 6 400 | 10  | 31        | ·   |
| 100    |             | 00          |       | 100    | _     | 500<br> |                       | 000   |              | -      |     | _     |     | 33        | •   |
| 12 000 | 1 500       | 11 700      | 2 050 | 19 050 | 2 S00 | 9 250   | 2 000                 | 7 000 | <b>1</b> 550 | 60     | 20  | 2 400 | 270 | 34.       | •   |

399

#### glacial transgression

. . . .

# Shell-beds from the post-glacial transgression 372

| _   | • | •        |       |      |       |               |       |      |             |          |        |            |          |       |       |       |             |     | _        | -        |
|-----|---|----------|-------|------|-------|---------------|-------|------|-------------|----------|--------|------------|----------|-------|-------|-------|-------------|-----|----------|----------|
|     |   |          | Röss  | ångö | A     | Rössö-Långö C |       |      | Tor:<br>röc | se-<br>l | s      | tmyr       | en       | Fjä   | lla   | N. 1  | Iolt        |     |          |          |
|     |   |          |       | p. 9 | 279   |               |       | р.   | 279         |          | p. 2   | 81         | · p. 291 |       |       |       | p. 2        | 282 | р.       | 283      |
|     |   |          | 7     |      | 7.    | 9             | 7     |      | 7.          | 8        | cc.    | cc. 0.5 30 |          | -30.6 |       |       | 31          |     | c. 31.5  |          |
|     |   |          | 1-2   | 2<   | 1-2   | 2 <           | 1-2   | 2<   | 1-2         | 2<       | 1-2 2< |            | 1-22<    |       | 1Ź    | 2 <   | 1 - 2   2 < |     | 1 - 2    | 2<       |
|     |   |          |       |      | 1     | <u> </u>      |       |      |             | <u> </u> |        |            |          |       |       |       |             |     |          | <u> </u> |
|     | · | 1        | —     | -    | _     |               | -     |      | -           | -        | 15     | -          |          |       | -     | _     | -           | 32  |          | 7        |
| ••• | • | 2        |       | -    |       |               | 13    |      |             |          | 150    |            | _        | Ţ     |       |       | 070         |     |          | 1        |
| • • | ٠ | 3        | 190   | 100  | 120   | 60            | 100   | 40   | 149         | 90       | 150    | -50        |          | ິ     | - 30  | —     | 252         | 90  | · —      | ä        |
| · • | · | 4        |       | -    | -     | -             |       | -    | -           | -        | -      | _          | _        |       |       | _     | _           | _   | _        | 1        |
| ••• | • | 5        | _     |      |       |               | -     | -    |             | -        | -      | -          | _        | _     |       | _     | 19          | 2   | -        | 7        |
|     | • | 6        |       | -    | -     | -             | _     | -    | -           | -        | 150    |            |          |       | _     | _     | 12          | 0   |          | 10       |
| ••• | • | 1        | _     | -    | -     | -             | _     | -    | -           | -        | 190    | 10         |          | _     |       | -     | _           | -   |          | 4        |
|     | · | 8        |       | -    |       | -             |       | -    | _           | -        | _      |            | .—       | _     |       | _     | -           |     | 30       | 1        |
| • • | • | .9       | _     | -    | -     | -             | -     | _    | _           |          | 20     |            | -        | _     | _     | -     |             | -   |          |          |
| • • | • | 10       | _     | -    | -     |               | -     |      |             | -        | 50     |            |          |       |       |       |             |     | -        | -        |
| • • | • | 11       |       |      |       | 1 0           | -     |      | . —         | -        | _      | -          |          | _     |       |       | _           |     | _        |          |
|     | • | 12       | -     | -    | -     | -             |       |      | _           | -        |        |            |          |       |       |       | . –         |     |          | -        |
| • • | • | 13       | -     |      | -     | -             | -     | -    | -           |          | _      |            |          |       | -     | _     | -           |     |          |          |
| • • | • | 14       | -     |      |       | -             | -     | -    |             | -        |        | -          |          |       |       | _     |             | - 2 |          | _        |
| • • | • | 10       |       |      | -     |               | -     |      |             | -        |        | -          |          |       |       | _     |             | 0   | 1052     |          |
| • • | • | 10       | _     | -    |       | -             |       |      | _           | -        |        | -          |          |       |       |       |             |     | 100.     | - 30     |
| • • | • | 10       | -     | -    | _     |               |       | -    |             | -        |        | -          |          | _     |       |       |             |     |          |          |
| • • | • | 10       |       |      |       |               | -     | -    |             |          |        | _          |          | _     |       |       |             |     |          |          |
| • • | • | 19       |       | -    | _     |               |       |      |             | -        |        |            |          |       | 30    |       |             |     |          |          |
| • • | • | 20       |       |      | 95    |               |       |      | 19          |          | 300    | 80         |          |       |       |       | 156         | 66  | 35       |          |
| • • | • | -1<br>00 |       |      | ~0    |               | 1 -   |      | 10          |          | 000    |            |          |       |       |       |             |     | 00       |          |
| • • | • | 22       |       |      |       |               |       |      |             |          |        |            |          |       |       |       |             |     |          |          |
| • • | • | 20       |       | 110  | 1 000 | 1 71          | 100   | 1.00 | 100         |          |        | 105        | 1 20     |       | 00    | 1 (5  | <u> </u>    | 100 | 175      |          |
| • • | • | •        | 213   | 110  | 200   | 14            | 120   | 100  | 100         | 00       | 040    | 120        | - 50     | -99   | 50    | 40    | 444         | 105 | 179      |          |
| • • | • | 24       | -     |      | - 1   | [ —           | -     | —    | i —         |          | -      |            | -        | —     |       | -     | -           |     | <u> </u> | -        |
|     | • | 25       | 25    | ¦ —  |       | -             |       | —    | -           | -        | -      | -          |          | -     |       | -     | -           | —   | _        |          |
| • • | • | 26       | - 1   |      | . –   |               | -     | —    | - 1         | -        | -      |            | -        | —     | -     | —     | -           | -   | -        | _        |
| • • | • | 27       |       | ·  — |       | _             | -     | —    | ,           | -        | -      | 40         | -        | 50    | 90    | 50    | -           |     | 700      | 200      |
| • • | • | 28       | 100   | i –  | 100   | ; —           | 150   | ; —  | -           | 100      |        |            | - 1      | -     | -     | -     | -           |     |          |          |
| • • | • | 29       | 150   |      | 200   | -             | 75    | -    | - 1         | 250      | -      | -          | - 30     |       | 90    | i —   |             |     | 140      | i –      |
| • • | • | 30       | 75    |      | 175   | 5             | 150   | -    | 50          | 5        | 60     | 10         | -        | —     | -     | —     | -           | -   | -        |          |
| • • | • | 31       | 1 625 |      | 1 450 |               | 1 625 |      | 1750        | i –      | 690    | i —        | 180      |       | 180   |       | -           | -   | 1 470    | -        |
| • • | • | 32       | -     |      | 25    |               | 100   | i —  |             | -        | 90     | ; —        | 150      | —     | 60    |       | -           | -   | 280      | -        |
|     | • | 33       |       | -    | —     | -             | -     |      |             | -        |        | -          | -        |       | —     | -     |             |     |          | -        |
| •   | • | 34       | 4 375 | 450  | 6 250 | 375           | 5 000 | 525  | 7 500       | 625      | 2 550  | 460        | -+       | 30    | 4 500 | 1 150 | 96          | 6   | 6 125    | 2 40     |
|     | • |          |       |      |       |               |       |      |             |          | - 40   | 0          |          |       |       |       |             |     |          |          |

shell-beds from the post-glacial transgression maximum

387

| Medvik | Medy     | vik B                                   |                      | Lunnevik II |            |           |          |               |     |     |               |                                         |  |
|--------|----------|-----------------------------------------|----------------------|-------------|------------|-----------|----------|---------------|-----|-----|---------------|-----------------------------------------|--|
| p. 292 | р.       | 292                                     |                      | p. 294      |            |           |          |               |     |     |               |                                         |  |
| c. 26  | c. 29    | с. 31                                   | c. 27 <sup>.</sup> 2 | c.          | 30         | c. 32.5   |          | c. 34         |     |     |               |                                         |  |
| 1-2/2< | 1-2 2<   | 1-2 2 <                                 | 1-2 2<               | 1-2         | 2 <        | 1-2       | 2 < 1    | $ 1-2  \ge <$ |     | 12  | 2<            |                                         |  |
|        |          |                                         |                      |             |            |           |          |               |     |     |               |                                         |  |
|        |          |                                         | 20 —                 | -           |            | 10        |          | 10            | 3   | —   |               | 1                                       |  |
| E2 5   |          |                                         | 20                   |             | 19         | 60        | 10       | 20            | 19  |     | -             | 2                                       |  |
| 55 5   |          | · _ ·                                   |                      |             |            | 1 00      | 10       | 30            | 15  | 20  |               | 3                                       |  |
|        |          |                                         |                      |             |            |           |          |               |     |     |               | 4 · · ·                                 |  |
|        |          | _  _                                    | [·                   |             | _          | ;         |          |               |     |     |               | 6.                                      |  |
|        |          |                                         | — 15                 |             | _          |           | 8        |               |     |     |               | <b>7</b>                                |  |
|        |          |                                         |                      | 20          | 5          | ·         |          |               | +   |     | +             | 8                                       |  |
|        |          |                                         |                      | ·           | _          |           |          |               | _   |     |               | 9                                       |  |
| 35     | 13 —     | 15 —                                    | -! -                 | 20          | —          | —         |          |               | _   | _   |               | 10                                      |  |
|        |          |                                         |                      |             |            | _'        |          |               | —   | —   |               | 11                                      |  |
|        |          |                                         |                      |             | <u> </u>   |           |          | —             |     | -   | _             | 12                                      |  |
|        |          |                                         |                      | -           | -          | 10        |          | —             | —   | _   |               | 13                                      |  |
|        |          |                                         |                      |             |            |           |          |               | —:  |     | _             | 14                                      |  |
|        |          |                                         |                      |             | 10         | 50        | 30       | 40            | —   |     | -             | 15                                      |  |
|        |          |                                         |                      |             |            |           |          | .             |     |     |               | 16                                      |  |
|        |          |                                         |                      |             |            |           |          | _             |     |     | -             | 17                                      |  |
|        |          |                                         |                      | _           |            |           |          |               |     |     |               | 19                                      |  |
|        |          |                                         |                      | 40,         | _          | 80        |          | 120           | _   | _   | _             | 20                                      |  |
| - 5    |          |                                         |                      |             | 10         | +         | 5        | 10            | 5   | _   |               | 21                                      |  |
|        |          |                                         |                      | _           | t          | _         |          | _             | _   |     |               | 22                                      |  |
|        |          |                                         |                      |             |            |           | [        | _             |     | _   | _             | 23                                      |  |
| 88 10  | 13 17    | 15 -                                    | 40 60                | 110         | 48         | 190       | 86       | 220           | 34  | 50  | 13            | ••••••••••••••••••••••••••••••••••••••• |  |
|        |          |                                         |                      |             | _          | -         | _        |               | _!  | _   | 10            | 24                                      |  |
|        |          |                                         |                      |             | -          |           | _        | —İ            |     | _   |               | 25                                      |  |
|        |          |                                         |                      |             |            | -         | —        |               |     | -   |               | 26                                      |  |
| 35 50  | 25 75    | $30^{\circ}_{\circ} 45^{\circ}_{\circ}$ | 20                   |             | <b>5</b> " | $20'_{ }$ |          |               | -   | -   | <sup>12</sup> | 27                                      |  |
| 70     |          |                                         |                      | _           |            |           | <u> </u> | -             | _   | _   | - 2           | 8                                       |  |
|        |          | 20 -                                    | 220 -                | 80          |            | _         |          | 40            | _   | 60  | -2            | 9                                       |  |
| 1785 _ | 625      | s10                                     | 190                  | 100         |            | 700       |          |               | 5   |     | [8            |                                         |  |
| 350 -  |          |                                         | 220                  | 410         |            | 300       |          | 40<br>990     |     | 160 |               | 1<br>o                                  |  |
|        |          |                                         |                      |             |            |           |          | 220           |     | 100 |               | 2 · · · · .<br>2                        |  |
| 175 80 | <u> </u> | 30 45                                   | 80 30                | 2 800       | 1 175      | 4 400     | 1525     | 2 500         | 975 |     |               | 1                                       |  |

401

. . . .

#### ERNST ANTEVS.

[April 1917]

# Shell-beds from the post-glacial

|         |           |             |       | I    | 3 Ö             | s s<br>296 | ö              |                |              |     | Hä.   | llan<br>297 | Häll     | le I    |
|---------|-----------|-------------|-------|------|-----------------|------------|----------------|----------------|--------------|-----|-------|-------------|----------|---------|
|         |           | 01          | 1     | 01   | 1 <sup>-1</sup> |            | 19.0           |                |              |     |       | 1. 400      |          |         |
| • • • • | C.        | <u>- 21</u> | c. :  | 21.7 | e. 22'2         |            | 0. 200         |                | c. 25%       |     |       |             | <u> </u> | 39      |
| <u></u> | 12        | 2<          | 1-2   | 2 <  | 1-2             | 2 <        | 1-2            | $2 \leq$       | 1-2          | 2<  | 1 - 2 | 2 <         | 1-2      | $^{2}<$ |
| 1       | -         | —           |       | -    |                 |            | ·              | _              | _            | —   | -     | -           |          | -       |
| 2       | -         |             | i —   |      |                 | —          |                | -              |              |     |       | —           |          | -       |
| 3       | 63        | 3           | 163   | 10   | 50              | 5          | : <del>-</del> | 5              | 50           | 5   | 50    | —           | 100      | 10      |
| 4       |           | -           | -     | -    |                 |            | ·              | -              | -            | 10  | -     |             | -        | +       |
| 5       | -         |             |       | -    | —               | —          | <del></del>    | —              |              |     |       | -           |          | 1       |
| 6       |           |             | —     |      | —               | —          |                | -              | —            |     |       |             |          | -       |
| 7       | —         | -           | -     | -    | —               | —          | -              | -              | —            | —   |       | —           |          | -       |
| 8       |           | —           | —     |      | —               |            |                | —              | ·            |     |       | -           | —        | -       |
| 9       | —         |             |       | —    | '               | —          | !              | -              |              | —   | -     | -           |          | -       |
| 10      | 13        |             | -     | -    | -               |            | -              | —              | 13           |     | 1     | -           |          | ~       |
| 11      | —         |             | -     |      | -               | —          | _              | 3              | —            |     | ·     | -           |          |         |
| 12      |           | —           | -     | -    | —               | —          | —              | — !            | -            | ·   | -     |             | —        | -       |
| 13      |           |             | —     | _    | -               | -          |                |                | -            |     | ·     | -           | -        | -       |
| 14      | —         |             |       | —    | _               |            | -              | —              | -            | —   | -     |             | -        | -       |
| 15      |           | -           | -     | 3    |                 |            |                | —              | 13           |     |       |             |          | 3       |
| 16      |           |             |       | —    | ; —             |            | -              | —              | —            |     |       | -           |          | -       |
| 17      |           |             | -     |      |                 | -          | -              | —              | —            | 1   | . —   |             | -        | -       |
| 18      |           | —           | -     |      |                 |            | -              | —              | -            |     | -     |             | -        | -       |
| 19      |           | —           | i —   | -    | —               | 5          | -              | 5              | _            | . — |       | -           | -        |         |
| 20      | 13        |             | 75    | —    | 13              |            | 25             |                | 38           | —   | -     | - 1         | -        | 10      |
| 21      | -         | -           | -     | -    | -               | -          | -              |                | -            |     | -     |             | -        | 3       |
| 22      |           | —           |       |      |                 | -          | -              | —              |              | _   |       | -           |          |         |
| 23      | ·         |             |       |      | <u> </u>        |            |                |                | <u> </u>     |     |       |             |          |         |
| · · · · | 127       | 26          | 338   | 56   | 163             | 48         | 150            | 31             | 114          | 26  | 75    |             | 100      | 29      |
| 24      | —         | —           |       |      | -               | -          | —              | —              | -            | _   | -     |             | -        |         |
| 25      | _         | -           |       | —    | -               | +          | +              |                |              |     | _     |             |          | -       |
| 26      |           |             |       |      | -               | -          | -              |                |              |     |       |             | 100      | 10      |
| 27      | 20        | -           | 00    | -    |                 |            |                | 20             | 25           | 10  | _     |             | 100      | 10      |
| 28      |           | -           | 1~    | _    | 107             |            |                |                | 175          | _   | =     |             | 50       |         |
| 29      | 10        |             | 149   | _    | 120             | —          | 110            |                | 1/0          |     | 50    |             | 50       |         |
| 30      |           | _           | 195   |      | 105             | —          | 175            |                | 100          |     | 500   | —           | 650      |         |
| 31      | 00<br>995 |             | 120   |      | 120             |            | 410            |                | 1 700        |     | 100   |             | 000      |         |
| 32      | 220       |             | 170   |      | 200             |            | 000            |                | ə <i>t</i> ə |     | 100   | _           |          |         |
| 33      | <u> </u>  |             | 500   | 55   | 1 700           | 120        | 7 195          | 510            | 9 695        | 100 | 700   | 56          | 2 000    | 675     |
|         | . —       | ; U         | 1 000 | 00   | 1100            | 140        | 1 1 20         | 1 040 j<br>402 | 5 - 0-0-0    | 100 | 1 100 | 50          | 2 000    | 0.0     |
|         |           |             |       |      |                 |            |                |                |              |     |       |             |          |         |

. . . .
| 873<br>Stare Sandhogen Efvenås |     |             |       |        |     |     |          |              |       |     |          |                       |
|--------------------------------|-----|-------------|-------|--------|-----|-----|----------|--------------|-------|-----|----------|-----------------------|
| Stare Sandbogen Efvend         |     |             |       |        |     |     |          |              |       |     |          |                       |
|                                | р.  | <b>30</b> 2 |       | 1      |     | p.  | 303      | -            |       | р.  | 304      |                       |
|                                | 31  | c.          | 32    | <br>c. | 34  | c.  | 35       | c.           | 36    |     |          |                       |
| 1-2                            | 2<  | 1-2         | 2 <   | 1-2    | 2 < | 1-2 | 2<       | 1-2          | 2 <   | 12  | 2 <      |                       |
|                                |     | <u> </u>    |       |        |     |     |          | 1            |       | 1   | <u> </u> |                       |
| -                              |     | -           | .—    |        |     |     |          | —            |       |     | -        | 1                     |
| -                              |     |             |       |        |     |     |          | —            |       |     |          | $2 \cdot \cdot \cdot$ |
| 13                             |     | 10          | 5     | 20     | 20  |     | _        | 40           |       | 18  |          | 3                     |
| -                              |     |             |       |        | _   |     |          |              | _     |     |          | 4<br>5                |
|                                |     |             | _     |        |     |     |          |              |       |     |          | 6                     |
| _                              | _   |             |       |        |     | _   | _        |              |       |     | _        | 7                     |
| -                              | _   |             |       |        |     | _   |          |              | •     | _   |          | 8                     |
| _                              |     |             | ·<br> |        |     |     |          | _            |       |     |          | 9                     |
| _                              |     | —           |       | -      |     |     |          |              |       | _   |          | 10                    |
| -                              |     |             | —     |        |     |     |          |              | _     |     | -        | 11                    |
| -                              | -   |             |       |        |     | —   | -        |              |       |     | —        | 12                    |
| -                              |     | -           |       |        | -   | -   | -        |              |       | -   | —        | 13                    |
|                                |     |             | —     | —      | i   | -   | <u>.</u> | -            | -     | —   |          | 14                    |
|                                |     |             | -     | — i    |     | -   |          |              | -     | 18  |          | 15                    |
| <b> </b> -                     | _   | _           | _     | -      | -   |     | -        | -            |       | -   |          | 16                    |
|                                | _   |             | _     |        |     |     |          |              |       |     |          | 14                    |
|                                |     |             |       | _      |     | • _ |          | _            | _     | _   | _        | 19                    |
|                                |     | _           |       | ·      |     |     |          |              |       |     |          | 20                    |
|                                | _   | _           | _     |        |     | _   |          |              | -     |     |          | 21                    |
| —                              | —   |             |       | _      |     |     |          | _            | _     |     | _        | 22                    |
|                                |     |             |       |        |     |     |          |              |       | _   |          | 23                    |
| 13                             | 3   | 15          | 5     | 20     | 20  |     |          | 40           | 20    | 36  | ,        | •                     |
|                                |     |             | _     | —      |     | —   | —        | —            | —     |     |          | 24                    |
| <b>i</b> -1                    | -   |             |       | —      |     | _   | —        | —            | _     | -   |          | 25. : .               |
| 1 - I                          | -   | -           | -     | —      |     |     |          |              |       |     |          | 26                    |
| 125                            | 5   | -           | -     |        | -   | 160 |          | S0           | 60    | -   | _        | 27                    |
|                                |     | -           | —     |        | -   | —   |          | —            | —     | —   |          | 28                    |
|                                | -   |             | . —   | 40     |     | —   | -        | 40           | -     | -   |          | 29                    |
| 2000                           | _   | 1 500       | _     | -      | -   |     | -        |              | -     | -   |          | 30                    |
| ~ 000                          |     | 1 200       |       | 40     |     | 600 |          | 2 400<br>190 | —     | -   | 140      | 31<br>99              |
|                                | _   |             | _     |        |     | _   |          | 400          |       |     |          | 94                    |
| 10 250                         | 610 | 16 500      | 600   |        | _   |     |          | 13 200       | 6 250 | 770 | 90       | 34.                   |
| ₩<br>1.<br>1.                  | ·   |             |       |        | 40  | 3   | . 1      |              | 0 200 |     |          |                       |

### transgression maximum

#### ERNST ANTEVS.

LApril 1917

| Shell-beds | $\mathbf{from}$ | $\mathbf{the}$ | sero- |
|------------|-----------------|----------------|-------|
|            | 376             |                |       |

| ~     |
|-------|
| • • • |
|       |
|       |

| • | • • |    |          |      |       |                 |      |      |              |                  |          |           |       |       |        |      |          |        |
|---|-----|----|----------|------|-------|-----------------|------|------|--------------|------------------|----------|-----------|-------|-------|--------|------|----------|--------|
|   |     |    | Kil      | arna |       | Lu              | n d  |      | Hol<br>dalsk | ke-<br>ilen      |          |           | S k   | : ä l | le     | rö   | d        |        |
|   |     |    | р. 8     | 306  |       | р.              | 315  |      | p. 1         | 816              |          |           |       | p     | . 317  |      |          | _      |
|   |     |    | c.       | 22   | c. 2  | 5.1             | c. 2 | 25.6 | 25           | ·9               | c. 2     | •6        | c. 2  | 2.6   | c. 2   | 3.2  | c. 2     | 3.8    |
|   | •   |    | 1-2      | 2 <  | 1-2   | $\overline{2<}$ | 1-2  | 2 <  | 1-2          | $\overline{2} <$ | 1-2      | 2<        | 1-2   | 2 <   | 1-2    | 2 <  | 1-2      | 2<     |
| - |     | -  | <u> </u> |      |       |                 | ·/   |      |              |                  |          |           |       | 1     |        |      |          |        |
|   |     | 1  | -        | _    |       | ¦               | -    | -    | —            | _                |          |           | —     | -     |        | -    | -        | -      |
|   |     | 2  | _        |      | —     | _               |      | -    | · —          | -                |          |           | -     | -     |        |      |          | -      |
|   |     | 3  | -        | 10   | 450   | 180             | 250  | 80   | 60           | 10               | _        | 3         | 40    | 35    | 100    | 35   | 20       | 16     |
|   |     | 4  | -        |      |       |                 |      |      | -            | -                |          |           |       | _     | -      |      | -        | -      |
|   | ••• | 5  |          |      | —     | _               | _    |      |              | _                |          | -         |       |       |        | _    | —        | -      |
|   |     | 6  | 25       | 30   |       | 10              | —    |      |              | -                |          | -         |       |       |        |      | -        | -      |
| • | • • | 7  |          | —    |       |                 | —    |      | —            | _                | _        | _         |       |       | -      | -    | -        |        |
|   |     | 8  | _        | -    | —     |                 | —    | _    |              | -                | <u> </u> | -         |       |       | —      |      | -        | -      |
|   |     | 9  |          |      |       |                 | -    | -    |              | _                |          | -         | —     | -     | -      | -    |          | -      |
|   | 1   | 10 |          | -    |       |                 |      | -    |              | _                |          |           | —     | -     |        | -    | -        | -      |
|   | ••• | 11 | -        | _    | 25    |                 |      |      |              | _                | -        |           | -     | _     |        | -    |          | -      |
|   | ••• | 12 |          | _    |       | —               | - 1  |      |              | _                |          |           | —     |       |        |      |          |        |
| • | ••• | 13 | —        | -    |       |                 | —    |      |              | -                |          | -         | -     |       |        | -    | -        | -      |
| • | :   | 14 |          | _    |       | -               | —    | -    | —            | -                | —        |           |       |       | -      | 5    | 80       |        |
| • | :   | lő |          |      |       | —               | —    | -    | 30           |                  | _        | -         | -     |       | _      | -    | 20       | 20     |
|   | 1   | 16 |          | _    | —     | —               | —    |      |              | _                |          | -         | -     |       | —      |      |          |        |
| • | !   | 17 | -        |      | —     | —               |      |      |              | _                |          |           |       | ·     | —      |      |          | -      |
|   | 1   | 18 |          | —    | —     |                 | -    | -    |              |                  | -        | -         |       |       | -      |      | —        | -      |
| • | 1   | 19 | -        | —    | 100   | —               |      | -    | —            | -                |          |           |       |       | -      | -    | —        | 10     |
|   | :   | 20 | _        | _    |       |                 |      | —    | —            |                  | '        |           |       | -'    | -      |      | -        | -      |
|   | ;   | 21 | 125      | 100  | 100   | 40              | 75   |      | 45           | 25               | —        | 3         | —     | —     | 40     | 5    |          | 5      |
| • |     | 22 |          | _    | -     | -               | —    | -    | -            |                  | -        | —         | -     | —     | —      | —    | -        |        |
|   | :   | 23 | ·        |      |       |                 | _    |      |              |                  |          | <u> '</u> |       |       | _      |      | <u> </u> |        |
| • | • • |    | 150      | 180  | 675   | 240             | 375  | 100  | 150          | 75               | 30       | 6         | 120   | .35   | 160    | 45   | 120      | -15    |
|   | :   | 24 |          |      | _     | _               |      | _    |              | -                | -        |           | _     |       | —      | _    | -        |        |
|   | :   | 25 |          |      |       |                 |      |      |              | -                | -        | _         | _     | _     | _      |      |          | ·      |
|   | :   | 26 |          | _    | -     | _               | _    | _    | ·            | _                | _        |           | !     | _     |        |      |          |        |
|   | :   | 27 | 25       | 20   | _     | -               | 150  | 20   | 90           | 50               | -        |           | _     | _     | 80     | 10   | 280      | - 50   |
|   | :   | 28 | _        |      | _     | -               |      |      |              | -                | -        |           | _     |       | ' —    |      | -        | -      |
|   | :   | 29 | 125      | !    | 50    |                 | 300  | · -  |              |                  | - 30     |           | 80    |       | _      |      |          | -      |
|   |     | 80 |          | 20   | 100   | 20              | 200  | 10   | 360          | 60               | - 30     | _         | 360   | 60    | 160    | - 30 | 120      | 10     |
|   | :   | 31 | 1 200    | 20   | 2 600 | 20              | 2500 | 20   | 1 200        | ¦ —              | 690      | 5         | 9 400 | 20    | 21 000 | 20   | 12000    |        |
|   |     | 32 | 200      | !    | 350   | ! -             | 700  |      | 180          | -                | 90       |           | 480   | ¦ _   | 560    | —    | 200      |        |
|   |     | 83 | _        |      | _     |                 |      | -    | - 1          | _                |          |           |       |       | -      |      | -        | ľ –    |
|   |     |    |          | 1    | 1     | 1               | ił . | L .  |              | 1                | I        | 1         |       | 0.000 | 0.000  | L    | 10 100   | 14 100 |

Sydkos-Präst-Lejon-Gran-Torseröd källan ter dalen ängen p. 318 p. 320 p. 307 p. 322 p. 323 cc. 1.5 cc. 3.5 cc. 5.2 22c. 15 c. 14 21 . 1 - 22 <1 - 22 <1-2|2<|1-2 2< 1-2/2< 1-2 ł 2 <2 <1-2 . . 15 ----\_\_\_\_ -1. . ----\_\_\_\_  $\mathbf{2}$ \_ \_\_\_\_ 80 3515 21080 80 35 15 30 3 ----140 . 10 ----4. ----. ----\_\_\_\_ ----\_\_\_\_ \_\_\_\_ -\_ \_\_\_\_ 5 ----\_\_\_\_ — --------6. \_\_\_\_ ----\_ \_\_\_\_ --. ---------\_\_\_\_ \_\_\_\_ 7 ----\_\_\_ \_ \_\_\_\_ \_\_\_\_ \_\_\_\_ -----------\_ ---\_\_\_ 40\_\_\_ \_ \_\_\_\_ \_\_\_ ----\_\_\_\_ ----- i \_ \_\_\_\_ 8 ---------------------\_\_\_ 9. --------30 1515 ------------10 ----11 -------------— -\_\_\_\_ ----- --\_\_\_ \_\_\_\_ ----12 ------\_ --------\_\_\_\_ ----13 ------------------\_\_\_\_ \_ \_\_\_ 14. -----------------\_ ----------------90  $\mathbf{5}$ 30 $\mathbf{5}$ 105 60 -15 \_\_\_ \_ \_ ---\_ \_\_\_\_ ----\_ 16 \_ ----\_\_\_\_ \_\_\_\_ 208 \_\_\_ \_\_\_\_ \_ ---17 -----2340 10 \_\_\_\_ 18. -30 \_ ----\_\_\_ 15\_ 19. \_\_\_\_ ----~---\_ \_ \_ \_ \_\_\_\_ ----\_\_\_ \_\_\_\_ 20 \_\_\_\_ \_ \_\_\_\_ -----3 40 10 60 5  $\mathbf{5}$ õ 3 12021. -----\_ \_ \_ ----22. -----------------— \_ -----. \_\_\_\_ --------\_\_\_\_ \_ \_ 23. . 65 89 25165 5 270 109 180 160 21060 15 24040 24. -------20 25. \_\_\_\_ ----\_\_\_\_ \_ \_ ----\_\_\_\_ --------26 \_\_\_\_ 50 40120 2590 20 10 210 40 10 27 \_\_\_\_ \_\_\_\_ \_\_\_\_ 28\_\_\_\_ \_ \_\_\_\_ \_ 20040 30 180 60 240----\_ \_\_\_\_ \_\_\_ 29. ----\_ 240 10 320 35 10 30 300  $\mathbf{5}$ 3 360 100 180 30 \_\_\_\_  $7\,600$ 10 10 000 10  $2\,700$ 1 950 4 1 1 0  $21\,000$ 5  $24\,000$ --------31. ----400 60 30 150 80 32-\_\_\_\_ -33 6 240 2 150 14 000 2 250 12 000 1 350 4 350 520 48 000 3 900 34 . 430 8 700 900 15 600 .

#### post-glacial regression 377

391

. .

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

# Shell-beds from the sero-

|     |      |       | _   |       |       |                 |              |       | 378 |       |       |        |      |             |       |
|-----|------|-------|-----|-------|-------|-----------------|--------------|-------|-----|-------|-------|--------|------|-------------|-------|
| -   |      |       |     |       | то    | o f             | t · e        | r     | n a | ı A   | Ł     |        |      | Tofter      | 'na ( |
|     |      |       |     |       |       |                 | $\mathbf{p}$ | . 308 |     |       |       |        |      | p. 3        | 08    |
| ·   |      | 2     |     | 3     |       | 4               |              | 5     |     | 6     |       | 7      | 7    | c. 7        | •5    |
| ·   |      | 1-2   | 2 < | 1-2   | 2 <   | 1-2             | 2<           | 1-2   | 2<  | 1-2   | 2<    | 1 - 2  | 2 <  | 1-2         | 2 <   |
|     | . 1  |       |     |       |       | _               |              |       |     | 13    | õ     |        | _    | _           | _     |
|     | . 2  |       | _   |       |       | _               | _            |       | _   |       | _     | —      | -    | _           | -     |
|     | . 3  | 100   | 10  | 13    | 3     | 75 <sup>1</sup> | 5            | 100   | 3   | 325   | 35    | 113    | 25   | _           | õ     |
| • • | . 4  |       |     |       |       |                 | -            | -     | -   |       |       | —      | _    | -           | ·     |
| • • | , 5  |       |     |       |       |                 |              |       | -   |       |       |        | -    |             | . –   |
| • • | . U  |       |     |       |       |                 | _            |       |     | _     |       |        | _    | _           |       |
|     | . 8  | +     | _   |       | +     | _               | _            | _     | _   | ·     | +     | _      | +    | _           | _     |
|     | . 9  |       | _   |       | _     | _               | _            |       |     |       |       |        |      |             | -     |
|     | . 10 |       | _   |       |       |                 | _            |       | _   |       | -     | —      | -    | · —         |       |
| • • | . 11 | 25    | -   | 13    |       | -               | _            | 13    | _   |       |       |        | -    | -           | -     |
|     | . 12 |       |     |       |       |                 | -            | .—    |     |       | _     | -      | _    | -           | -     |
| • • | . 15 | 13    |     |       |       |                 | _            |       |     | 15    | ہ<br> |        |      |             | _     |
| ••• | . 15 |       |     | _     |       |                 |              |       | _   | +     |       | _      | 8    | -           | _     |
|     | . 16 |       | 5   |       | _     | _               | _            |       | _   |       |       | _      | _    | _           | _     |
|     | . 17 |       |     |       |       | -               | _            |       | _   |       | _     | ·      |      | _           | _     |
|     | . 18 | _     | -   |       | _     | -               | _            | —     |     |       | _     |        | -    | -           | -     |
| • • | . 19 | _     | S   |       | 13    |                 | -            | _     | -   | -     |       | -      |      |             | -     |
| • • | . 20 | 125   | -   | 125   |       | 50              | - Ĩ          | 20    | _   | 160   | 55    | 150    |      |             | 7     |
|     | . 21 |       | 5   | + (2) | + (2) |                 | + (2)        |       | · _ | 100   |       | - 150  | - 55 |             |       |
|     | . 23 | · _   | _   |       |       | _               | ·            | _     |     |       | _     |        |      |             | _,    |
|     |      | 313   | 196 | 164   | 96    | 150             | 43           | 151   | 41  | 511   | 114   | 263    | 93   |             | 150   |
|     | . 24 | 75    | 10  | -     | 20    | 50              | _            |       | 10  | -     | _     |        |      | _           | _     |
|     | . 25 | +     | +   | +     | +     |                 | _            | -     | _   | +     | _     | +      | —    | _           |       |
| ••• | . 26 | -     | _   |       |       |                 | -            | 50    | —   | . —   |       |        | _    | -           | -     |
| · · | . 27 | 75    |     | 25    | 5     | 50              | 5            | 175   | 5   | 175   | 10    | 75     | 5    | $\cdot$ 120 | JC    |
| • • | . 28 | 6 775 |     | 9.950 |       | 1 975           |              | 675   |     |       |       |        |      | 40          | _     |
| ••• | . 29 |       |     | 0.00  |       | 1010            |              | 150   |     | 250   |       | 125    | 5    |             | 30    |
|     | . 31 | 4 250 | _   | 3 750 |       | 1 300           |              | 1 125 | _   | 1 375 | _     | 2 250  | _    | 2 200       | 9     |
|     | . 32 | 500   | _   | 2 500 |       | 2625            |              | 1 500 |     | _     |       | 75     | . —  | 200         | -     |
|     | . 33 | —     | _   | -     | _     |                 | _            | _     |     | _     | · —   | —      |      | -           |       |
|     | . 34 |       | _   |       | -     | _               | _            | 1 950 | 235 | 9 500 | 1 285 | 12 575 | 935  | 5 600       | 3 25  |
|     |      |       |     |       |       |                 |              |       | 406 |       |       |        |      |             |       |

379 Rössö-Nötholmen B Nötholmen Α Långö A p. 310 p. 313 p. 310 6.6 7.4 7.68.3 1.2 2.53.2 2 < ||2 <1--2 2 <1. 2 2 <1--2 |2 <1 - 22 <1--2 2 <1-2 | 2 <٠. 10 อี 125 50 10 100 35 60 ÷ \_\_\_\_ ----------------------- $\mathbf{5}$ + ----\_ --------\_\_\_\_ \_ \_ \_ -----------\_\_\_\_ 25 15 --------\_ \_ ----÷ ------\_ --------\_

# post-glacial regression

0.2

1-2

27-170108. G.F.F. 1917.

### ERNST ANTEVS.

[April 1917.,

| Shell- | beds | $\mathbf{from}$ | the | sero- |
|--------|------|-----------------|-----|-------|
|        |      | 280             |     |       |

| <u>·· · · ·</u> |         |         |         |                  |       |       |            |          |       |            |                 |                  |              |       |        |       |
|-----------------|---------|---------|---------|------------------|-------|-------|------------|----------|-------|------------|-----------------|------------------|--------------|-------|--------|-------|
|                 | Röss    | ö—L     | ångö    | в                | ŝ     | 5     | v ä        | 1        | te    |            | Kjel<br>vike    | l-<br>en         | Keb          | al    | Bagg   | eröd  |
|                 | 1       | p. 31   | 3       |                  |       |       | р. З       | 25       |       | 1          | p. 33           | 26               | p. 3         | 27    | p. 3   | 28    |
|                 | 8       | 3       | 8.7     |                  | c. 1  | 4     | c. 5       | 3.4      | c. 4  | 1          | 2.3             |                  | c. 1         | •5    | 0.2    | ?     |
|                 | 12      | 2 < 1   | 1-2     | $\overline{2} <$ | 1 - 2 | 2 < 1 | 1-2        | 2 <      | 1-2   | 2<         | 1-2             | 2 <              | 1-2          | 2 < 1 | 1-2    | 2<    |
|                 |         |         |         |                  |       |       |            |          | 15    |            |                 |                  |              |       | ·      |       |
| 1               |         |         |         |                  |       |       |            |          | 10    |            |                 |                  |              |       |        | _     |
| 3               |         | 10      | 100     | 15               | 90    | 5     | 60         | 20       | 60    | 20         | 60              | 25               | _            | 40    | 200    | 90    |
| 4               |         | _       |         |                  | _     | _     | _          |          |       | —          | _               | _                |              | _     | _      | _     |
| 5               | -       | _       |         | -                |       |       | —          | _        |       |            |                 | -                |              | -     | -      |       |
| 6               | —       | _       | _       | -                |       |       | 40?        | 20       | 60?   | _          |                 | -                |              |       |        |       |
| 7               | _       |         | -       | -                |       | -     |            | ·        | -     | _          | -               | -                | _            |       |        |       |
| 8               | -       |         |         | -                | —     |       |            | _        |       | •          | -               |                  | _            | 20    | -      | -     |
| 9               | _       | -       | -       | -                | 15    |       |            | -        |       |            | -               | -                | _            |       |        | -     |
| 10              |         |         | _       |                  | 15    |       |            | -        | -     |            |                 | _                | -            | _     |        | _     |
| 11              |         |         |         | _                |       |       |            |          |       | _          | _               |                  |              |       |        |       |
| 13              | _       |         |         | -                | _     |       | _          | 5        |       | 3          | _               |                  | _            |       |        |       |
| 14              | _       | _       | _       | 1                | -     | _     | _          | _        | _     |            |                 | _                | _            | _     | _      | _     |
| 15              | _       | 5       | 25      | _                |       | 3     | _          | •        | 15    | 15         | 40              | 10               |              | _     |        | _     |
| 16              | _       | - 1     | - 1     | -                | -     | -     |            | -        |       | _          | _               | -                |              |       |        |       |
| 17              |         | -       | -       | . —              | _     | _     | . –        | 15       |       | _          | -               |                  | —            | · —   |        | _     |
| 18              |         | - 1     |         |                  | -     | -     | -          | -        | . —   |            | -               | 5                | _            | -     | —      |       |
| 19              | -       |         | -       | -                |       |       |            |          | -     | _          | 40              | 5                | -            | _     | -      | -     |
| 20              | -       |         | 25      | -                | -     |       | —<br>      | 13       | 15    | 8          | -               | 10               | _            |       | 160    |       |
| 21              | -       | 5       | 25      | . 9              | 15    |       | 60         | Ð        | 60    | <b>ð</b> 0 | - <sup>50</sup> | 10               |              | 20    | 100    | 50    |
| 22              |         |         |         | -                |       |       |            |          |       | _          |                 | _                |              | _     |        | _     |
|                 |         | 25      | 175     | 20               | 210   | 13    | 220        | 88       | 240   | 86         | 220             | 125              | 75           | 240   | 380    | 220   |
| 24              | -       |         | _       |                  | _     | _     | - 1        |          | _     | _          | _               |                  |              | _     |        |       |
| 25              | _       | _       |         |                  |       | _     | _          |          | -     | ·          | _               | _                | _            | 340   | -      | 10    |
| 26              | — –     | _       | —       |                  | -     | —     | -          |          |       | -          | -               |                  | _            | —     | -      |       |
| 27              | · 50    |         |         |                  | 90    | 10    | 480        | 20       | 90    | 20         | 40              | 70               | _            | 40    |        |       |
| 28              | -       | -       | -       | -                |       | _     | -          |          | -     |            | <u> </u>        |                  | _            | -     | -      |       |
| 29              | 150     | -       | —       | -                | -     | -     | 120        | i        | 120   | -          |                 |                  | 450          |       |        | -     |
| 30              |         | -       | -       |                  |       | 5     | 200        | i —      | 300   | 20         |                 | $ \frac{30}{20}$ |              | 200   | 1 20   | 4(    |
| 31              | 13 000  | +       | 12 600  | 50               | 900   |       | 2 200      | ļ —      | 1 990 | -          | 8400            | 1 30             | 0 750<br>150 |       | 1 000  |       |
| 32              | -       |         | -       | -                | 30    |       | <b>Z40</b> | <u>-</u> | 60    | 10         |                 |                  | 100          |       |        |       |
| 33              | 13 500  | 1 550   | 13 700  | 350              | 3 750 | 325   | 10600      | 1 070    | 7 200 | 385        | 2 200           | <br> 260         | 14 500       | 4 400 | 22 800 | 4 250 |
|                 | 110 000 | 1 - 000 | 110 100 | 1000             | 1     | 10.00 |            |          |       | ·          |                 | •                |              |       |        | •     |

**40**S

. . .

|                                                 | Mör Nendlaster Näddä Otterä B Kar- Brattskär Gullma-   |                                                        |                                                       |                                                       |                                                 |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Mör<br>hult II<br>p. 329<br>c. 4 <sup>-</sup> 4 | Nordkoster<br>p. 330<br>2:5 3                          | Näddö Otterö<br>p. 331 p. 315<br>4·2 c. 5·5            | B Kar-<br>holmen p. 332                               | eattskär<br>p. 333 p. 334<br>0 <sup>-</sup> 3         | a-<br>Samples: height in <i>m</i> above the sea |  |  |  |  |  |  |  |  |  |
| 1-2 2 <                                         | 1-2 2< 1-2 2<                                          | 1-2 2 <  1-2 2 <                                       | <  1-2 2 <  1-2                                       | $-2 \mid 2 < \mid 1 - 2 \mid 2$                       | 2< Coarseness of material in mm                 |  |  |  |  |  |  |  |  |  |
|                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | -                                               |  |  |  |  |  |  |  |  |  |
|                                                 |                                                        | 1 210 165 15                                           | 90 988 151                                            | 425 580 865                                           | 104 Peleevnoda: sum                             |  |  |  |  |  |  |  |  |  |
|                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 104                                             |  |  |  |  |  |  |  |  |  |
| 4 200 45                                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                        | <br><br>B00 14 375, 675 10                            |                                                       |                                                 |  |  |  |  |  |  |  |  |  |

Downloaded by [Virginia Tech Libraries] at 01:50 27 February 2015

409

271-170108. G. F. F. 1917.

. . . . . . . . . . . Continued on p.

# Shell-beds from the primo-post-glacial 382

|              |          | Continued from p.                                                                                                                                                 | <u></u>                                    |           |                |     |     |                 |            |            | 382 | 2               |                    |                    |                    |                  |             |         |          |                 |
|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|----------------|-----|-----|-----------------|------------|------------|-----|-----------------|--------------------|--------------------|--------------------|------------------|-------------|---------|----------|-----------------|
|              | -        | •                                                                                                                                                                 | N                                          | y e<br>p. | k l e t<br>284 | уy  | Ĺ   | δI              | rh<br>p. 2 | u 1<br>85  | t I |                 | Sur<br>min<br>p. 2 | n-<br>ige<br>286   | Lun<br>vik<br>p. 2 | ne-<br>I<br>87   |             |         |          |                 |
|              |          | Samples: height in <i>w</i> above the sea                                                                                                                         | e.                                         | 22.3      | c. 2           | 2.6 | c.  | 9               | c. 1       | 10         | c.  | 12              | 10                 | <u>]</u>           |                    | 17               | c.          | 2       | c.       | 3               |
|              |          | Coarseness of material in hum                                                                                                                                     | $\left\  \frac{1}{1-\frac{1}{2}} \right\ $ | 2/2<      | 12             | 2<  | 1-2 | $\overline{2<}$ | 1-2        | 2 <        | 12  | $\overline{2<}$ | 1-2                | $\overline{2} < 1$ | 1 < 2              | $\overline{2} <$ | 1-2         | 2 < 1   | 1 - 2    | $\overline{2<}$ |
|              |          |                                                                                                                                                                   |                                            |           | <u>1</u>       |     |     |                 |            | <u>-</u> 8 |     |                 | <u> </u>           |                    |                    |                  | i—          | <u></u> | i        |                 |
| $\mathbf{p}$ | rt       | 1 Triforis perversa L. (1)                                                                                                                                        | 1 -                                        | -         | _              |     |     |                 |            |            |     |                 |                    |                    |                    | -                |             | _       |          | -               |
| S.           | E        | 2 Turbonilla lactea L. (1)                                                                                                                                        | <u>  </u> –                                |           |                |     |     |                 |            |            | _   | -               | -                  | _                  |                    |                  |             |         | -        | -               |
| 201<br>aul5  | E        | 3 Odostomia cf. albella Lov. (1)                                                                                                                                  | - 1                                        | -  -      |                | _   |     |                 | 40         |            | 120 |                 |                    | _                  | 390                | —                | 120         |         | 330      |                 |
| la1          | post     | 4 , cf. rissoides II <sub>ANL</sub> . (1)                                                                                                                         | -                                          | -         | _              | -   |     |                 |            |            |     | -               | ~-                 |                    | -                  |                  | -           |         | -        | _               |
| trar         | <u>1</u> | 5 Eulimella acicula PHIL. (1)                                                                                                                                     | {  -                                       | -         | -              |     |     |                 |            | '''        | '   |                 |                    | •                  |                    | _                | -           |         |          |                 |
| Feb<br>Issu  | <u>و</u> | $\begin{array}{c} 6 \\ \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$ | - 1                                        | -         |                | -   | - ' | '               |            | î          |     | -               | -                  |                    | -                  | -                |             |         |          |                 |
| 27<br>issa   | E        | 7 Buccinum undatum L. (b) $\ldots$                                                                                                                                |                                            | -   -     | -              | _   | -   | _               | -          |            | -   |                 | -                  | -                  |                    |                  |             |         |          |                 |
| 1 and        | res      | 8 Utriculus obtusus TURT. (b)                                                                                                                                     | 1 100                                      | ;i —      |                |     |     |                 |            | _          | ;   | _               | +                  |                    |                    |                  | 60          |         | 120      |                 |
| 01:          | sioi     | 10 Developmenta viewela Verz * (1)                                                                                                                                | 11 100                                     | 1 -       | 200            |     |     |                 | 1          | <br>       |     |                 | 50                 |                    |                    |                  |             |         | 120      |                 |
| at           | 2        |                                                                                                                                                                   |                                            | 1 10      |                |     | 100 |                 | 1 900      |            |     | 20              | 200                | 10                 | 1.020              | 490              | 200         |         | 600      |                 |
| ies]         | Ē        | Gastropoda: sum                                                                                                                                                   | 11 020                                     |           | 1 000          | ·'' | 120 | 201             | 1 200      | 00         | 0.0 | 50              | 550                | 10                 | 1 0.0              | 3~0              |             |         | 0.00     |                 |
| st           | post     | 11 Waldheimia cranium Müll. (a)                                                                                                                                   | :                                          | - 5       |                |     |     | _=              |            | '          |     |                 |                    |                    |                    | ]                | ]           |         | <u> </u> | [               |
| , Ef         |          | 12 Echinus esculentus L.                                                                                                                                          | ή +                                        | _         | -              | _[  | —   |                 | [          | _          | _   | _[              | {                  | [                  |                    | [                | _           |         | [        | -6              |
| - loch       |          | 13 Echinocyamus pusillus Müll.                                                                                                                                    | <u>   +</u>                                | 210       | 50             | 275 | !   | 20              | 360        | 520        | 40  | 120             |                    | —                  |                    | 10               | <u>  _ </u> | 30      | 30       | 15              |
| Ĕnt          |          | 14 Lepidopleurus cancellatus Sow. (b)                                                                                                                             |                                            |           | _              |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| ini.         | ļ        | 15 Callochiton lacvis PENN.* (1)                                                                                                                                  |                                            |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| /irg         |          | Amphineura : sum                                                                                                                                                  |                                            |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| <u>/</u> ]   | For      | 16 Hinnikas pupis I (I)                                                                                                                                           |                                            |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| <u>d</u> p   | BS       | $15 \text{ Finances pusions.} (1) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$              | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| ade<br>1     | i        | Delementer and                                                                                                                                                    | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| allog        |          | relecypoda: sum                                                                                                                                                   | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| gro:         | ate      | 18 Coccum glabrum MONT. (1)                                                                                                                                       | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| Q ioi        | <u>-</u> | 19 Turbonilla indistincta MONT. (1)                                                                                                                               | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| 1            | Fi.      | 20 Odostomia unidentata Morr. (b)                                                                                                                                 | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| axii         | 57       | 21 Eulima distorta DESH. (I)                                                                                                                                      | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| nnu          | 10       | 22 Diriculus mammulatus FIIL. (I)                                                                                                                                 | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| -            | 0st-     | $23  24 \qquad \text{crnapsa IFFFP} (b)$                                                                                                                          | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
|              | 12       | 25 Spirialis retroversus FLENG (1)                                                                                                                                | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
|              |          | Gastronoda: snm                                                                                                                                                   | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
|              |          | Gastropoua. sum                                                                                                                                                   | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| nt           | _        | 26 Terebratulina caput scrpentis L. (b)                                                                                                                           | •                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |
| 1/2          |          | 27 Parechinus miliaris LESKE*                                                                                                                                     | ÷                                          |           |                |     |     |                 |            |            |     |                 |                    |                    |                    |                  |             |         |          |                 |

# regression and the post-glacial transgression -----

#### 383

|      | 0   | Ļ      | + -   |                    | ö     | ۸  |        |          |        |       |            | <b>г;</b> | 8 <b>1</b> 1 1 | h n 1            | • ŀ • |                   |     |     |
|------|-----|--------|-------|--------------------|-------|----|--------|----------|--------|-------|------------|-----------|----------------|------------------|-------|-------------------|-----|-----|
|      | 0   | ı      | ιε    | 3 1                | U     | n  |        |          |        |       |            | г J       | a 1 1          | Uai              | C A C | L                 |     |     |
| ←    |     |        | р.    | 271                |       |    |        |          |        |       |            |           | р. 2           | 276              | 0     | Over              | !   |     |
| i c  | 4   |        | c. 5  | )                  | c. (  | 6  | c.     | 7        | c. 7   | 7.7   | cc. 1      | .6.3      | cc. 1          | 6.8              | cc. ] | 7.3               |     |     |
|      | 212 | $\leq$ | 1-2   | $\overline{2 <  }$ | 1-2   | 2< | 1-2    | 2 <      | 1-2    | 2<    | $1-2'_{1}$ | 2 < 1     | 1-2            | $\overline{2 <}$ | 1 - 2 | $\overline{2 < }$ |     |     |
| 1    |     |        |       |                    |       | -1 | ·      |          |        |       |            |           |                |                  |       |                   | ·   |     |
| -    | _   | _      | _     |                    | _     | _  |        | _        |        | _     | _          | _         | _              |                  | ·<br> |                   | 1.  |     |
| -    | _   |        |       |                    | _     |    |        |          |        | _     |            | _         | _              | _                |       | _                 | 2.  |     |
| 1 35 | 0   |        | 800   | _                  | 570   | _  | 400    | _        | 240    | _     | 60         | _         | 2 000          | _                | 360   | -                 | 3.  |     |
| 100  | _   | _      | _     | _                  | —     | _  | _      | _        | _      |       | _          |           |                |                  |       | -                 | 4.  |     |
| -    | _   |        |       |                    | _     | _  |        | _        |        | _     |            | _         | _              | _                |       |                   | 5.  |     |
| -    | -   |        | _     | _                  |       | _  |        |          | 30     | _     |            | _         | _              |                  |       | _                 | 6.  |     |
| -    | _   |        | ·     | _                  |       |    | _      | _        |        |       |            | _         | _              | _                |       | _                 | 7.  |     |
| - 1  | -   |        |       | _                  |       |    | —      | _        |        | _     |            | _         | _              | _                |       | _                 | 8.  |     |
| 3    | 0   | _      | 560   | _                  | . —   | _  | 50     | _        | 60     | _     | 30         | _         | —              | _                | 90    | _                 | 9.  |     |
| - 1  | _   |        | _     | _                  | _     | _  | _      | <u> </u> | _      | _     |            | _         | _              |                  |       |                   | 10. |     |
| 1 98 | 0   | 20     | 1 640 |                    | 1 710 |    | 14 200 | 4 240    | 25 650 | 3 370 | 330        | 20        | 2280           | 30               | 540   |                   |     |     |
| -    | _   | _      | _     |                    | _     | _  | –      |          |        |       |            | _         | _              |                  |       |                   | 11. |     |
|      |     |        |       |                    |       |    |        |          |        | _     |            |           |                |                  |       |                   | 12  |     |
| 6    | 0   | 90     | 40    | 20                 | 30    | 10 | 150    | ·100     | _      | 10    |            |           | _              |                  | -     | _                 | 18. | ••• |

[April 1917,

#### Shell-beds from the post-84

| - 38 |
|------|
|      |

| -  |        |     | $\mathbf{F}$ | j   | ä l l |     |          |      | Lön   | ı d a    | ı 1      |          |        |     |       |     |
|----|--------|-----|--------------|-----|-------|-----|----------|------|-------|----------|----------|----------|--------|-----|-------|-----|
|    | Over!  |     |              |     | р.    | 276 |          |      |       |          |          |          | р.     | 288 |       |     |
|    | cc. 17 | 7.8 | cc. 1        | S-3 | cc. 1 | 9.3 | cc. 1    | 19.8 | cc.   | 20       | cc.      | 9.5      | cc. 1  | 1.5 | cc. 1 | 3.2 |
|    | 1-2    | 2 < | 1 - 2        | 2 < | 1 - 2 | 2 < | 12       | 2 <  | 1-2   | 2 <      | 1-2      | $2 \leq$ | 1-2    | 2 < | 1-2   | 2<  |
| 1  |        |     | _            | _   |       | I   |          | 1    | 30    | _        | _        | _        | 40     | _   | 40    | _   |
| 2  |        | -   | —            |     | _     | —   |          |      | -     | —        | 40       | -        | —      | -   |       |     |
| 3  | 600    |     | 1050         | —   | 240   |     | 210      |      | —     |          | 120      |          | 400    | —   | 40    |     |
| 4  |        | -   |              | —   |       |     | —        | —    | - 1   | —        |          |          |        | _   |       |     |
| 5  | —      | —   | _            |     | —     |     |          | —    | —     | —        | -        | -        | —      | -   |       |     |
| 6  | —      | _   |              |     | —     |     | _        | —    | —     | —        | -        | -        |        | -   | -     |     |
| 7  |        | —   | -            | _   | _     | _   |          | —    |       | <u> </u> |          | -        |        | -   | ·     | -   |
| 8  | _      |     | _            | -1  | —     | _   | —        | —    | _     |          | i        | -        | —      | —   | _     |     |
| 9  | 60     |     | 180          | —   | 90    | _   | 60       | —    | - 30  |          | 40       | -        | 80     | _   |       | -   |
| 10 |        | _   |              |     | _     | _   | I —      |      | i     |          |          | _        | _      |     |       |     |
|    | 930    | 10  | 1 530        | 10  | 4 920 | 570 | 4 900    | 380  | 1 890 | 180      | 600      | 15       | 11 080 | 750 | 3 840 | 405 |
| 11 |        |     |              |     | _     |     |          |      |       |          |          | _        |        |     |       |     |
| 12 |        |     |              | _   | _     |     | <u> </u> | _    |       | —        |          | _        | —      |     | —     |     |
| 13 | —      | —   | _            |     |       |     | i -      | —    |       |          | <u> </u> | 15       | 40     | 70  | 120   | 90  |

|        |       |        |       |        |       |        |       |        |       |      |          |       | _   | _    |     |
|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|------|----------|-------|-----|------|-----|
|        | 0 t   | t e    | r i   | ь В    |       | Н      | v     | a l    | ö     | У    | [örb     | ult I | I   |      |     |
|        |       | p.     | 271   |        |       |        | p.    | 289    |       |      | p.       | 290   |     |      |     |
| с.     | 3.8   | c. 4   | 4.2   | c. i   | 5.5   | c.     | 3     | c.     | 5     | c. { | 3.3      | e. 4  | 1   |      |     |
| 1-2    | 2<    | 1-2    | 2 <   | 1-2    | 2<    | 1 - 2  | 2 <   | 1-2    | 2 <   | 1-2  | $2 \leq$ | 1-2   | 2 < |      | ••• |
|        |       |        |       |        |       |        |       |        | -     |      |          | _     |     |      |     |
| _      |       | 30     | 5     | 30     | _     | 100    | _     | 100    |       |      |          |       |     | 1.   |     |
|        |       |        |       |        | —     | _      | -     |        |       |      |          |       | _   | 2.   |     |
| 60     | -     | 30     | —     | 30     | —     | 100    | —     | 250    | _     |      | -        |       | _   | 3.   |     |
|        |       |        | - 1   |        |       |        | -     |        | —     |      |          |       | _   | 4.   |     |
| _      |       |        |       |        | —     | —      | —     |        | -     |      | -        |       | · _ | 5.   |     |
| _      |       |        | _     | ·      | -     |        | _     |        | -     |      | —        |       |     | 6.   |     |
| _      | _     | _      | _     | _      |       | _      | -     | _      | _     |      | _        |       | _   | 7.   |     |
|        |       | -      | -     |        | _     |        | -     | ·      | —     |      | _        |       | _   | 8.   |     |
|        |       |        | -     | _      |       | 50     |       | 50     | _     |      | ]        | -     | -   | 9.   |     |
|        |       | -      |       |        |       |        | 50    |        | -     |      |          |       | _   | 10.  |     |
| 14 400 | 1 505 | 17 590 | 2 095 | 30 840 | 2 900 | 17 050 | 2 070 | 11 850 | 1 560 | 450  | 20       | 9 000 | 300 |      |     |
|        |       |        |       |        |       |        | · _   |        |       |      | _        |       |     | 11 . |     |
|        |       |        |       | _      | _     |        | _     |        | _     |      | _        |       | _   | 12.  |     |
|        | 25    |        |       |        |       |        | 40    | · 100  | 20    |      |          |       | _   | 13.  |     |

#### glacial transgression 385

# Shell-beds from the post-glacial transgression 386

|           | Rössö-        | Långö<br>A<br>279 | Rös      |     | <br>Lång<br>979 | öC    | Tors<br>rö( | e-<br>[    | S¤       | nitt    |          | n          | Fjä<br>n 2                                                                                                                                   | a <br>82      | N. H     | Lolt    |
|-----------|---------------|-------------------|----------|-----|-----------------|-------|-------------|------------|----------|---------|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------|
|           | 7             | 7:0               |          |     | 7.0             |       | p           | - <u>s</u> |          | -1-<br> | 1 20-    |            | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |               | P. 4     | 1.00    |
|           |               | 13                | ·        |     |                 |       |             |            |          | ,<br>   | 00       |            |                                                                                                                                              |               | <u>.</u> | 1.9     |
|           | 1-2  2<       | 1-2  < 1          | 1-2      | 2<  | 1 - 2           | 2<    | 1—4         | 2<         | 1-2      | 2<      | 1-2      | $2 \leq  $ | 12                                                                                                                                           | <u> *&lt;</u> | 1-2      | $^{2}<$ |
| :1        |               | 25 -              |          |     |                 | 50    | _           | _          | _        |         | _        | -          | _                                                                                                                                            |               | 35       |         |
| 2         | _ _           |                   |          | _   | —               | ·     | -           | _          |          |         |          |            |                                                                                                                                              | _             |          |         |
| 3         |               |                   | - ·      | -   | _               |       | 150         | _          | 1 4 4 0  | ·       | 90       | _          |                                                                                                                                              | _             | - 1      |         |
| 4         | - 50 -        | ·                 |          | -   | _               | ·     |             | _          | -        |         | _        |            | -                                                                                                                                            |               | -        |         |
| 5         |               | 25 -              |          |     | _               | ·     | -           |            | -        |         |          |            |                                                                                                                                              | _             |          | _       |
| 6         |               | · _   _           |          | _   | i _             |       | ·           |            | _        |         |          | -          |                                                                                                                                              | _             | _        |         |
| 7         | <b>_</b>      | _  _              | - 1      |     |                 |       | -           |            | -        |         | _        | _          |                                                                                                                                              |               |          | -       |
| 8         |               |                   | - 1      |     |                 |       | ·           |            | ·        |         | _        | —          |                                                                                                                                              | _             |          |         |
| 9         | _ _           | <sup>·</sup>   _  | -        | _   | _               | _     | - 30        |            | 60       |         | 60       |            |                                                                                                                                              | -             | 210      | -       |
| 10        | ╽╶╌╽╼┤        | <i>_</i>          | ·        |     |                 |       | _           |            | —        |         | <u> </u> |            |                                                                                                                                              | -             | -        | _       |
| . <b></b> | 6 400 450     | 8 250 38          | 7 100    | 525 | 9 300           | 1 030 | 3 570       | 510        | 1 860    | 80      | 5 070    | 1 200      | 96                                                                                                                                           | 6             | 8 960    | 2 600   |
| 11        | _   _         |                   |          |     |                 | ·     |             |            | _        |         |          |            |                                                                                                                                              | _             |          |         |
| 12        |               |                   |          |     |                 |       | _           |            | _        | _       |          | -          |                                                                                                                                              |               | _        |         |
| 13        | <u>  _  _</u> | <u>  -</u>        | <u> </u> |     |                 |       |             | 10         | <u> </u> | _       | 30       | 4          |                                                                                                                                              | -             | <u> </u> |         |

# pd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 401

Shell-beds from the post-glacial transgression maximum 387

Medvik Medvik B  $\mathbf{L}$ n n e v i k II u A p. 292 p. 292 p. 294 c. 29 c. 31 c. 27.2 c. 28.5 c. 26 c. 30 c. 32.5 c. 34  $\overline{1-2|2<|1-2|2<}$ 1-2 2< 1-2 | 2 < | 1-21-2 2 <2 <1-2 |2 <1-2 |2 <• • • • ----1. ----. ----2 5 500 60 500480 940 3. \_ 4. -5 ---6. \_\_\_\_ 7 -\_ \_ \_\_\_\_ \_--8. ----60 140 9. 10. 1 530 3 280 980 75 650 900 90 720 30 4 240 1 1 50 2 415 130 6 130 1 360 10 . . • 11 . . . \_ 12. + +. .  $10^{\circ}$ 13. \_\_\_\_ • • 14 . 3 15. ł 3 ----. . . . -- 16 . . . \_\_\_\_ \_ -----17. . . ļ \_ \_\_\_\_ \_ . \_\_\_ + 18. 30 ---19. \_\_\_ ---20 . -----\_\_\_\_ \_ \_ 20-21 . 20 -22. \_ \_\_\_ 20? -23. 24. ------\_\_\_ \_-ļ + + + 25 . -. 30 20 + 40 + 26 . . -----------27 . .

## ERNST ANTEVS.

[April 1917]

| Shell-beds | from | the | post-glacial |
|------------|------|-----|--------------|
|------------|------|-----|--------------|

#### 388

| - |              |                 |             |       |     |             |            |          |      |          |          |             |            |                 | -           |
|---|--------------|-----------------|-------------|-------|-----|-------------|------------|----------|------|----------|----------|-------------|------------|-----------------|-------------|
|   |              |                 |             |       |     | R ö<br>p. 5 | ssö<br>296 | •<br>•   |      |          |          | Häl<br>p. 2 | lan<br>297 | Häll<br>p. 2    | le I<br>298 |
|   |              |                 | 21          | c. 2  | 1.7 | c. 2        | 2.2        | c. 2     | 3.3  | c. 2     | 3.0      | c. 2        | 16·5       |                 | 39          |
|   |              | $\frac{1}{1-2}$ | 2<          | 1-2   | 2<  | 1-2         | 2<         | 1-2      | 2<   | 1-2      | 2 <      | 1-2         | 2<         | $\frac{1}{1-2}$ | 2-          |
| - |              | <u> </u>        |             |       |     | 1 1         |            | 1        |      |          |          |             |            |                 |             |
|   | 1            |                 |             | 25    | _   | _           | _          |          |      | 50       | 5        | 50          |            |                 |             |
|   | 2            |                 |             | -     |     | _           | _          | —        | —    | _        |          |             |            | -               | _           |
|   | 3            | 225             | -           | 225   |     | 175         |            | 425      |      | 450      |          |             |            |                 | _           |
|   | 4            | —               |             | -     |     | —           | -          |          |      | -        |          | —           | · —        |                 | -           |
|   | 5            |                 |             | —     | —   |             |            | —        |      | -        | —        |             | -          |                 |             |
|   | 6            |                 | -           | _     | —   | —           |            |          |      | -        |          |             |            | —               | -           |
|   | 7            | -               | -           |       | -   | -           |            |          | -    | . —      |          | -           | -          |                 | -           |
|   | 8            |                 |             | 25    | -   | -           | . —        |          | -    | 50       | <u> </u> | -           | —          | 100             | -           |
|   | 9            | 20              | -           | 00    | _   | -           |            |          | -    | 50       |          |             |            | 100             | _           |
|   | 10           |                 | <u>  _ </u> | -     |     |             |            |          |      |          |          |             | <u> </u>   |                 |             |
|   | •••          | 620             | 5           | 1 300 | 55  | 2 3/5       | 120        | 8 500    | 560  | 5 650    | 115      | 1 400       | 56         | 2 900           | 685         |
|   | 11           |                 | <u> </u>    |       |     |             |            |          |      | <u> </u> |          |             |            |                 |             |
|   | 12           | +               | _           | +     | _   |             | _          | +        | _    | +        |          |             | ·          |                 |             |
|   | . 13         |                 | +           | 75    | 65  | 50          | 25         | 100      | 30   | 50       | 50       | _           |            | -               | _           |
|   | 14           |                 |             |       |     |             |            |          |      | i        |          |             |            |                 |             |
|   | · · 14       |                 |             |       |     |             |            |          |      |          |          |             |            |                 |             |
|   |              |                 |             |       |     |             |            | <u> </u> |      | <u> </u> |          | <u> </u>    |            |                 |             |
|   |              |                 |             |       |     |             |            |          |      |          |          |             |            |                 |             |
|   | 16           | -               |             | _     |     |             |            | _        |      | -        |          |             |            | r               |             |
|   | ,            |                 |             |       |     |             |            |          |      | n<br>}   | !        |             |            |                 |             |
|   | •••          |                 |             |       |     |             |            |          |      | -        |          | -           |            | _               |             |
|   | 18           | -               | _           | _     |     |             | -          | _        | -    | +        |          | -           |            |                 | -           |
|   | 19           |                 |             | -     | -   |             | _          | -        |      | _        | -        | _           |            | _               |             |
|   | • • 40<br>91 |                 |             |       |     |             |            |          |      |          |          |             |            |                 |             |
|   | · · 21       |                 |             |       |     |             |            |          |      |          |          | _           |            |                 |             |
|   |              |                 | _           | _     |     |             |            | _        |      | _        | _        |             |            |                 |             |
|   | 24           |                 |             |       | _   | _           | _          |          |      | 4?       | _        | _           |            | _               | -           |
|   | 25           | -               |             | -     |     | _           | _          |          |      | <u>+</u> |          | -           |            | _               | -           |
|   |              |                 | <b> </b> _  | _     | _   |             | _          |          | _    | +        |          | -           | - 1        |                 | _           |
|   | 26           |                 |             |       |     | _           |            |          | 3    | · .      | _        |             |            | _               | -           |
|   | 97           |                 |             |       |     |             |            |          | , ", |          | <u> </u> | ·           | ·          |                 |             |
|   | 41           |                 | · · · · ·   |       |     |             |            |          | י ט  |          | . —      |             |            | ·               | 1           |

• • Sandbogen Stare Efvenås p. 302 p. 303 p. 304 c. 32 c. 34 c. 35 c. 36 28.5c. 31 .  $\overline{2} <$ 1 - 22 <2 <1-2 2 <1 - 21-2 2 <1 - 22 <1-2 . . . . 30 1. . . \_\_\_\_ \_\_\_\_ ----\_\_\_\_ 2. \_ \_\_\_\_ --------\_\_\_\_ ----. 40 \_\_\_\_ 80 — \_ 360 \_ \_ \_\_\_\_ 3. \_ ----. ---------. -\_ -------— \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ 4. • -------------\_\_\_\_ 5. ------------\_\_\_\_ ----. . ----\_ \_\_\_\_ ------------\_\_\_ \_\_\_\_ -------------------6... ----.--7. \_\_\_\_ \_\_\_\_ ----\_\_\_\_ -\_\_\_ --------\_\_\_\_ ----— \_\_\_\_ — \_ \_\_\_\_ ----8. ----\_\_\_\_\_ \_\_\_ \_\_\_\_ +25 \_\_\_\_ -\_\_\_\_ 9. . \_\_\_\_ \_ \_\_\_\_ ----10. \_ \_\_\_\_ \_\_\_\_ 18 090 120  $12\,400$ 615 600 -----840 \_\_\_\_ 16 560 6 310 770 230. . 11... ----\_\_\_\_ \_\_\_\_ \_\_\_\_ 12 . . . +\_ \_\_\_ \_ 20 <u>.</u> 13 . . . \_ 14 . . . ----------\_\_\_\_ --------\_ \_ 15... \_\_\_\_ \_\_\_\_ \_\_\_\_ \_ \_\_\_\_ \_ \_ ----\_ ----\_ --------\_ -----\_\_\_ -. . . . 16. . . ------------- $\mathbf{5}$ 17 . . . 5 \_\_\_\_ \_\_\_ ------------\_ ------------. . \_\_\_\_ \_ 18 . . . -----\_\_\_\_\_ — \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_ 19. ----\_\_\_\_ --------\_\_\_\_ --------\_\_\_\_ ----\_\_\_\_ ----\_\_\_ \_\_\_\_ 20. \_\_\_\_ \_\_\_\_ ------------\_\_\_ \_\_\_\_ 21 . \_ \_\_\_\_ -------------\_\_\_ -----------\_\_\_\_ \_ \_\_: ----• \_\_\_\_ 22. . ----\_ ----\_\_\_\_ -----. \_ \_ 23. ----. — \_\_\_\_\_ \_\_\_\_ 24. \_\_\_ \_\_\_\_ -------------\_\_\_ ----\_\_\_\_ ---\_\_\_\_ ----25 . . . -----\_ ----\_ ----------\_\_\_\_ -· . . . . 26... --------------\_\_\_\_ — \_ ----\_ \_ ---------

#### transgression maximum 389

--- 27 . . .

----

-----

# ERNST ANTEVS. [April 1917]

| Shell-beds | from | the | sero- |
|------------|------|-----|-------|
|            | 200  |     |       |

|                   |       |          |          |       |           |                        |                                              |                                               | ,<br>                                        |            |            |                                                |                                              |                                              |           | -       |
|-------------------|-------|----------|----------|-------|-----------|------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|------------|------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------|---------|
|                   | Kile  | irna     | I        | ı u   | n         | d                      | Hol<br>dals                                  | .ke-<br>kilen                                 |                                              | s          | k ä        | 1                                              | 1 e                                          | r                                            | ö         | d       |
|                   | p.    | 306      |          | р.    | 315       |                        | p.                                           | 316                                           |                                              |            |            | p.                                             | 317                                          |                                              |           |         |
| ; <b></b>         | c.    | 22       | c. 2     | 25.1  | c. 2      | ð <sup>.</sup> 6       | 25                                           | .9                                            | c. 2                                         | 1.6        | c. 2       | 2.6                                            | c. 5                                         | 23.5                                         | c.        | 23.8    |
| i                 | 1 - 2 | 2 <      | 12       | 2 <   | 1-2       | $\overline{ 2\langle}$ | 1-2                                          | 2 < 1                                         | 1-2                                          | 2 <        | 1-2        | 2 <                                            | 1-2                                          | 2 <                                          | 1         | 2 2<    |
|                   |       |          |          |       | ]         | 1                      |                                              |                                               |                                              |            |            |                                                | 1                                            |                                              |           | Ť       |
| 1                 | 25    |          | 25       |       | 50        | _                      | 30                                           | 10                                            |                                              |            | 80         | ¦                                              | 40                                           |                                              | 4         | 0' _    |
| 2                 |       |          |          |       | -         | -                      | _                                            | _                                             |                                              |            | _          |                                                | -                                            | —                                            | -         | -   _   |
| 3                 | -     | -        | ~        |       | 100       | ₽¦ —                   | 30                                           | ¦ —                                           |                                              | ŀ—         | 40         | ¦                                              |                                              | —                                            | - 1       |         |
| 4                 | 75    | —        |          |       | -         | -                      | -                                            | —                                             | -                                            | -          | -          | -                                              | —                                            | —                                            |           |         |
| 5                 | -     | -        | -        | _     | i         | -                      |                                              | —                                             |                                              |            | . —        |                                                | -                                            | —                                            |           | -   -   |
| 6                 |       | _        |          | . —   | -         | -                      | -                                            | -                                             |                                              |            | -          |                                                |                                              |                                              | - 1       |         |
| 7                 | -     | —        | -        | _     | -         | -                      |                                              | _                                             |                                              |            | -          |                                                | -                                            |                                              | -         | -  -    |
| , 8               | -     | -        |          |       |           | -                      |                                              |                                               |                                              | '          |            |                                                | ·                                            |                                              |           |         |
| 9                 | 75    | _        | 50       |       | -         |                        |                                              | -                                             | —                                            |            | 200        |                                                | 80                                           |                                              | 4         | .0' ~   |
| 10                |       |          |          |       | <u> </u>  | ·                      |                                              |                                               |                                              |            | 1          | <u> </u>                                       | <u> </u>                                     |                                              | <u></u>   |         |
|                   | 4 225 | 2 260    | 7 675    | 3 440 | 10 000    | 0 <mark> 1 500</mark>  | 20 490                                       | 10 220                                        | 2490                                         | 335        | 21 640     | 2380                                           | 31320<br>                                    | 1 060                                        | 21 08     | 0 1 160 |
| 11                | `—    |          |          | —     |           | <u> </u>               |                                              |                                               |                                              |            |            |                                                |                                              | _                                            |           |         |
| 19                | _     |          |          |       | _         | _                      |                                              | _                                             | _                                            |            | · _        |                                                |                                              |                                              | -         |         |
| 13                | _     |          |          |       |           | -                      | _                                            | 20                                            | _                                            |            | 200        | 100                                            | _                                            |                                              | - 1       | _  _    |
|                   | i i   |          |          |       |           |                        |                                              |                                               |                                              |            |            |                                                |                                              |                                              |           |         |
| 14                | -     | _        |          |       | -         | -                      |                                              | -                                             |                                              |            |            |                                                |                                              |                                              |           |         |
| 15                |       |          |          |       |           | <u> </u>               |                                              |                                               |                                              |            |            |                                                | <u> </u>                                     | <br>                                         | <u> </u>  |         |
| ••••              |       | -        | -        | _     |           | -                      | -                                            |                                               |                                              |            |            |                                                | -                                            |                                              |           |         |
| 16                | -     |          | ~-       |       | í –       | ·  —                   | -                                            | —                                             |                                              |            | ·          |                                                | -                                            | -                                            | -         | -  -    |
| 17                |       | <u> </u> |          |       | <u> </u>  | <u></u>                |                                              | <u>                                     </u>  | <u>                                     </u> | <u> </u>   |            | <u>                                      </u>  | <u>                                     </u> | 1                                            |           |         |
| ••••              |       | -        |          | -     |           | -                      | -                                            | -                                             | -                                            | -          | -          | _                                              | -                                            |                                              | -         | -  -    |
| 18                |       | _        | -        |       |           |                        | _                                            |                                               | _                                            | -          | _          |                                                |                                              |                                              | ŀ -       | -   -   |
| 19                | _     |          |          |       | - 1       | -   -                  |                                              |                                               |                                              |            | -          | -                                              |                                              | -                                            | - 1       | -   -   |
| 20                | . —   | -        |          |       |           |                        |                                              |                                               | I. —                                         |            | - 1        |                                                | -                                            | -                                            | 1 -       | -  -    |
| 21                | -     | -        |          | -     | - 1       |                        |                                              | -                                             |                                              | -          |            | -                                              | -                                            |                                              | -         | -1 -    |
| 22                |       |          | -        |       | -         | -   -                  | -                                            | -                                             | -                                            |            |            |                                                | -                                            |                                              | -         | -  -    |
| <sub>.</sub> . 23 | -     | -        |          | -     |           | -   -                  |                                              |                                               |                                              |            | -          | ·                                              |                                              | —                                            | -         | -  -    |
| 24                | -     | -        | -        |       | -         | -  —                   | -                                            |                                               | 1 -                                          | —          | ) <u> </u> |                                                | -                                            | -                                            | - 1       | -  -    |
| 25                |       | <u> </u> | <u> </u> |       | <u>  </u> | <u>- </u>              | <u>                                     </u> | <u>                                      </u> | <u> </u>                                     | <u>! —</u> | <u> </u>   | · <u>                                     </u> | <u>                                     </u> | <u>                                     </u> | <u>  </u> |         |
|                   | -     |          |          |       |           |                        | -                                            |                                               | -                                            |            |            |                                                |                                              |                                              | -         | -  -    |
| 26                |       |          |          |       |           | <u>-  _</u>            |                                              |                                               |                                              | <u>  -</u> |            | <u> </u>                                       |                                              |                                              |           |         |
| 27                |       | _        |          |       | ∦ _       | -  _                   | _                                            | _                                             | _                                            | _          |            |                                                | - 1                                          |                                              | -         | _  -    |
|                   |       | <u>.</u> |          |       |           | <u> </u>               | •                                            |                                               | <u>.</u>                                     |            | <u> </u>   | ·                                              |                                              | <u> </u>                                     |           |         |

.

|                                              |           |                                              |        |       | 391    |      |        |     |             |          |        |        | <u>·</u> .  | <u>· ·</u> |
|----------------------------------------------|-----------|----------------------------------------------|--------|-------|--------|------|--------|-----|-------------|----------|--------|--------|-------------|------------|
| Präst-<br>ängen                              | Le<br>kä  | jon-<br>llan                                 | Т      | o r   | s e    | r    | ö      | 1   | Syd<br>kost | l-<br>er | Gran   | dalen  |             |            |
| p. 318                                       | _         | 320                                          |        |       | p. 507 |      |        |     | p. 5:       | :::<br>  |        | 523    |             |            |
| 21                                           | 2         | 2                                            | cc.    | 1.2   | 3      | .2   | cc. 5  | .2  | c. 1        | 5<br>    | C. 1   |        | • •         | ••         |
| 1-2   2 <                                    | 12        | $\downarrow 2 \leq$                          | 1-2    | 2<    | 1 - 2  | 2 <  | 12     | 2 < | 1-2         | $2 \leq$ | 1-2    | 2 <    |             | <u> </u>   |
| 40,                                          | _ 40      |                                              |        | _     | _      |      |        | 10  | _           |          | 80     |        | 1.          |            |
|                                              | -   -     | -                                            | _      | _     | _      |      | —      | _   | _           |          | _      | _      | 2.          |            |
| · ·                                          | -         |                                              | _      | _     | 120    |      | 270    | _   | 60          | _        |        | _      | 3.          |            |
| -                                            | -         | -                                            | ·'     | _     | _      |      |        | _   | _           | . —      | . —    | _      | <u>:</u> 4. | •••        |
|                                              | -   -     | -                                            | -      | —     |        |      |        | —   | _           | -        |        |        | 5.          | • •        |
| - ·                                          | -1 -      | ·  —                                         | 30     |       | -      | —    | -      |     |             |          | —      | _      | 6.          | • •        |
| · ·                                          |           |                                              |        | _     |        |      |        |     | _           |          | _      | _      | 7.          | •••        |
|                                              |           | _                                            | 60     | -     | 190    |      |        | _   | _           | _        | _      |        | 8.          | • •        |
| 40                                           |           |                                              |        |       | 120    |      | 50     |     |             |          |        | _      | 10          | ••         |
|                                              | 20121690  | 9.210                                        | 14.070 | 1 970 | 6.570  | 450  | 12 820 | 050 | 27 020      | 520      | 75 760 | 4 020  | 10.         | ••         |
| 14 800 2 2                                   | .0 24 000 | 2 510                                        | 14 510 | 1010  | 0.010  | 400  | 10 000 | 500 | 51 0.20     | 000      | 10 100 | ¥ 0.40 | • •         | •••        |
|                                              | = =       | <u>                                     </u> |        |       |        | <br> |        |     |             |          |        |        | 11.         | • •        |
|                                              | -   -     | -                                            | _      | _     |        | _    | _      | -   |             | _        |        | -      | 12.         |            |
|                                              | +         |                                              |        |       |        |      |        | 10  | _           | _        | _      |        | 13.         |            |
|                                              | _         | _                                            |        |       |        |      |        |     | _           | _        | _      | _      | 14.         |            |
| _  .                                         |           |                                              | _      |       |        | _    | _      |     |             | _        | _      | _      | 15.         |            |
|                                              |           | _                                            | _      |       |        |      |        |     |             | _        |        |        |             |            |
|                                              |           |                                              | _      |       |        |      |        |     |             |          |        |        | 16          |            |
|                                              |           |                                              |        |       |        |      | _      |     |             |          |        | _      | 17.         |            |
|                                              | <u> </u>  | <u> </u>                                     |        |       |        |      | 1      | _   |             |          |        |        |             |            |
|                                              |           |                                              |        |       |        |      |        |     |             |          |        |        |             |            |
|                                              | ~ ~       |                                              |        |       |        |      |        |     | _           | _        | _      |        | 18.         | ••         |
|                                              |           | _                                            |        |       |        |      |        |     |             | -        |        |        | 20          | •••        |
|                                              |           | _                                            | _      | _     |        |      |        | _   | _           | _        | _      | _      | 21          |            |
|                                              |           | _                                            | _      | _     |        |      |        | _   | -           | _        |        |        | 22.         |            |
|                                              | -         | -                                            | _      | _     |        |      |        |     | _           |          | _      | _      | 23.         |            |
|                                              |           |                                              |        |       | _      | _    | _      | _   | _           |          | _      |        | 24.         |            |
|                                              |           | <u> </u>                                     |        |       |        |      |        |     |             |          |        |        | 25.         |            |
|                                              |           |                                              |        |       | 30     | -    | ·      |     |             | _        |        |        |             |            |
|                                              |           |                                              |        |       |        |      |        |     | _           | _        |        |        | 26.         | ·<br>• •   |
| <u>                                     </u> | _         |                                              |        |       |        |      | ·      | _   | _           | _        | _      |        | 27.         | <u></u>    |

## post-glacial regression

#### Shell-beds from the sero-392

|               |                  |     |       |          | Tof  | te  | rna   | A     |       |       |          |            | Toft<br>( | erna<br>] |
|---------------|------------------|-----|-------|----------|------|-----|-------|-------|-------|-------|----------|------------|-----------|-----------|
|               |                  |     |       |          |      | p   | 308   |       |       |       |          |            | p. 1      | 308       |
|               | . 2              | ;   | 8     | 3        | 4    |     | 5     | )<br> | 6     | ;     | 7        | !          | c. '      | 7.5       |
|               | 1 - 2            | 2 < | 12    | $2 \leq$ | 1-2  | 2 < | 1-2   | 2 <   | 1 - 2 | 2 <   | 1-2      | $2 \leq 1$ | 1 - 2     | 2 <       |
|               |                  |     |       |          |      |     |       |       |       |       |          |            |           |           |
| 1             |                  |     | -     |          |      |     |       |       | -     | _     |          | -          | -         | 7         |
| 2             |                  |     | -     |          | _    |     |       |       |       |       |          |            | 40        |           |
|               |                  |     |       |          |      |     |       |       |       |       |          |            |           |           |
| 5             | 100              | -   | 25    |          |      |     | ·     | _     | +?    |       | 25       |            | _         |           |
| 6             | _                | _   | _     |          |      | _   | _     |       |       |       |          | _          |           |           |
| 7             |                  | _   | -     |          | _    | _   | _     |       | _     | _     | _        |            | _         |           |
| 8             |                  | _   | —     | _        | _    | _   |       | -     |       |       | -        |            | —         |           |
| 9             | _                |     | _     |          | _    | _   | _     |       | -     | _     |          |            | -         | -         |
| 10            |                  |     |       |          |      |     |       |       |       |       |          |            |           |           |
| • • •         | 17 775           | 10  | 9 550 | 25       | 5400 | 5   | 5 625 | 250   | 11825 | 1 295 | 15 350   | 945        | 8 200     | 3 340     |
| 11            | · _              |     | ·     |          |      |     |       |       |       | -     |          |            |           |           |
| 12            |                  | _   | +     |          | +    |     | +     | _     | —     | _     | _        |            | _         | -         |
| 13            | <u> </u>         |     |       |          |      |     | _     |       |       |       | <u> </u> |            |           |           |
| 14            | _                | _   | _     |          | _    |     | _     |       | _     |       |          |            | -         | -         |
| 15            |                  |     | _     |          |      |     |       |       |       | _     | <u> </u> |            |           | -         |
|               | _                |     | -     | _        | _    | _   | _     |       | —     |       | _        |            |           | -         |
| 16            | —                |     | _     |          | _    | _   | _     |       |       |       | _        | -          |           | -         |
| 17            |                  |     |       |          |      | _   |       |       |       |       |          | _          |           |           |
|               |                  |     | -     |          | -    | _   | _     |       |       |       | —        | -          | . –       | -         |
| 18            | +++              | _   | ++    |          | +    | -   | +     | —     | +     |       |          |            | —         | -         |
| 19            | -                | —   | -     | -        | _    | -   |       | —     | +     | _     | i —      | -          | _         | -         |
| 20            | -                |     | -     |          | -    | _   |       |       |       | _     |          |            | -         | -         |
| 21            | 25               |     | -     |          | -    | _   | _     |       | -     |       | -        |            | -         |           |
| 22            | -                |     |       |          |      |     | _     |       |       |       |          |            |           |           |
| • .• 20<br>94 | _                |     |       |          |      |     |       |       |       |       |          |            |           |           |
| 25            | <sub>+ + +</sub> |     | +++   |          | ++   |     | +     |       | +     | _     |          | - 1        | -         |           |
|               | 25               | _   | +     | _        | +    |     | +     |       | +     | -     | _        |            | <u> </u>  |           |
| 26            |                  |     |       |          |      | _   | _     | 5     |       |       | - 1      | _          | _         | <u> </u>  |
| 27            |                  |     | · .   |          |      |     |       |       |       |       | _        |            |           |           |

410

. . .

. . .

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $  | _     |       |          | _           |            |                                                        |          |          |        |                    |                 |          |       | <u> </u>             |                  |      | _ |
|----------------------------------------------------------|-------|-------|----------|-------------|------------|--------------------------------------------------------|----------|----------|--------|--------------------|-----------------|----------|-------|----------------------|------------------|------|---|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   |       | 1     | ;ötł     | 101<br>p. 8 | теп<br>310 | ı A                                                    | <b>L</b> |          |        | Nöth               | iolme<br>p. 310 | n B      |       | Rös:<br>Lång<br>p. 3 | sö-<br>ö A<br>13 |      |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 0     | 5     | 1.5      | 5           | 2.3        | <b>3</b> ∙5                                            |          | 6'       | 6      | 7.4                | 7.              | 6        | 8.3   | ;                    |                  |      |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | 1 2   | 2<    | 1-2      | 2 <         | 1-2        | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |          | 1-2      | 2<     | $\overline{2 < 1}$ | 1-2             | 2 <      | 1-2   | $ 2\langle$          |                  |      |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$     | 1     |       | !        |             |            | 1                                                      | <u>`</u> | <u> </u> |        |                    |                 |          |       | ;                    |                  | 1    |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$     | 20    | _     | 20       |             |            | _                                                      | 20       |          |        | -                  | 10              | 50       | -     | 30                   | -                | 1    |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | -     |       | 40       |             | 600        |                                                        |          | -        |        |                    |                 |          |       |                      | -                | 2    |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$   |       | _     | _        |             |            |                                                        |          |          | —      |                    |                 |          |       | -                    | -                | 4    |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       |       | -        |             | _          |                                                        |          | -        | _      | _                  | _               |          | —     |                      |                  | 5    | , |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$   |       |       | -        | _           |            |                                                        |          |          | _      | _                  | _               |          |       | -                    | _                | 6    | , |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | _     | -     |          | _           |            | -                                                      |          | -        | -      | <b></b> -          | '               |          |       | ] —                  | -                | 7    |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       |       | -        |             |            | -                                                      | <u> </u> |          | _      | -                  | -               | —        | _     | -                    |                  | 8    |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 100   | 10    | 120      |             | 100        |                                                        | 80       | i        | `      |                    |                 | -        |       | 30                   | -                | 9    |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |       |       | <u> </u> |             |            |                                                        | <u> </u> |          |        | <u> </u>           | <u> </u>        |          |       | <u> </u>             |                  | 10   |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   | 6 280 | 1 450 | 13 800   | 665         | 20 780     | 410                                                    | 30 100   | 180      | 36 150 | 1 260              | 1 090           | 44 500   | 1 320 | 11 970               | 475              |      |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$   |       |       |          |             |            |                                                        |          |          |        |                    |                 |          |       |                      |                  | u.,  |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       |       |          |             |            | _                                                      | _        |          |        | _                  |                 | _        |       | _                    | _                | 12   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | _     | _     | _        | -           |            | _                                                      | l_ —     | -        | _      |                    | _               |          | _     | _                    | _                | 13.  |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       |       |          |             |            |                                                        |          |          |        |                    |                 |          |       |                      |                  | Ī.   |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   |       | _     |          |             |            |                                                        |          |          | _      |                    |                 |          | _     |                      |                  | 14   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       |       |          | -           |            | _                                                      | . –      |          |        | _                  | -               | -        | _     |                      |                  |      |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       |       | -        |             |            | _                                                      | —        | -        |        | _                  |                 | _        | -     | _                    | _                | 16   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       |       |          |             |            |                                                        | <u> </u> | <u> </u> |        |                    |                 | <u> </u> |       |                      | <u> </u>         | 17   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |       | _     |          | -           |            |                                                        | -        |          | -      | —                  | —               | -        | -     | -                    | -                |      |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$   | +     | _     | +        | -           | ++         |                                                        | +        | -        |        |                    | —               | . —      |       | -                    |                  | 18   |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   | -     |       | -        | -           | ¦          |                                                        |          |          |        | -                  |                 | . —      | _     | _                    |                  | 19   |   |
| $ \begin{vmatrix} - & - & - & - & - & - & - & - & - & -$ |       |       |          | -           |            |                                                        |          |          |        |                    | —               | ·        | _     | -                    | -                | 20   |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   |       | _     |          |             |            |                                                        |          |          | ~      | -                  | —               |          | -     | -                    | -                | 21   |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   | -     |       | -        |             |            |                                                        |          | -        |        |                    |                 | -        | -     | ·                    |                  | 22   |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$   |       |       |          |             | _          |                                                        |          |          |        |                    |                 |          | —     | -                    |                  | 23   |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   |       | _     |          |             |            |                                                        |          |          |        |                    |                 |          |       |                      |                  | 25 . |   |
|                                                          |       |       |          | 1           |            |                                                        | <u>"</u> |          |        |                    | · ·             |          |       |                      | <u> </u>         |      |   |
|                                                          | 10    |       | -<br>-   |             |            |                                                        |          | _        |        | _                  |                 | _        |       |                      |                  | 26.  |   |
|                                                          |       |       |          | _           |            |                                                        |          | <u> </u> |        |                    |                 |          |       |                      | İ _              | 27   |   |

LAPTH 1917

#### Shell-beds from the sero-394

| _        |     |            |        |       |          |          |          | _      |            |          |          | _        |              |          |      |                  | _                                            | -          |
|----------|-----|------------|--------|-------|----------|----------|----------|--------|------------|----------|----------|----------|--------------|----------|------|------------------|----------------------------------------------|------------|
| -        |     |            | Rös    | sö-Lå | ingö l   | В        |          | S      | 5 v ä      | lte      | Э        |          | Kjel<br>vike | l-<br>n  | Keb  | al               | Bag<br>röd                                   | ge.<br>d   |
|          |     |            |        | p. 3  | 13       | 1        |          |        | р. 8       | 325      |          |          | р. 3         | 26       | p. 3 | 27               | p. 3                                         | 28         |
|          |     |            | 8.     | 3     | 8.7      |          | c. 1     | 4      | c. 5       | 3.4      | c        | 4        | 5.3          |          | c. 1 | •5               | 0.5                                          | 2          |
| 1.       |     |            | 1-2    | 2 <   | 1-2      | 2 <      | 1-2      | 2 < 1  | 1-2        | 2 <      | 1-2      | 2 <      | 1-2          | 2 <      | 1-2  | $\overline{2} <$ | 1 - 2                                        | 2<         |
| _        |     |            |        |       |          |          |          |        |            |          |          |          |              |          |      |                  |                                              |            |
| ۰.       |     | 1          | 100    | —     | -        |          |          | -      | —          | -        | -        | 80       |              | 100      | 40   | 40               | 10                                           |            |
|          |     | 2          | _      | _     |          |          |          | -      | —          | _        | 30       | —        | _            | -        |      | _                |                                              | -          |
|          | •   | 3          | —      | -     |          |          | 30       |        | 160        |          | -        | -        | 120          | -        | -    |                  | _                                            | -          |
|          | •   | - 4        |        | -     |          | -        | -        |        | -          |          |          | _        | _            | _        | -    | -                | _                                            | -          |
|          |     | . 5        |        | -     |          |          | -        |        |            |          |          | _        | _            |          | _    |                  |                                              | -          |
|          | •   | . 6<br>-   |        |       |          |          |          |        | 40         |          |          |          | -            |          | _    | _                |                                              |            |
| • •<br>• |     |            |        |       |          |          |          |        |            |          | /        |          |              |          | · ·  |                  | _                                            |            |
|          | •   | 6          |        |       |          | _        | _        | 80     | _          | _        | _        | 40       | _            | 50       | _    | 40               |                                              |            |
|          |     | 10         | ·      | _     |          | _        |          |        |            |          | ·        | _        | _            | _        | -    |                  |                                              |            |
|          |     |            | 26 800 | 1.550 | 400      | 4 830    | 340      | 14 120 | 1 090      | 9 750    | 435      | 11 040   | 390          | 23 250   | 5040 | 24 600           | 4310                                         |            |
|          |     |            |        | 1 000 |          |          |          |        |            |          |          |          |              |          | -    |                  |                                              |            |
|          | • • | . 11       | · +    |       |          | <u> </u> |          |        |            |          |          |          |              | _        |      |                  |                                              |            |
|          |     | . 12       |        | _     |          | -        | -        |        |            | -        |          | _        |              |          | _    | _                | -                                            | -          |
|          |     | . 13       |        |       | <u> </u> | <u> </u> | 30       | 75     | 280        | 90       | <u> </u> | 15       |              |          | · 50 | 80               | <u> </u>                                     |            |
| •        |     | . 14       | _      | _     |          |          | _        |        | . <u> </u> | _        | —        | _        | - 1          |          | _    | _                | -                                            |            |
|          |     | . 15       |        | _     |          |          |          | _      |            |          |          |          |              | -        |      |                  |                                              |            |
| ,        |     |            |        |       |          | <u> </u> |          |        |            |          | _        | <u> </u> |              | _        | _    | _                |                                              |            |
|          |     | 1.0        |        |       |          |          | _        |        |            | _        |          |          | ·            |          | -    | _                | _                                            |            |
|          |     | . 10       |        | -     |          | .        | I        |        |            | _        | l        |          | i            |          | -    | —                | _                                            |            |
|          | •   |            |        | 1     |          | <u> </u> | _        | 1_     |            | <u> </u> |          | <u> </u> | <u> </u>     | _        | - 1  |                  | i                                            |            |
|          | •   | •••        |        |       |          |          |          |        |            |          |          | _        |              |          |      | _                |                                              |            |
|          | •   | . 18       |        | -     |          |          |          |        |            |          |          |          | · -          | _        | _    |                  |                                              |            |
|          | •   | . 19<br>90 |        |       |          |          |          |        |            | <br>     | 30       |          | _            |          |      |                  |                                              |            |
|          | •   | · 20<br>21 |        |       |          |          | 1 _      |        |            |          | _        | .        |              |          |      |                  |                                              |            |
|          |     | · 21       | - 1    |       |          |          |          |        |            |          |          | -        |              |          | -    | _                |                                              |            |
|          |     | . 23       |        | · _   |          |          | _        | -      |            |          |          | .        |              | -        | _    | _                |                                              | -          |
| ;        |     | . 24       | _      |       |          | -        | ! _      | -      | 1 -        | -        | - 1      | ·        |              | - I      | ·    |                  | -                                            | ·          |
| ł        |     | . 25       |        |       | -        | -  _     | <u> </u> | -      | <u>  </u>  | <u> </u> | <u> </u> |          | <u> </u>     | <u> </u> | 1    |                  | <u>                                     </u> | <u>-  </u> |
|          |     |            | - 1    | _     |          | -        |          | -      | -          | -  -     | 30       | )        | -            |          |      | -                |                                              | -   -      |
| i.       |     | . 26       |        |       |          | _  _     |          |        |            | -  _     |          | -        | _            | -        |      | _                |                                              |            |
| Ì        |     |            |        |       |          |          |          | İ      |            |          |          | İ        |              | Î        | 1    |                  |                                              |            |
| 1        |     | . 27       | ı —    |       | -11      | -1       | -i —     | -1     |            |          | -ii —    |          | · · · · ·    | · I      |      | ı —              | 1 -                                          | 1          |

411

· • • •

|            |     |             | post-glacial regression.395NordkosterNöddöOtterö BKar-<br>holmen<br>p. 330Rar-<br>p. 331P. 315Rar-<br>p. 332 |             |                                                                                                |          |          |                      |          |          |          |             |       | $\mathbf{Rec}$                                         | ent     |             |                                      |              |
|------------|-----|-------------|--------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------|----------|----------|----------------------|----------|----------|----------|-------------|-------|--------------------------------------------------------|---------|-------------|--------------------------------------|--------------|
| _          |     |             |                                                                                                              |             | post-glacial regression.<br>395<br>oster Nöddö Otterö B Kar-<br>holmen<br>p. 331 p. 315 p. 332 |          |          |                      |          |          |          |             |       | ~                                                      |         | <u> </u>    | Continued from p.                    |              |
| jrh        | ułt | Ne          | ordk                                                                                                         | toster      |                                                                                                | Nöd      | ldö      | Otter                | öΒ       | Kar      | •-       | Bratt       | skär  | Gul                                                    | 1-      |             |                                      |              |
| <u>Ы</u> . |     |             | n 9                                                                                                          | 220         |                                                                                                | n 9      | 131      | n 21                 | 5        | holm     | en<br>19 | n 3         | 33    | mar                                                    | en<br>स |             |                                      |              |
| . U.       | •   |             | р. с<br>                                                                                                     |             |                                                                                                |          |          | $-\frac{p. 01}{0.5}$ |          | 0        |          | <u>p. 0</u> |       |                                                        |         |             | Samulas, height in w shove the see   |              |
|            |     | 1 9         | 0                                                                                                            | 1 9         | 9~                                                                                             | 1 9      | 9/       | 1 9                  | 0<br>    | 1.9      | 9/       | 1_9         | ,<br> | 1_9                                                    | ə_      |             | Correspondence of material in www.   |              |
|            | ~   | <u>1</u> —2 |                                                                                                              | 12          | ~                                                                                              | 12       | ~ \      | 1                    | <u>~</u> | 1-2      |          | 1-2         | ~     |                                                        | ~_      |             | · · ·                                | <del></del>  |
|            | _   | _           |                                                                                                              | 25          |                                                                                                | _        |          |                      |          | 50       | 15       | 100         | _     | 75                                                     | _       | 1           | Triforis perversa L. (1)             | prt          |
|            |     | _           | _                                                                                                            |             | <u> </u>                                                                                       |          | -        |                      | _        | _        | _        |             |       |                                                        | ••••    | $\ldots 2$  | Turbonilla lactea L. (1)             | st-          |
| 015        |     |             |                                                                                                              |             | _                                                                                              |          |          |                      |          |          | -        | -           |       |                                                        |         | 3           | Odostomia cf. albella Lov. (1)       | l po         |
| y 20       |     |             |                                                                                                              |             | -                                                                                              |          |          | -                    | -        | -        |          | _           | _     | -                                                      | -       | 4           | > cf. rissoides HANL. (1)            | and          |
| uar        | -   |             |                                                                                                              |             |                                                                                                | —        | —        | -                    |          |          |          |             | -     | —                                                      | -       | ā           | Eulimella acicula Phil. (1)          | onal         |
| ebr        |     | _           | -                                                                                                            |             | -                                                                                              | —        |          | 60                   |          | -        |          | _           | _     |                                                        |         | 6           | $\rightarrow sp.$                    | cssi<br>al j |
| E C        | —   |             |                                                                                                              |             |                                                                                                |          | •        |                      |          |          |          |             | _     | · · · · · · · · · · · · · · · · ·                      |         |             | Buccinum undatum L. (b)              | regr<br>sion |
| 04         |     |             |                                                                                                              | 25          |                                                                                                |          |          | 30                   |          |          |          |             | _     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |         | •••••••••   | truncatulus Berg (1)                 | ial<br>gres  |
| 1:5        | _   |             |                                                                                                              |             |                                                                                                |          |          |                      | _        | _        |          |             | _     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |         | 10          | Pleurobranchus plumula MONT. * (1)   | glac         |
|            | 460 | 5 320       | 60                                                                                                           | 9 2 2 5     | 170                                                                                            | 22800    | 3 640    | 7 860                | 300      | 18 225   | 720      | 13 900      | 1 060 | Recent .                                               |         |             | Gastronoda: sum                      | al ti        |
| [es]       |     |             |                                                                                                              |             |                                                                                                |          |          |                      |          |          |          |             | 10    |                                                        |         |             | Wallhaimia ananium Nëta (a)          | no-j         |
| ranj       |     |             |                                                                                                              |             |                                                                                                |          |          |                      | <u> </u> |          | <u> </u> |             |       |                                                        |         | 11          | Wataneimių crantam Menn. (a)         | Pri-         |
| Lib        |     | ·           | -                                                                                                            |             |                                                                                                |          | ·        | -                    | -        | -        | -        | -           |       | +                                                      | -       | 12          | Echinus esculentus L.                | prt          |
| ц.         |     |             | _                                                                                                            |             |                                                                                                |          | <u> </u> | <u> </u>             | -        | <u> </u> | <u> </u> |             |       |                                                        | 5       | 13          | Echinocyamus pusillus Müll.          | <u> </u>     |
| alTe       |     | _           | _                                                                                                            |             | -                                                                                              | _        |          | _                    |          |          |          | -           | —     |                                                        |         | 14          | Lepidopleurus cancellatus Sow. (b)   | ptm          |
| ini        | _   |             | _                                                                                                            |             |                                                                                                |          |          | <u> </u>             |          |          | <u> </u> |             |       |                                                        | _       | 15          | Callochiton lacvis PENN.* (1)        |              |
| /jrg       | _   |             |                                                                                                              | <del></del> |                                                                                                |          | -        | _                    | -        | -        | _        | _           |       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |         |             | Amphineura: sum                      |              |
| N N        | _   |             |                                                                                                              |             |                                                                                                | _        |          | _                    |          | _        | —        | _           | _     |                                                        | _       | 16          | Hinnites pusio L. (1)                | acia         |
| d þ        |     |             | _                                                                                                            | ·           |                                                                                                | _        |          |                      |          |          |          |             |       |                                                        | _       | 17          | Solecurtus antiquatus PULT. (1)      | it-gl        |
| ade        |     |             |                                                                                                              |             | _                                                                                              |          |          | <u> </u>             |          |          | -        |             | _     |                                                        |         |             | Pelecypoda: sum                      | od un        |
| /nlo       | _   |             |                                                                                                              |             | _                                                                                              |          |          |                      | _        |          | _        |             | _     |                                                        | _       | 18          | Coecum glabrum Mont. (1)             | the          |
| MO         | _   | 20          |                                                                                                              |             |                                                                                                |          | -        |                      | _        |          |          |             | _     |                                                        | _       | 19          | Turbonilla indistincta Most. (1)     | ing          |
| <u>–</u>   |     | -           | -                                                                                                            | _           |                                                                                                |          | -        |                      |          |          | . —      |             | _     |                                                        |         | 20          | Odostomia unidentata Mont. (b)       | dun<br>sion  |
|            |     | _           | —                                                                                                            |             |                                                                                                | _        |          |                      |          | -        | _        |             |       | _                                                      | —       | 21          | Eulima distorta Desn. (1)            | ted          |
| —          |     |             | -                                                                                                            | _           | -                                                                                              |          | -        |                      | —        |          | -        | —           | _     | —                                                      | -       | $\ldots 22$ | Utriculus mammillatus PmL. (1)       | ligro        |
| -          | -   | ~           |                                                                                                              |             | -                                                                                              | _        |          | _                    | —        |          | —        |             |       |                                                        |         | 23          | Diaphana hyalina Turr. (b)           | tr           |
| _          |     |             |                                                                                                              |             |                                                                                                |          | —        |                      |          |          | ·        | —           | -     | -                                                      | _       | 24          | • cxpansa JEFFR. (b)                 | sm           |
|            |     |             |                                                                                                              | . —         | -                                                                                              |          | <br>     |                      |          |          |          |             |       | +                                                      | _       | 20 /        | Costropoles any                      | For          |
|            | _   | <i>z</i> 0  | ]                                                                                                            | _           |                                                                                                |          | _        |                      | -        | -        | _        |             | 10    | +                                                      | _       |             | Gastropoda: sum                      |              |
|            |     |             | <u>                                     </u>                                                                 |             |                                                                                                |          | <u> </u> |                      |          |          |          |             |       |                                                        |         | 26          | Terebratulina caput serpențis L. (b) | ntm          |
|            | _   |             |                                                                                                              |             |                                                                                                | <u> </u> |          | <u> </u>             |          |          | _        | _           |       |                                                        | _       | 27 .        | Parechinus miliaris Leske *          | Pum          |
|            |     |             |                                                                                                              |             |                                                                                                |          |          |                      |          |          | -        |             |       |                                                        |         |             |                                      |              |

411

. . . . . . . . . . . Continued on p.

|                         |                                             | 410            | ł "           |         |          | ER             | NST AN   | TEVS.    |          | • •        |            | [#       | April 1          | ł |
|-------------------------|---------------------------------------------|----------------|---------------|---------|----------|----------------|----------|----------|----------|------------|------------|----------|------------------|---|
|                         |                                             | 40.4           |               |         | Shel     | l-bed          | s froi   | n the    | e ser    | 0-         |            | 107      |                  |   |
|                         | Continued from p                            | 404            | 400           |         |          | 406            |          |          |          |            |            | 407      |                  |   |
|                         |                                             | dals-<br>kilen | Torse-<br>röd | Т       | oft      | ; e <b>i</b> : | na.      | A        | . ]      | Nöthe<br>1 | olmer<br>¥ | l        | Nöt<br>holm<br>B | ł |
| 10                      | · · · ·                                     | p. 316         | <u>р. 307</u> |         |          | p. 308         | <u> </u> |          |          | р.         | 310        |          | p. 31            |   |
| LY 2                    | Samples: height in <i>m</i> above the sea   | 25.9           | cc. 1.5       | 2       | <u> </u> | 3              | 4        | 5        | 0.2      | 1.2        | 2.2        | 3.2      | 7.4              | I |
| rua                     | Coarseness of material in mm                | 2< .           | _2<           | 1-2     | 2<       | 1—2            | 1-2      | 1-2      | 2<       | 2 <        | 12         | 1-2      | 2<               | 4 |
| Feb                     | 1 Lima Loscombi Sow. (1)                    |                |               | _       |          |                |          |          | _        | _          |            |          | _                | ľ |
| 17                      | 2 Portlandia frigida ToneLL (b)             | · _ ·          |               | 38      |          | 13             |          | _        |          |            | [          |          | _                | I |
| 0.0                     | 3 Isocardia cor L. (1)                      |                | -             |         |          | -              |          | —        |          |            |            |          | '                | l |
| 6                       | 4 Venus fasciata Dox. (1)                   |                |               | 13      | 3        |                |          |          | -        |            |            |          |                  |   |
| at                      | 5 Dosinia lincta Pulten (l)                 | _              | —             |         |          |                | . –      |          | _        | -          |            | . —      | '                | I |
| les                     | 6 Montacuta Vöringi FRIELE (b)              |                |               |         |          | —              | _        | -        | _        | -          |            | ,        | -                | I |
| rar                     | 7 Abra prismatica MONT. (b)                 | —              |               | -       | 5        | —              |          | -        |          | -          |            |          | <sup> </sup>     |   |
| s El                    | 8 Macoma tenuis DA Costa * (b)              | - 1            |               | -       | -        | -              |          | .—       | —        | i — i      | . — i      | -        |                  |   |
| Ch<br>Lou               | 9 Psammobia ferröensis CHEMN. (b)           | —              | —             |         |          | -              | -        | .—       |          | —          | —          | 1        | 5                |   |
| 19<br>130<br>130<br>130 | 10 > sp                                     | —              | —             |         |          |                | ·        | ·. —     | -        | -          | -          | -        |                  | ł |
| nia<br>el <b>3-</b>     | 11 Arcinella plicata MONT. (b)              |                |               |         |          |                |          |          | _        |            | <u> </u>   | <u> </u> |                  | J |
| icial<br>Ib.II          | Pelecypoda: sum                             | · _            | —             | 51      | 8        | 13             | -        |          | —        |            |            |          | 5                |   |
|                         | 12 Lunatia Montagui Forb. (b)               |                | _             |         |          |                |          |          | _        |            | -          | _        | I                |   |
| ,rcs:                   | 13 Cingula soluta PHIL. (b)                 | —              |               | _       |          |                |          | 25       | —        | -          | -          | _        |                  |   |
| pel                     | 14 Alvania cimicoides FORD. (b)             |                |               |         |          |                |          | -        | -        | ;          | 20         | —        |                  |   |
| i la                    | 15 Scalaria communis LAMK. (1)              | 10             |               |         |          | —              |          |          | —        |            | _          | —        |                  |   |
| <u>vn</u>               | 16 Parthenia interstincta MONT. (1)         |                |               | 25      |          | 25             | —        | . —      |          |            |            | 20       | -                | ł |
|                         | 17 Eulimella ventricosa Forb. (1)           | - 1            |               | 25      |          |                | -        | . —.     | —        | —          |            | -        |                  |   |
| Ints                    | 18 Eulima bilineata ALD. (1)                | _              |               | 25      | -        |                |          | `        |          | ;          | —          | . —      |                  | 1 |
| _                       | 19 Homalogyra atomus PIIIL. (1)             | -              |               | +       |          | +              | +        | . —      |          | . —        |            | -        |                  |   |
|                         | 20 Clathurella Leufroyi MICH. (1)           | —              |               | —       | -        | -              |          | —        | —        |            | i          | -        |                  |   |
|                         | 21 Mangelia costata Dox. (1)                | -              |               | -       |          |                | -        | —        | -        |            |            | - 1      |                  | 1 |
|                         | 22 <b>,</b> <i>sp.</i>                      | -              |               |         |          | -              | . —      | —        | 5        | i          | . — i      | ' —      | 1                |   |
|                         | 23 Actaeon tornatilis L. (1)                |                | 10            | — :     |          | — i            |          |          | -        | +          |            | -        |                  |   |
| spr                     | 24 Philine quadrata WOOD (a)                |                |               |         |          | <u> </u>       |          | <u> </u> | <u> </u> | <u> </u>   |            | <u> </u> |                  | 4 |
|                         | Gastropoda: sum                             | 10             | 10            | 75      |          | 25             | +        | 25       | į        | +          | 20         | 20       | —                |   |
|                         | 25 Terebratulina septentrionalis Соитн. (a) |                |               |         |          |                |          |          |          |            |            |          |                  |   |
|                         |                                             | ]              | Iere are      | include | d only   | such           | sample   | s or fr  | actions  | in w       | hich s     | ero-po   | st-glacia        | 1 |

| a 39. H. 4.] | POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. |  |
|--------------|---------------------------------------------|--|
|              | wash wis sigi waswasuis.                    |  |

ment ml ~1 ~~~~ ----

411 -

- - - 4

|                 |     |        | •             | 408<br>408      | aciai r | egressi       | юц<br>•         | 409          | R         | есец         | Continued from p.                                  |      |
|-----------------|-----|--------|---------------|-----------------|---------|---------------|-----------------|--------------|-----------|--------------|----------------------------------------------------|------|
| Rössö-<br>Långö | · s | väl    | te            | Kjell-<br>viken | Kebal   | Bagge-<br>röd | Nord-<br>koster | Nöddö        | G1<br>ma  | ull-<br>iren |                                                    |      |
| D<br>1, 313     |     | p. 325 |               | p. 326          | р. 327  | p. 328        | p. 330          | p. 331       | <b>р.</b> | 334          | ·                                                  |      |
| 83              | с.  | 1.4    | c. 4          | 5.3             | c. 1.5  | 0-2           | 3               | 4.2          |           | · · · · ·    | $\ldots$ Samples: height in <i>m</i> above the sea |      |
|                 | 1-2 | 2<     | 2<            | 2<              | 2<      | 2<            | 2<              | 1-2          | 12        | 2<           | Coarscness of material in mm                       |      |
| F               |     |        | -             | _               |         | 5             | _               |              | · .       | 3            | 1 Lima Loscombi Sow. (1)                           | -    |
| - 1             |     | -      | -             | —               |         |               | _               | _            | _         | —            | 2 Portlandia frigida Torell (b)                    |      |
| 2 -             |     | —      | —             |                 | —       | ·             |                 | —            | _         | —            | 3 Isocardia cor L. (1)                             | shr  |
| - 1             | —   | -      |               | —               |         |               |                 | —            | —         | _            | 4 Venus fasciata Dox. (1)                          |      |
| 3 -             | —   | 5      | -             | —               | —       |               | —               |              |           |              | 5 Dosinia lincta PULTEN (1)                        | 1    |
| - 1             | 15  | —      | —             | —               |         |               | _               | -            |           | —            | 6 Montacuta Vöringi FRIELE (b)                     |      |
| <b>H</b>        | -   |        | —             | -               |         |               | - <u>-</u> -    |              |           |              | 7 Abra prismatica Moxr. (b)                        | 1    |
| <b>G</b> -      |     |        |               | 5               |         | —             | —               | 45           |           |              | 8 <i>Масота tenuis</i> DA Costa* (b)               | ts   |
| · -             |     |        | -             |                 |         |               | —               | —            | —         | · —          | 9 Psammobia ferröensis CHEMN. (b)                  | Lan  |
| +               |     | —      | —             |                 | —       | ·· —          |                 | —            | —         | —            | $\ldots \ldots 10$ , $sp$ .                        | in.  |
|                 |     |        | 3             |                 | —       |               | Ō               |              |           |              | 11 Arcinella plicata Moxr. (b)                     | .E   |
| +               | 15  | 5      | 3             | 5               |         | . 5           | õ               | 45           |           | 3            | Pelccypoda: sum                                    | onal |
| - H             | —   |        | $\rightarrow$ |                 |         | —             | ·               |              |           | _            | 12 Lunatia Montagui Form. (b)                      | CSRI |
| p               |     |        | ·             | —               |         | —             | —               | —            | _·        | _            | 13 Cingula soluta Phil. (1)                        | regi |
| Ł -             |     | ·      | —             | -               | —       |               | —               |              | —         |              | 14 Alvania cimicoides Form. (b)                    | િ    |
| r –             | . — |        | —             |                 | ·       |               | · —             |              | -         | -            | 15 Scalaria communis LAMK. (1)                     | Inci |
| 8               | —   |        | —             | —               | —       | —             |                 |              | -         | —            | 16 Parthenia interstincta Most. (1)                | st-B |
| - m             |     |        |               | —               | -       | ·             | —               |              | -         |              | 17 Eulimella ventricosa Forb. (1)                  | od-  |
|                 | —   |        |               | —               | —       | —             |                 |              | +         | —            | 18 Eulima bilineata ALD. (1)                       | Sero |
|                 | -   |        |               |                 |         |               | —               |              |           | —            | 19 Homalogyra atomus Рнн. (1)                      | 01   |
| <b>1</b> 1      |     |        | —             |                 | 20      |               |                 | —            |           | —            | 20 Clathurella Leufroyi MICH. (1)                  |      |
| -               |     | - '    | · ····        |                 |         | ÷             |                 | $\leftarrow$ |           | —            | 21 Mangelia costata Dox. (1)                       |      |
| -               |     |        | j —           |                 |         |               | —               | -            |           | —            | $\cdots 22 $ , $sp.$                               |      |
|                 |     |        |               |                 |         | —             |                 | —            | -         |              | 23 Actacon tornatilis L. (1)                       |      |
| <u> </u>        |     |        | <u> </u>      | —               |         |               |                 |              |           |              | 24 Philine quadrata Wood (a)                       | snr  |
|                 |     |        | —             | -               | 20      | —             |                 |              | +.        |              | Gastropoda: sum                                    | -1-+ |
|                 |     |        |               |                 | 120     |               |                 |              |           | _            | 25 Terebratulina septentrionalis Соитн. (a)        |      |

ssional immigrants are represented.

ERNST ANTEVS.

|                    |                                                             |          |          |                 |           |                         | _         |              |
|--------------------|-------------------------------------------------------------|----------|----------|-----------------|-----------|-------------------------|-----------|--------------|
|                    |                                                             | Hå       | ifve     | Häl             | le Il     | Tofte<br>A              | erna      | Häj<br>le 11 |
|                    |                                                             | _ p.     | 301      | p.              | 321       | p. 3                    | 08        | 」<br>[P. 3]  |
|                    | Locality: height in m above the sea                         | 2        | 2.3      | 1               | G.2       | 1.                      | 5         | 13           |
|                    | Samples: »                                                  | 20       | 0.0      | 14.6            | 15.1      | 1.                      | 5         | 13           |
|                    | Coarseness of material in mm                                | 1-2      | 2 <      | $\overline{3<}$ | 3<        | 1-2                     | 2 <       | 3<           |
| Redepos-<br>ited   | Arca glacialis GRAY (a) Borcochiton marmoreus FABR. (a) .   |          |          | 1/6             | <br>      |                         | <br>1/3   |              |
| fi -               | Poston islandique Mürr (a)                                  |          |          |                 |           |                         |           |              |
| ni-g               | Mutilus edulis L. (b)                                       |          | +        | -<br>1          | 3         | 9.1                     |           | <b>!</b> ,   |
| Gotl               | Portlandia lenticula FARR. (a)                              |          |          |                 |           | £                       |           |              |
| al t               | Astarte elliptica Brown (a)                                 |          |          |                 |           | _                       | 1/2       |              |
| lacia              | <i>Mya truncata</i> L. (a)                                  | _ ·      | 1/2      |                 | _         | _                       | ,-        | -            |
| igres              | Saxicava rugosa L. (a)                                      | 12       | 2        | 10              | 10        | 44                      | 1         | 13           |
| ogressi<br>ssional | Pelecypoda: sum                                             | 12       | 21/2     | 14              | 13        | 68                      | 11/2      | 15           |
| onal<br>im         | Lepeta caeca MULL. (a)                                      | —        | -        | -               | 2         | _                       |           | 1            |
| l and)<br>unigra   | Litorina litorea L. (b)                                     | 8        | 2        | 1               | ō         | -                       | _         | 3            |
| nts                | Lacuna divaricata FABR. (a)                                 | <u> </u> |          | 1               | 3         | 60                      | 1         | 2            |
|                    | Gastropoda: sum                                             | 8        | 2        | 2               | 10        | 60                      | 1         | 6            |
| ĺ                  | Balanus crenatus Brug. (b)                                  |          | +        | 1               | 1         | 4                       | 1         | 2            |
| ft                 | » porcatus da Costa (a)                                     | -        | +        | 4               | 4         |                         | 2         | 1            |
|                    | Verruca Strömia Müll. (b)                                   |          |          | 23              | 25        | 240                     | 17        | 15           |
| . <u> </u>         | Balanidae: sum                                              |          | +        | 28              | - 30      | 244                     | 20        | 18           |
| fr                 | Lepidopleurus cinereus L. (l)<br>Boreochiton ruber Lowe (a) | ²/s<br>1 | -<br>1/c |                 | 1/6       | 13<br>11                | -         |              |
|                    | Amphineura: sum                                             | 1²/s     | 1/c      | -               | 1/6       | 24                      | _         | ĺ            |
|                    | Anomia aculeata L. (b)                                      | 2        | <br>3    | 20<br>75        | 12<br>105 | $\left. \right\}$ 1 200 | 22<br> 60 | 13<br>S0     |
|                    | Ostrea edulis L. (1)                                        | +        | 5++      | 3               |           | ľ _                     |           | 2            |
| ļ                  | Nucula nucleus L. (1)                                       | +        | +        |                 | 1         |                         | 2         | 1            |
|                    | Continued on p. 413                                         |          |          | ,               |           |                         |           |              |

### In these tables the numbers give the total of individuals found in the samples analysed. For further reference, see the text.

# Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 413

|                                      | Levelity: height in <i>m</i> above the sea                                                                            | H:<br>p.<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | åfve<br>301 | Häl<br>          | le II<br>321<br>6:5                                                                                     | Tofterna<br>A<br>p. 308                                               | Häl-<br>le III<br>p. 337                                                                    |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                      | Complet:                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6         | 14.6             | 15.1                                                                                                    | 1.5                                                                   | 13                                                                                          |
|                                      | Samples.                                                                                                              | 1_9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 9         | 2/               | 3/                                                                                                      | 1 9 9                                                                 |                                                                                             |
|                                      | Coarseness of material in mint                                                                                        | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 ~~        | 10~              | <u>  ~  </u>                                                                                            |                                                                       | 1 0                                                                                         |
| Fini-glacial regressional immigrants | Cardium echinatum L. (1) , cf. nodosum Turr. (b) , cf. exiguum GMEL. (l) Laevicardium norvegicum SPENGEL (l) Tapes sp | <br><br>4<br>20<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br><br>26<br>2<br>26<br>2<br>26<br>2<br>26<br>2<br>26<br>2<br>26<br>2<br>26<br>2<br>26<br>2<br>26<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br>2<br>20<br> |             |                  | $ \begin{array}{c}\\ 1\\ 1'/2\\ -'\\\\\\\\\\ 120\\ 1\\ 222\\ 10\\ -\\ 2\\\\ -\\ -\\ -\\ 1 \end{array} $ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                 | 1<br>1<br>1<br>1<br>1<br>1<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| fr                                   | Nassa reticulata L. (1)                                                                                               | +<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br><br>7  | 2<br>3<br><br>30 | +<br>6<br><br>42                                                                                        | $\begin{array}{c c} - & - \\ 56 & 6 \\ 4 & - \\ 932 & 42 \end{array}$ | 2<br>19<br>                                                                                 |
| prt                                  | Anomia patelliformis L. (1)                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ++          | 25               | 13<br>1/2<br>—                                                                                          | $- \begin{cases} 11 \\ 7 \\ - \\ + \\ - \\ 1 \end{cases}$             | 20                                                                                          |

Continued from p. 412

Continued from p. 413

|       |                                     |      |          |       |          |           | _    | -             |
|-------|-------------------------------------|------|----------|-------|----------|-----------|------|---------------|
|       |                                     | Ηá   | åfve     | Häll  | e II     | Toft<br>A | erna | Hal           |
|       |                                     | р.   | 301      | p. 5  | 321      | p. 8      | 808  | p. %.         |
|       | Locality: height in m above the sea | 2    | 2.3      | 16    | •5       | 1         | 5    | 13            |
|       | Samples:                            | 20   | 0.6      | 14.6  | 15.1     | -1.       | 5    | 13            |
|       | Coarseness of material in mm        | 1-2  | 2<       | 3<    | 3<       | 1-2       | 2 <  | 3             |
|       | •                                   |      |          | İ     |          |           |      | $\rightarrow$ |
|       | Portlandia sp. (tenuis PHIL.?)      | -    |          | —     | -        | 2         |      | -             |
| Prii  | Cardium cf. fasciatum Mont. (b) .   | 2    | 3        | 4     | 2        | 200       | 4    | 7             |
| mo-   | Timoclea orata Penn. (b)            | 10   | 3        | 6     | 8        | 6         | 1    | 8             |
| post  | Axinus flexuosus Mont. (b)          | 8    | —        | -     | i        | 40·       | 11   | ~             |
| 61    | • Sarsi Рин. (b)                    |      |          |       | 1        | —         |      | 1             |
| acia  | Montacuta substriata Mont. (b)      | —    |          |       |          | 4         |      | -             |
| 1 7   | Thracia papyracea Poli (l)          |      | -        | '/2   |          |           |      | ~             |
| org   | » sp                                | -    | _        | —     | 1/2      |           |      | -             |
| sgic  | Corbula gibba OLIVI (1)             | 20   | 1        | 3     | 2        | —         | -    | 9             |
| nal   | Antalis entalis L. (b)              |      | <u> </u> |       | <u> </u> |           | 1    |               |
| and   | Pelecypoda: sum                     | . 40 | 7        | 381/2 | 27       | 252       | 36   | 47            |
| l po  | Emarginula fissura L. (1)           |      | —        | —     | —        | _         | 1    | 5             |
| st-g  | Capulus hungaricus L. (1)           |      | —        | —     | 1        | —         | -    | 1             |
| laci  | Lacuna pallidula DA Costa (b)       | ·    | —        | -     | 4        |           |      | -             |
| al    | Alvania punctura Morr. (l)          | —    | _        |       |          | 40        |      | -             |
| trai  | Risson violacea Desm. (1)           |      | -        | —     | 2        |           |      | 10            |
| läst  | » parva da Costa (b)                | 8    | -        | 1     | —        | 88        | _    | 5             |
| css.  | > inconspicua Ald. (l)              | _    | '        |       | —        | 12        |      | -             |
| ions  | Turritella terebra L. (l)           | —    | _        | —     | -        | -         |      | 1             |
| u ii  | Bittium reticulatum DA Costa (1) .  | 260  | 32       | 205   | 365      |           | —    | 390           |
| mm    | Triforis perversa L. (1)            | 4    |          | 1     | <u> </u> | 8         |      | 9             |
| igrar | Gastropoda: sum                     | 272  | 32       | 207   | 372      | 148       | 1    | 414           |
| ıts   | Waldheimia cranium Müll. (a)        |      |          | _     |          |           | 1/2  | 1             |
| nrf   | Echinus esculentus L                |      | _        | ·     |          | +         |      |               |
| P10   | Echinocyamus pusillus Müll          |      | _        | 4     | 3        | 60        | 17   |               |
| ptm . | Spirialis retroversus FLEMG. (1)    |      |          |       | <u> </u> | 4         |      |               |
|       | Venus fasciata Dox. (1)             |      |          |       | _        | 4         | 1/2  |               |
| spr   | Mangelia costata Don. (1)           |      |          | _     |          | 8         |      | ~-            |
|       | Philine quadrata Wood (a)           |      |          | _     |          | 4         |      | -             |

| Bd 39. H. 4.] | POST-GLACIAL | MARINE | SHELL-BEDS | IN | BOHUSLÄN. | 415 |
|---------------|--------------|--------|------------|----|-----------|-----|
| 1/4 3/1       |              |        |            |    |           |     |

|                               |                                                              | _                       |                                                                 |                                       |                              |              |
|-------------------------------|--------------------------------------------------------------|-------------------------|-----------------------------------------------------------------|---------------------------------------|------------------------------|--------------|
|                               | (Cothi-glacial regression and)<br>fini-glacial transgression | Fini-glacial regression | Primo-post-glacial regression<br>and post-glacial transgression | Post-glacial transgression<br>maximum | Sero-post-glacial regression | Recent times |
|                               | ft                                                           | fr                      | prt                                                             | ptm                                   | spr                          | ree.         |
| Abra cf. alba Woop (1)        | _                                                            | +                       | +                                                               | +                                     | +                            | +            |
| • cf. nitida Müll. (b)        | _                                                            |                         | +                                                               |                                       | +                            | +            |
| prismatica Most. (b)          |                                                              | —                       | ·                                                               | _                                     | +                            | +            |
| Actis supranitida WOOD (I)    | -                                                            | _                       | -                                                               | +                                     | -                            | +            |
| Actacon tornatilis L. (1)     |                                                              | —                       |                                                                 |                                       | +                            | ۰ŀ           |
| Alrania cimicoides FORD. (b)  |                                                              | -                       |                                                                 | _                                     | ÷                            | +            |
| , punctura Moxt. (l)          | -                                                            | —                       | +                                                               | +                                     | +                            | +            |
| > reticulata Most. (1)        | _                                                            |                         | +                                                               | -                                     | +                            | ۰ŧ           |
| Anomia aculeata L. (b)        |                                                              | · +                     | +                                                               | +                                     | ÷                            | +            |
| • ephippium L. (b)            | -                                                            | +                       | +                                                               | +                                     | +                            | +            |
| patelliformis I. (1)          | -                                                            | -                       | +                                                               | +                                     | +                            | +            |
| > striata BROCCHI (I)         | -                                                            |                         | -+-                                                             | +                                     | +                            | +            |
| Antalis entalis L. (b)        | -                                                            | -                       | +                                                               | -+·                                   | +                            | +            |
| > striolata Stimps. (a)       | +                                                            | _                       | -                                                               | -                                     | —                            | +            |
| Aporrhais pes pelccani L. (l) | -                                                            | +                       | +                                                               | +'                                    | +                            | +            |
| Arca glacialis GRAY (a)       | +                                                            | -                       | -                                                               |                                       |                              |              |
| Arcinella plicata Most. (b)   |                                                              | i —                     | -                                                               | i —                                   | +                            | +            |
| Astarte borealis CHEMN. (a)   | +                                                            | -                       | -                                                               | -                                     |                              | +            |
| > compressa Mont. (a)         | +                                                            | +                       | +                                                               | • +                                   | +                            | +            |
| • elliptica Brown (a)         | +                                                            | +                       | +                                                               | +                                     | +                            | +            |
| Axinus flexuosus Mont. (b)    |                                                              | -                       | +                                                               | +                                     | +                            | +.           |
| » Sarsi Рин. (b)              |                                                              | -                       | ÷                                                               | +                                     | +                            | +            |
| Balanus crenatus BRUG. (b)    | +                                                            | +                       | +                                                               | +                                     | +                            | +            |
| • Hameri Asc. (a)             | +                                                            | +                       |                                                                 | -                                     | -                            | -            |
| » porcatus da Costa (a)       | +                                                            | +                       | +                                                               | +                                     | +                            | +            |

### List of sub-fossil molluscs, etc., in Western Sweden, according to Gerard De Geer and the author.<sup>1</sup>

<sup>1</sup> Surveys of the present distribution of the species in question can be found in SARS (1878, p. 351) and NORDGAARD (1913); see, too, the works of AURIVILLIUS, JEFFREYS, LILJEBORG, LOVÉN, LÖNNBERG, MALM, PETERSEN, and TRYBOM in the bibliography.

28-170108 G. F. F. 1917.

#### ERNST ANTEVS.

[April 1917.

| Bittium reticulatum DA COSTA (I)       -       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | ft     | fr  | $\mathbf{prt}$ | ptm              | $\operatorname{spr}$ | ree. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-----|----------------|------------------|----------------------|------|
| Dirtam Frictantistic DX COSIA (1) $  +$ $+$ $+$ $+$ $+$ $+$ $+$<br>Borcochiton marmoreus FABE. (a) $+$ $+$ $+$ $+$ $+$ $+$ $+$<br>+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ritting satisfiction Dr. Cosse (1)    |        | }   |                |                  | .                    |      |
| $\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barcochiton marmoreus Firt (2)        | -<br>- |     | т<br>          | +                | +                    |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wher Lowr (2)                         | -1·    |     | T<br>L         | - <b>-</b>       | +                    | Ť    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ruccinum grönlandicum Curux (a)       | -      |     | т<br>          | т                | Ŧ                    | Ŧ    |
| Callochiton laevis PEXS. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | undatum I. (b)                        | · _    |     |                |                  |                      | _    |
| Capulus glacialis N. ODINER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Callochiton laevis Pryx (1)           |        | _   |                | -<br>-           | Ξ.                   |      |
| $ \begin{array}{c} & \text{hungaricus L. (1)} & \dots & - & - & + & + & + & + & + \\ \hline \text{Cardium cchinatum L. (1)} & \dots & - & - & + & + & + & + & + & + \\ & \text{cf. dasciatum Most. (1)} & \dots & - & + & + & + & + & + & + \\ & \text{cf. fasciatum Most. (b)} & \dots & - & + & + & + & + & + & + \\ & \text{cf. minimum Pull. (b)} & \dots & - & + & + & + & + & + & + \\ & \text{cf. modosum TURT. (b)} & \dots & - & + & + & + & + & + & + \\ & \text{cf. nodosum TURT. (b)} & \dots & - & + & + & + & + & + & + \\ & \text{cf. nodosum TURT. (b)} & \dots & - & + & + & + & + & + \\ & \text{cingula castanea Möll. (a)} & \dots & - & - & - & - & - & - & - & - \\ & \text{soluta Pull. (l)} & \text{ch. (l)} & \dots & - & - & - & - & - & - & - \\ & \text{soluta Pull. (l)} & \text{ch. (l)} & \dots & - & - & - & - & - & + & + \\ & \text{cinearis Most. (l)} & \dots & - & - & - & - & - & + & + \\ & \text{corbula gibba Ohru Most. (l)} & \dots & - & - & - & + & + & + \\ & \text{Corbula gibba Ohru Most. (l)} & \dots & - & - & - & + & + & + \\ & \text{Carbunum minutum FABR. (b)} & \dots & - & - & + & + & + & + \\ & \text{Cyprina islandica L. (b)} & \dots & - & - & + & + & + & + \\ & \text{Diaphana expansa JEFFR. (b)} & \dots & - & - & - & + & + & + \\ & \text{Fulima bilineata ADULTS (l)} & \dots & - & - & - & + & + & + \\ & \text{Fulimella acicula Pull. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia fusura L. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia bilineata ADD. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia bilineata ADD. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia Sura L. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia Sura L. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia Sura L. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia Sura bull calter Pull. (l)} & \dots & - & - & - & - & + & + \\ & \text{Hundia Sura bull calter Pull. (l)} & \dots & - & - & - & + & + \\ & \text{Hundia Sura bull calter Pull. (l)} & \dots & - & - & - & + & + \\ & \text{Hundia Sura bull calter Pull. (l)} & \dots & - & - & - & + & + \\ & \text{Hundia Sura bull chills} (- & - & - & - & + & + \\ & \text{Hundia Sura bull chills} (- & - & - & - & + & + \\ & \text{Hundia Sura bull chills} (- & - & - & - & + & + \\ & \text{Hundia Sura bull chills} (- & - & - & - & - & + & + \\ & Hundia Sura bu$ | Capulus alacialis N ODUNER            | ÷      |     |                |                  |                      | т    |
| Cardium echinatum L. (1)       -       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | > hungaricus L. ()                    |        |     | +              | +                | · +                  | +    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cardium echinatum L. (1)              | _      | +   | +              | ·<br>+           | +                    | -    |
| > cf. exiguum GMEL. (1) $-$ + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>edule</i> L. (1)                   | _      | +   | +              | +                | +                    | +    |
| ) or grand MoxT. (b) $  +$ $+$ $+$ $+$ $+$ $+$ $+$<br>) cf. minimum PHIL. (b) $  +$ $+$ $+$ $+$ $+$ $+$ $+$<br>) cf. nodosum TURT. (b) $  +$ $+$ $+$ $+$ $+$ $+$ $+$<br>Cingula castanea Möll. (a) $         -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rightarrow$ cf. exigurum GMEL (1)   | _      | +   | +              | -1-              | +                    | +    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cf. fasciatum Most. (b)               |        | i   | +              | +                | +                    | 4    |
| > cf. nodosum TURT. (b)       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + </td <td>s cf. minimum PHIL. (b)</td> <td>1</td> <td>+</td> <td></td> <td>_</td> <td>+</td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s cf. minimum PHIL. (b)               | 1      | +   |                | _                | +                    | +    |
| Cingula castanea MöL. (a) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • cf. nodosum Turr. (b)               |        | +   | +              | +                | +                    | +    |
| > soluta PIIL. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cinqula castanea Möll. (a)            | ÷      | _   | _              | _                |                      | _ İ  |
| Clathurella Leufroyi MICH. (1)          +       +       +         > linearis MONT. (1)         +       +       +       +         Coccum glabrum MONT. (1)         +       +       +       +         Coccum glabrum MONT. (1)         +       +       +       +         Corbula gibba OLIVI (1)         +       +       +       +         Corbula gibba OLIVI (1)         +       +       +       +         Cyamium minutum FABE. (b)         +       +       +       +       +         Cyamium minutum FABE. (b)         +       +       +       +       +         Cyamiua islandica L. (b)         +       +       +       +       +       +       + </td <td>&gt; soluta Phil. (1)</td> <td></td> <td>_  </td> <td>_</td> <td>_  </td> <td>+</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > soluta Phil. (1)                    |        | _   | _              | _                | +                    |      |
| Intearis MOST. (1). $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clathurella Leufroyi MICH. (1)        | _      | _   | · _            |                  | +                    | +    |
| Coccum glabrum MONT. (1) $  +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <t< td=""><td>&gt; linearis Moxt. (l)</td><td>_  </td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | > linearis Moxt. (l)                  | _      | +   | +              | +                | +                    | +    |
| Corbula gibba OLIVI (1) $  +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <td< td=""><td>Coccum glabrum Most. (I)</td><td>-</td><td>_  </td><td>_</td><td>+</td><td>+  </td><td>+</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coccum glabrum Most. (I)              | -      | _   | _              | +                | +                    | +    |
| Craspedochilus marginatus PENN. (b) $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <td>Corbula gibba OLIVI (I)</td> <td>_</td> <td>_  </td> <td>+</td> <td>+</td> <td>+</td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Corbula gibba OLIVI (I)               | _      | _   | +              | +                | +                    | +    |
| Cyamium minutum FABR. (b) $  +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Craspedochilus marginatus PENN. (b) . | -      | +   | + 1            | +                | +                    | •    |
| Cyprina islandica L. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cyamium minutum FABR. (b)             |        | -   | + 1            | _                | +                    | +    |
| Diaphana expansa JEFFR. (b) $  +$ $+$ $ +$ $+$ $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyprina islandica L. (b)              | -1     | +   | + !            | +                | +                    | +    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diaphana expansa JEFFR. (b)           | _      |     |                | +                |                      | ?    |
| Dosinia lineta PULTEN (I) $   +$ $+$ Emarginula fissura L. (I) $  +$ $+$ $+$ Eulima bilineata ALD. (I) $   +$ $+$ $+$ distorta DESH. (I) $   +$ $+$ $+$ distorta DESH. (I) $   +$ $+$ $+$ distorta DESH. (I) $   +$ $+$ $+$ distorta DESH. (I) $   +$ $+$ $+$ distorta DESH. (I) $   +$ $+$ $+$ ventricosa FORD. (I) $   +$ $+$ $-$ ventricosa FORD. (I) $   +$ $+$ $-$ tumida MOST. (b) $   +$ $+$ $-$ tumida MOST. (b) $   +$ $+$ Homalogyra atomus PIIIL. (I) $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > hyalina TURT. (b)                   | _      | +   | + ·            | +                |                      | +    |
| Emarginula fissura L. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dosinia lincta PULTEN (1)             | _      |     | !              | _                | +                    | +    |
| Eulima bilineata ALD. (1) $   +$ $+$ > distorta DESH. (1) $   +$ $+$ > distorta DESH. (1) $   +$ $+$ Fulimella acicula PINL. (1) $   +$ $+$ > ventricosa FORD. (1) $   +$ $+$ > ventricosa FORD. (1) $   +$ $+$ > ventricosa FORD. (1) $   +$ $+$ Gibbula cineraria L. (b) $  +$ $+$ $+$ Numida MOST. (b) $  +$ $+$ $+$ Hinnites pusio L. (1) $   +$ $+$ Homalogyra atomus PINL. (1) $   +$ $+$ Hydrobia ulvac PENN. (b) $   +$ $+$ Jeffreysia opalina JEFFR. (1) $     -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Emarginula fissura L. (1)             | -      | -   | + '            | +                | +                    | +    |
| > distorta DESH. (1)         +       +       +         Fulimella acicula PIIL. (1)         +       +       +         > ventricosa FORD. (1)          +       +       +         > ventricosa FORD. (1)          +       +       +         Gibbula cineraria L. (b)         +       +       +       +         > tumida MOST. (b)         +       +       +       +         Hinnites pusio L. (1)          +       +       +         Homalogyra atomus PIIL. (1)          +       +       +         Igfreysia opalina JEFFR. (1)          +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eulima bilineata ALD. (1)             |        |     | - !            | -                | +                    | +    |
| Eulimella acicula PIIIL. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | » distorta Desн. (1)                  | _      | - į | — .            | +                | +                    | +    |
| > ventricosa FORD. (l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eulimella acicula PmL. (1)            | -      | - [ | + :            | -                | +                    | +    |
| Gibbula cineraria L. (b) $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ <t< td=""><td>&gt; ventricosa Forb. (1)</td><td>-</td><td>- ;</td><td>— !</td><td></td><td>+</td><td>+</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > ventricosa Forb. (1)                | -      | - ; | — !            |                  | +                    | +    |
| > tumida MONT. (b)        +        +       +       +         Hinnites pusio L. (l)          +       +       +         Homalogyra atomus PIIII. (l)          +       +       +         Hydrobia ulvae PENN. (b)         +       +       +       +         Isocardia cor L. (l)          +       +       +         Jeffreysia opalina JEFFR. (l)       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gibbula cineraria L. (b)              |        | +   | + ;            | +                | +                    | +    |
| Hinnites pusio L. (1). $\cdots$ $\cdots$ $  +$ $ +$ Homalogyra atomus PHIL. (1) $\cdots$ $   +$ $+$ Hydrobia ulvac PENN. (b) $\cdots$ $  +$ $+$ $+$ Isocardia cor L. (1) $\cdots$ $   +$ $+$ Jeffreysia opalina JEFFR. (1) $+$ $   -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>,</b> tumida Мохт. (b)             | - !    | +   | ;              |                  | +                    | +    |
| Homalogyra atomus PIIIL. (l)          +       +       +         Hydrobia ulvac PENN. (b)         +       +       +       +       +         Isocardia cor L. (l)         -       -       +       +       +         Jeffreysia opalina JEFFR. (l)        +       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minnites pusio L. (1)                 |        | -   |                | +                |                      | +    |
| Hydrobia ulvae PENN. (b) $  +$ $+$ $+$ $+$ Isocardia cor L. (l) $    +$ $+$ Jeffreysia opalina JEFFR. (l) $+$ $   -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Homalogyra atomus PHIL. (l)           |        |     | — i            |                  | +                    | +    |
| Isocardia cor L. (l) $   +$ $+$ Jeffreysia opalina JEFFR. (l) $+$ $   -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hydrobia ulvac PENN. (b)              | - [    | +   | + ;            | +                | +                    | +    |
| Jeffreysia opalina JEFFR. (1)   +     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Isocardia cor L. (l)                  |        | _ : | -              | -                | +                    | .+   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jeffreysia opalina JEFFR. (1)         | +      | ,   | -              | —   <sup>:</sup> |                      |      |

| Bd 39. H. 4.] | POST-GLACIAL | MARINĘ | SHEL | L-BED | S IN | BOHU | ISLÄN. | 417  |
|---------------|--------------|--------|------|-------|------|------|--------|------|
|               |              |        | ft   | fr    | prt  | ptm  | spr    | rec. |

|                                       |     | <u> </u> | 1.1.0          | 1 | -1,1     | 1000 |
|---------------------------------------|-----|----------|----------------|---|----------|------|
|                                       |     |          |                |   |          |      |
| Kellia suborbicularis MONT. (b)       |     | -        | +              | + | +        | +    |
| Lacuna divaricata FABR. (a)           | +   | +        | ÷              | + | +        | +    |
| , pallidula DA COSTA (b)              | - 1 | —        | +              | + | +        | +    |
| Lasaca rubra Most. (1)                | -   |          | <del>`</del> + | + | +        | -    |
| Laevicardium norvegicum SPENGEL (1) . |     | +        | +              | + | +        | +    |
| Leda minuta Müll. (a)                 | +   |          |                | — | +?       | +    |
| , pernula Müll. (a)                   | +   |          |                | - | +?       | +    |
| Lepeta caeca Müll. (a)                | +   | +        | -              | + | +        | +    |
| Lepidopleurus cancellatus Sow. (b)    |     | _        |                | + |          | +    |
| • cinercus I (1)                      | -   | +        | +              | + | +        | +    |
| Lepton nitidum TURT. (I)              | -   | +        | +              | + | +        | +    |
| Lima Loscombi Sow. (1)                | -   |          | -              |   | ÷        | +.   |
| Litorina litorea L. (b)               | +   | +        | •+             | + | +        | +    |
| » palliata SAY (a)                    | +   | -        | —              | — | <u> </u> | +    |
| • obtusata L. (b)                     |     | +        | +              | + | +        | +    |
| • <i>rudis</i> Maton (b)              | +   | +        | +              | + | +        | +    |
| Lophyrus albus L. (a)                 | -   |          | +              | — | +        | +    |
| Lucina borealis L. (b)                |     | +        | +              | + | +        | +    |
| Lucinopsis undata Pexx. (l)           |     | _        | ÷              |   | +        | +    |
| Lunatia grönlandica BECK. (a)         | +   | _        |                | _ |          | +    |
| > intermedia PIIIL. (1)               | _   | +        | +              | + | +        | +    |
| Montagui Forb. (1)                    |     |          | _              | _ | +        | +    |
| Macoma baltica L. (b)                 | -   | +        | _              | + | +        | +    |
| > calcaria Chemn. (a)                 | +   | +        | +              | + | +        | +    |
| > tenuis da Costa (b)                 | _   | _        |                | _ | +        | +    |
| Mactra elliptica Brown (b)            | _   |          | +              | + | +        | +    |
| » subtruncata da Costa (1)            | _   |          | +              | + | +        | +    |
| Mangelia costata Dox. (1)             |     | —        | —              | _ | +        | +    |
| Margarita grönlandica CHEMN. (a)      | +   |          | —              |   |          | _    |
| > helicina FABR. (a)                  | +   |          | —              | + | +        | +    |
| Modiolaria discors L. (b)             | _   | _        | +              | + | +        | +    |
| » lacvigata GRAY var. striata (a) .   | +   | +        | +              | + | ]        | }    |
| Montacuta bidentata Morr. (1)         |     | +        | +              | + | +        | +    |
| Maltzani VERKR. (a)                   | _   |          |                | + |          |      |
| > substriata Mont. (b)                |     | _        | +              |   | +        | +    |
| > Vöringi Friele (b)                  |     |          |                | _ | +        |      |
| Mya arenaria L. (b)                   |     | _        | _              |   | +        |      |
| • truncata L. (a)                     | +   | 4        | +              | + | +        | ,    |
|                                       |     |          |                |   |          |      |

[April 1917.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft    | fr        | prt        | ptm      | $\operatorname{spr}$ | rec.       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------------|----------|----------------------|------------|
| Mutilus adulie L. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | •         | -          | -1       |                      | ,          |
| modiclus 1. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŧ     | т,        |            | т<br>,   | т,                   | - T<br>    |
| Wällevia eestulata Närr (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | . T       | -          | +        | +                    | Ŧ          |
| Nonella pollucida I (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŧ     |           | _          |          | +                    | _          |
| Naceda princiaa II. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | · •       | Ŧ          | г        | -<br>-               | +          |
| $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | - T       | Ŧ          | T<br>L   | T                    | +          |
| $\mathbf{y} = \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | . Т<br>.L | т          | т        | Ť                    | т<br>9     |
| Nantunga dagnacta L. (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | т<br> |           |            |          | -                    | •          |
| $\mathbf{Y}_{\mathbf{x}} = \mathbf{y}_{\mathbf{x}} = $ | т<br> |           |            | -        | T                    | T          |
| $\frac{1}{2} \frac{1}{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           | т<br>- т   |          | т                    | - T<br>- J |
| Odestowia of alkella Lov (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           | т<br>ц     | -        |                      | T          |
| of sizeoides Harr (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | _         | -<br>-     |          |                      | т<br>т     |
| , (j. Hissoures HANL (l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _     |           |            | <u>т</u> | Ŧ                    | Ŧ          |
| O works any low Court (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           |            | т<br>-   | +                    | +          |
| strigta MONT (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | т<br>-    | T          | т<br>    | т<br>                | . т        |
| Ostion adulie I. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | т<br>.д   | T<br>L     | T        | - T                  | т<br>      |
| Darthenia interstincta MOST (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           | . <u> </u> | т        | Т.<br>               | т<br>-     |
| enivalie Mort (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _     | -         | -          | +        |                      | +          |
| Patella vulgata I. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | +         | т<br>-     | +        |                      | т.<br>Т    |
| Poeten islandiene Nürr (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     |           | т.<br>Т.   | - i      |                      | +          |
| sentempadiatus Neur (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           | •          |          |                      | _          |
| tiovinue Mitt (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           | ,<br>T     | _        | +                    | ÷          |
| ranius I. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |           |            | +        |                      |            |
| Philine analysis Woop (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           |            |          | +  <br>+             | +          |
| Pleurobranchus nhumula Noxr (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           | +          |          | _                    | •          |
| Polutrong Ignillus L (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ·+        | ,<br>+     | +        | +                    | +          |
| Portlandia arctica Gray (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +     | · _       | -          | ·        | ·                    |            |
| frigida TOBELL (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·<br> |           |            |          | +                    |            |
| $\sum_{i=1}^{n} \frac{1}{2} \int \int dx  dx  dx  dx  dx  dx  dx  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +     |           |            |          | + 3                  | •+         |
| of tenuis Putt. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | -         | + ?        | +        |                      | +          |
| Psammohia ferröcusis CHEMN. (b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _     | _         | ·          | ·        | +                    | +          |
| > respecting CHEMN. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     | _         | +          | _        | +                    |            |
| Ptisanula limnoides N. ODHNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +     |           |            |          |                      |            |
| Puncturella noachina L. (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •     | +         |            | +        | +                    | +          |
| Rissoa inconspicua Arn (l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ·   |           | +          | <u>+</u> | +                    | +          |
| interrunta An. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _     | +         | •          | +        | +                    | +          |
| $\rightarrow para ba (costa (l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _     |           | ,<br>+     | •<br>•   | +                    | •          |
| > violacea DESV (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |           | +          | +        | +                    | +          |
| • <i>violacea</i> DESM. (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |           | 1 +        | 1 +      | 1 +                  | <b>*</b>   |

|                                                                                                                                                                  | ft  | fr  | prt    | ptm     | spr       | гес.       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------|---------|-----------|------------|
|                                                                                                                                                                  |     |     |        |         |           |            |
| Rissostomia membranacea Ab. (1)                                                                                                                                  | - 1 | +   | +      | +       | · +       | +          |
| Saxicava rugosa L. (a)                                                                                                                                           | +   | +   | +      | +       | ÷         | +          |
| Scalaria communis LAMK. (1)                                                                                                                                      |     |     | —      |         | +         | +          |
| Scrobicularia piperata Bell. (1)                                                                                                                                 |     | +   |        | +       |           | +          |
| Siphonentalis lofotensis M. SARS (b) .                                                                                                                           |     | -   | +      |         |           |            |
| Skenea planorbis FABR. (b)                                                                                                                                       | ~   | +   | +      | +.      | +         | +          |
| Solecurtus antiquatus PULT. (1)                                                                                                                                  |     |     | ; —    | +       | +         |            |
| Solen ensis L. (b)                                                                                                                                               | ~   | . + | —      | +       | +         | +          |
| Spirialis retroversus FLEMG. (I)                                                                                                                                 |     | . — | —      | +       | +         | +          |
| Tapes aureus GMEL. (1)                                                                                                                                           |     | +   | +      | +       | +         | +          |
| , decussatus L. (1)                                                                                                                                              |     |     | +      | +       | +         |            |
| , pullastra Монт. (b)                                                                                                                                            |     | +   | +      | +       | +         | +          |
| , virgineus L. (1)                                                                                                                                               |     | +   | +      | +       | +         | · +        |
| Tectura virginea Müll. (b)                                                                                                                                       |     | +   | +      | +       | +         | +          |
| Tellimya ferruginosa Moxr. (b)                                                                                                                                   |     |     | +      | `+      | +         | .+         |
| Tellina pusilla Pun. (b)                                                                                                                                         |     |     | +      |         | +         | +          |
| Terebratulina caput scrpentis L. (b) .                                                                                                                           |     |     |        | +       | +         | +          |
| » septentrionalis Соити. (a) .                                                                                                                                   |     |     | _      |         | +         |            |
| Thracia papyracea Роы (1)                                                                                                                                        |     |     | +      | +       | +         | +          |
| > villosinscula MACG. (b)                                                                                                                                        | _   | +   | +      | +       | +         | +          |
| Timoclea ovata Pexx. (b)                                                                                                                                         |     |     | +      | +       | +         | +          |
| Triforis perversa L. (l)                                                                                                                                         |     |     | +      | +       | +         | +          |
| Trophon clathratus L. (a)                                                                                                                                        | +   | +   |        |         |           | +          |
| Turbonilla indistincta Most. (1)                                                                                                                                 |     |     |        | · · + · | . +       | +          |
| > lactea 1. (1)                                                                                                                                                  | _   |     | +      | _       | +         | +          |
| Turritella terebra L. (1)                                                                                                                                        |     |     | +      | _       | +         | +          |
| Utriculus mammillatus Puit. (1)                                                                                                                                  |     |     | _      | +       |           | +          |
| > obtusus Turr. (b)                                                                                                                                              |     |     | +      | +       |           |            |
| > truncatulus Brug. (1)                                                                                                                                          |     |     | í +    | +       | +         | ÷          |
| > umbilicatus Mont. (l)                                                                                                                                          |     | +   | +      |         | +         | +          |
| Waldheimia cranium Müll. (a).                                                                                                                                    |     | · _ | 4      | +       | •  <br>+· | ,<br>+     |
| Veluting laevigata PENN. (b)                                                                                                                                     | +   | _   |        |         |           | ,<br>+     |
| Venus fasciuta Dos. (1)                                                                                                                                          |     |     |        |         | -4-       | +          |
| a alling L (b)                                                                                                                                                   |     | _   | +      | +       | +         | . r<br>+   |
| Verruca Strömia Mütt (h)                                                                                                                                         | 4   | +   | ,<br>, | +       | ,<br>+    |            |
| Vola marima L (1)                                                                                                                                                | т : | т   | т<br>Т |         |           | - <b>F</b> |
| $(1) \cdots (1) \cdots (1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$ |     |     | Ŧ      |         | Ŧ         | т          |

## Bd 39. H. 4.] POST-GLACIAL MARÌNE SHELL-BEDS IN BOHUSLÄN. 419

#### ERNST ANTEVS.

### The position of the shell-beds examined.

The maps figs. 7 and 8 of the coast-belt of Northern and Central Bohuslän. — See, too, the geological map-sections Strömstads, »Fjällbackas, and »Uddevalla».

| ), j     |                               | Page        |               |                 |      |     |        |           | Page         |
|----------|-------------------------------|-------------|---------------|-----------------|------|-----|--------|-----------|--------------|
| 3        | Baggeröd                      | 328         | 8             | Medvik          |      |     |        |           | 292          |
| 36       | Brattskär                     | 333         | 41            | Mörhult I .     |      |     |        |           | 285          |
| 25       | Daftö                         | 320         | 40            | • II            |      |     | . 29   | )0.       | 329          |
| 45       | Efvenås                       | 304         |               | Nordkoster      |      |     |        | ,         | 330          |
| 1        | Fiälla                        | 282         | 28            | Nyckleby        | •    | ·   |        |           | 28.1         |
| 42       | Fjällhacka                    | 276         | 29            | Nöddö           | •    |     |        | •         | 331          |
| 20       | Furuholmen                    | 329         | 16            | Nötholmen       | •    | •   | <br>99 | 99        | 310          |
| 12       | Grandalen                     | 323         | 39            | Otterö          | •    | ·   | 2      | 71.       | 315          |
| 12       | Gullmaren at Lysekil          | 334         | 18            | Prästängen      | •    | •   | • •    | • + 9     | 318          |
|          | Harfäl                        | 335         | 31            | Rössö           | •    | •   | •••    | •         | 996          |
| 19       | Holkedalskilen                | 316         | 30            | Rössö-Lång      | 8    | •   |        | 79        | 313          |
| 7        | N Holt                        | 983         | 41            | Sandbogen       | 0    | •   | • -    | ••,       | 303          |
| 29       | Håfva                         | 200         | -11           | Skälleröd       | •    | •   | •••    | •         | 817          |
| 10       | Hällen                        | 907         | 15            | Swittmyran      | •    | •   | •••    | •         | 901          |
| 10       |                               | 201         | - 10<br>- 9.1 | Staro           | •    | •   | •••    | •         | 201          |
| 9<br>- 0 |                               | 200         | 24            | Stummeted       | •    | •   | •••    | •         | 226          |
| 11       | <ul> <li>Xauholmon</li> </ul> | 229         | 92            | Summingo        | •    | •   | •••    | •         | 986          |
| 11       | Karnonnen                     | 207         | 20            | Summinge.       | •    | •   | •••    | •         | 200          |
| 10       | Kepal.                        | 021<br>900  | 40            | Svalle          | •    | ·   | •      | •         | 929<br>999   |
| 4        |                               | 000<br>904  | - 00<br>- 01  | Syukoster.      | •    | ·   | <br>ຄ  | •         | 908          |
| 94       |                               | 024<br>900  | 21            | Tonterna .      | •    | ·   | . Z    | 99,<br>01 | 207          |
| 9        | Kjellvíken                    | <b>ð</b> 20 | 00<br>07      | Torserou .      | •    | •   | . z    | 91,       | 007          |
|          | Lejonkallan, at Strom-        | 000         | 27            | Tanga           | •    | •   | •••    | •••       | -929<br>-901 |
| 17       |                               | 320         | 0.2           | ∪ppsikt, at     | ະ ວເ | roi | nst    | ad        | 001<br>200   |
| 17       | Land                          | 315         | 22            | Hvalö           | •    | •   | •••    | •         | 289          |
| 2        | Lunnevik 287,                 | 294         | 14            | Vintermyre      | n.   | •   | • •    | •         | 319          |
| 46       | Löndal                        | 288         | 26            | - S. Oddö . – . | •    | •   | • •    | •         | 326          |



Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 421

Fig. 7. The coast-belt of Northern Bohuslän.





٩

P

#### Bibliography.

- AURIVILLIUS, C. W. S., 1895, Littoralfaunans förhållanden vid tiden för hafvets isbeläggning. Öfv. K. Svenska Vet. Akad. Förhandl., no. 3.
  - , 1898, Om hafsevertebraternas utvecklingstider och periodiciteten i larvformernas uppträdande vid Sveriges västkust. Bih. K. Svenska Vet. Akad. Handl., Bd. 24, afd. 4, no. 4.
- BJÖRLYKKE, K. O., 1913, Norges kvartærgeologi. Norges Geol. Undersög., no. 65.
- BRÖGGER, W. C., 1901, Om de senglaciale og postglaciale nivå forandringer i Kristianiafeltet (Molluskfaunan). Ibidem, no. 31.
- DE GEER, GERARD, 1896, Om Skandinaviens geografiska ut veckling efter istiden. Stockholm.
  - , 1902, Beskrifning till kartbladet Strömstad med Koster. Sveriges Geol. Undersökn., ser. Ac, no. 1
  - , 1910, Quaternary sea-bottoms in Western Sweden.
     Geol. Fören. i Stockholm Förhandl., 32, p. 1139.
  - , 1912, Om grunderna för den senkvartära tidsindelningen. Ibidem, 34, p. 252.
  - , 1914, Om naturhistoriska kartor öfver den baltiska dalen. Stockholm, Pop. Naturvet. Revy, p. 191.

FRÖDIN, O., 1906, En svensk kjökkenmödding. Ymer, p. 17.

- vox Hofsten, Nils, 1913, Glaciala och subarktiska relikter i den svenska faunan. Stockholm, Pop. Naturvet. Revy, p. 32, 107.
- Holst, N. O., 1895, Beskrifning till kartbladet Skanör. Sveriges Geol. Undersökn., ser. Aa, no. 112.
  - HÄGG, RICHARD, 1910, Några ord om det postglaciala klimatoptimet vid Sveriges västkust. Geol. Fören. i Stockholm Förhandl., 23, p. 471.

- Hägg, RICHARD, 1913, Några bidrag till kännedomen om det postglaciala klimatoptimet. Ibidem, 35, p. 387.
- JEFFREYS, JOHN GWYN, 1862-69, British conchology, Vol. 1-5. London.
- LILJEBORG, W., 1851, Malakologiska bidrag. Öfv. K. Svenska Vet. Akad. Förhandl., no. 9, 10.

, 1854, Kullens hafsmollusker. Ibidem, no. 1, 2.

- LINDSTRÖM, AXEL, 1902, Beskrifning till kartbladet Uddevalla. Sveriges Geol. Undersökn., ser. Ac, no. ö.
- Lovén, Sven, 1846, Malakologiska notiser. Öfv. K. Svenska Vet. Akad. Förhandl., no. 2, p. 46.

- LÖNNBERG, EINAR, 1898, Undersökningar rörande Öresunds djurlif. Uppsala, Medd. K. Landtbruksstyr., no. 1 (no. 43).
  - , 1899, Fortsatta undersökningar rörande Öresunds djurlif. Ibidem, no. 1 (no. 49).
  - , 1902, Några smärre iakttagelser rörande faunan i Bohuslän i mars månad 1902. Öfv. K. Svenska Vet. Akad., Förhandl., p. 169.
  - , 1903, Undersökningar rörande Skeldervikens och angränsande Kattegatt-områdes djurlif. Uppsala, Medd. K. Landtbruksstyr., no. 2 (no. 80), 1902.
- MALM, A. W., 1855, Malakozoologiska bidrag till skandinavisk fauna. Göteborgs K. Vet. o. Vitterh. Samh. Handl., ny följd, H. 3, p. 1.
  - , 1858, Om hafsmollusker i Göteborgs skärgård och i Götaälfs mynning. Ibidem, ny följd, H. 4, p. 17.
    - , 1863, Nya fiskar, kräft- och blötdjur för Skandinaviens fauna. Ibidem, ny följd, H. 8, p. 1.

<sup>- — , 1846</sup> a, Nordens hafsmollusker. Ibidem, p. 134, 182.
Bd 39. H. 4.] POST-GLACIAL MARINE SHELL-BEDS IN BOHUSLÄN. 425

- MUNTHE, HENR., 1910, Studies in the late-Quaternary history of Southern Sweden. Geol. Fören. i Stockholm Förhandl., 32, p. 1197.
  - 1910 a, Studier öfver Gottlands senkvartära historia.
    Sveriges Geol. Undersökn., ser. Ca, no. 4.

Nordgaard, O., 1913, See Björlykke 1913, p. 218.

- PETERSEN, C. G. J., 1888, Om de skalbærende Molluskers Utbredningsforhold i de danske Have indenfor Skagen. Kjöbenhavn.
- SARS, G. O., 1878, Bidrag til kundskaben om Norges arktiske fauna. 1: Mollusca regionis arcticæ Norvegiæ. Kristiania.
- SERNANDER, RUTGER, 1910, Die schwedischen Torfmoore als Zeugen postglazialer Klimaschwankungen. In: Die Veränderungen des Klimas seit dem Maximum der letzten Eiszeit. 11:th Geol. Congress in Stockholm.
- SONDÉN, KLAS, 1912, Vattnet i sjöar och vattendrag inom Stockholm och dess omgifningar. Bihang 2 till Stockholms stads hälsovårdsnämnds årsberättelse 1910, afdelning 1.
- TRYBOM, FILIP, 1881, lakttagelser om det lägre djurlifvet på de platser utanför Bohusläns kust, där sillfiske med drifgarn bedrefs vintern 1880—81. Öfv. K. Svenska Vet. Akad. Förhandl., p. 33.

Stockholms Högskola, April 1917.