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CXIIL. The Problem of the Whispering Gallery.
By Lovd RayieieH, O.M., F.R.8.*

1‘HE phenomena of the whispering gallery, of which

there is a good and uccessible example in St. Paul’s
cathedral, indicate that sonorous vibrations have a tendency
to cling to a concave surface. They may be reproduced
upon a moderate scale by the use of sounds of very high
pitch (wave-length=2 em.), such as are excited by a bird-
call, the percipient being a high pressure sensitive flame f.
Especially remarkable is the narrowness of the obstacle, held
close to the concave surace, which is competent to intercept
most ot the effect.

The explanation is not difficult to understand in a general
way, and in ‘ Theory of Sound,” § 287, I have given a cal-
culation based upon the methods employed in geometrical
optics. I have often wished to illustrate the matter further
on distinctively wave principles, but only recently have re-
cognized that most of what I sought lay as it were under my
nose. The mathematical solution in question is well known
and very simple in form, although the reduction to numbers,
in the special circumstances, presents certain difficulties.

Consider the expression in plane polar coordinates (», 8)

Vo=dn (kr) cos (kat—n8), . . . (1)

applicable to sound in two dimensions, 4r denoting velocity-
potential ; or again to the transverse vibrations of a stretched
membrane, in which case 4 represents the displacement at
any point]. Here a denotes the velocity of propagation,
k=2m[n, where A is the wave-length of straight waves of
the given frequency, » is any integer, and J, is the Bessel’s
function usually so denoted. The waves travel eircum-
ferentially, everything being reproduced when 6 and ¢
receive suitable proportionul increments. For the present
purpose we suppose that there are a large number of waves
round the circumference, so that » is great.

As a function of », yris proportional to J, (kr). When
z is great enough, J, (z), as we know, becomes oscillatory
and adwmits of an infinite number of roots. In the case of
the membrane held at the boundary any one of thess roots
might be taken as the value of R, where R is the radius of
the boundary. But for our purpose we suppose that iR is
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the first or lowest root (after zero) which we may call 2.
In this case J, (2) remains throughout of one sign. For the
aerial vibrations, in which we are especially interested, the
boundary condition, representing that »=R behaves as a
fixed wall, is that J,’ (kR)=0. We will suppose that £ and
R are so related that kR is equal to the first root (z,") of this
equation. The character of the vibrations as a function of
» thus depends upon that of J, (z), where n is very large
and z less than z; or z;'. And we know that in general,
n being integral,

mw
J. (= =}rj; cos (rsinw—nw)do. . . . (2)

Moreover, the well known series in ascending powers of 2
shows that in the neighbourhood of the origin J, (z) is very
small, the lowest power occurring being 2"

The tendency, when n is moderately high, may be recog-

nized in Meissel's tables*, from which the following is
extracted :—

i

| = Tis (2). ’ I, (@) 2. Tis (). T, (o).
24 | —0-0981 +0:2264 16 | 400668 +0:007Y)
23 | 400340 0238 15 00346 0-0031
22 01549 | 02105 14 0-0158 00010
21 02316 | 01621 13 00063 0-0003
20 02311 | olis 12 90022 0U001
19 02235 0-UB75 11 0-0006 00000
18 01706 00369 10 00002
17 01138 00180 | 9 0-0000

From the second column we see that the first root of
J1s (2)=0 occurs when :=23:3. The function is 3 maximnm
in the neighbourhood of =20, and sinks to insignificance
when z is less than 14, being thus in a physical sense limited
to a somewhat narrow range within 2=23-3.

The above applies to the membrane problem. In the case
of aerial waves the third column shows that Jy (z) is a
maximum when 2=233, so that J,,'(23:3)=0. 'This then
is the value of AR, or z). It appears that the important
part of the range is from 23-5 to about 16.

The course of the function J, (z) when n and z are both
large and nearly equal has recently been discussed by Dr.
Nicholsont. Under these circumstances the important part

#* Gray and Matthews’ Bessel’s Functions,
t Thil, Mag. xvi. p. 271 (1908) ; xviii. p. 6 (1909),
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of (2) evidently corresponds to small values of w. If z=n
absolutely we may write ultimately

I : ”
I (n)= *j‘ cos n(w— sin o)do= 71~r ( cos n(ew— sin w)dw
0

0

L7 nw? 1 6)% “”

= - cos—— dw= —{ - 3

'”'SO o 7r(n A cos a® da
=['(4).2-33- 3w 1n-4, .

one of Nicholson’s results.

In like manner when n—z, though not zero, is relatively

?ﬁla“, (1) may be made to depend upon Airy’s integral.
1us

&)

o

J,,(z)=71rf " cos {(n—2) o+ }w} da. . . (4)

L
In the second of the papers above cited Nicholson tabulates
24 J, (2) against 2:1123 (n—z)/:5. It thence appears that
24955 4
The maximum (about 0°67) occurs when
s=a+3lad, . . . L . . (B)
and the function sinks to insignificance (0-01) when
z=n=1352% . . . . . . (D

Thus in the membrane problem the practical range is only
about 2:7 nd.
In like manner

o'=n+ %j%gn%=n+'5l342n%; R )
so that in the aerial problem the practical range given by
(7) and (8) is about 2'1 n,

To take an example in the latter case, let n=1000, repre-
senting approximately the radius of the reflecting circle.
The vibrations expressed by (1) are practically limited to an
annulus of width 20, or one fiftieth part only of the radius.
With greater values of n the concentration in the imme-
diate meighbourhood of the circumference is still further
increased.

It will be admitted that this example fully illustrates the
observed phenomena, and that the clinging of vibrations to
the immediate neighbourhood of a concave reflecting wall
may become exceedingly pronounced.
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zy=n+ =n+11814n% . . . (5)
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Another example might be taken from the vibratious of
air within a spherical cavity. In the usual notation for
polar coordinates (r, 8, ¢) we have as a possible velocity-
potential yr=(kr) =% Juys (k») sin” 8 cos (kat —n¢), and the
discussion proceeds as before.

So far as I have seen. the ultimate form of J, (z) when n
is very great and z a moderate multiple of n has not been
considered. Though unrelated to the main subject of this
note, I may perhaps briefly indicate it.

The form of (2) suggests the application of the method
employed by Kelvin in dealing with the problem of water
waves due to a limited initial disturbance. Reference may
also be made to a recent paper of my own*.

When n and z are great the only important part of the
range of integration in (2) is the neighbourhood of the place
or pluces, where zsin @—nw is stationary with respect to w
These are to be found where

coswy=mnfz, . . . . . . (9)
from which we may infer that when z is decidedly less than
n, the total value of the integral is small, as we have already
seen to be the case. When z>n, @, is real, and according
to (9) would admit of an infinite series of values. Only one,
however, of these comes into consideration, since the actual
range of integration is from 0 to w. We suppose that z is
) much greater than n that @, has a sensible value.

The application of Kelvin’s method gives at once

N ¢ 2\ cos {zsin w—nw; — L}
J"(~)_\/(\7r:) Vv isin e} -+ (10)

We may test this by applying it to the familiar case where
= is so much greater than n as to make w,=4mr. We find

Jdn (:)=\/(%) .cos {e—gnw—Im}, . . (11)

the well known form.
As an example of (10),

Jn(zn)=\/(nww) cos {(v/3—1m) n—lm}. (12)

Although in (2) n is limited to be integral, it is not difficult
to recognize that results such as (3), (5), (12), applicable to
large values of n, are free from this restriction.

* Phil. Mag. xviii. p. 1, immediately preceding Nicholson’s paper
just quoted.



