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~iwo-Dimenslonal Steadj Motio~ of a Visco~ts Fluid. 

so that the equation for ~r becomes 

o r  

455 

+ + = 

L. The ~vo-Dimensio~tal Stea~lg ]iotion of a Visco~ts 
Fluid. B~j G. B. JEFFERY, M.A., B.Sc , Assistant in the 
_Department of Applied Mathematics, University College, 
London *. 

T HE object of this paper is to search for some exact 
solutions of the equations of motion of a viscous fluid. 

Much has been accomplished by assuming that the motion is 
slow, and that the squares and products of the velocity compo- 
nents may therefore be neglected. I t  has indeed been held 
that this is the only useful proceeding, since the equations of 
motion are themselves formed on the assmnption of a linear 
stress-strain relation, and this is probably only justifiable if 
the motion is sufficiently slow. On the other hand, there is 
very little evidence of the breakdown of the linear law in 
the case Of fluids, and in any case it is only possible to test 
its validity by an investigation of solutions which do not 
require the motion to be s]ow. It  is, therefore, of some 
importance to obtain some solutions which are free from this 
limitation. In the present paper we confine our attention 
to plane motion. Orthogonal curvilinear coordinates are 
employed, and we discuss the possibility of so choosing them 
that either the stream-lines or the lines of constant vorticity 
are identical with one family of the coordinate curves. The 
most important solutions obtained are those which correspond 
to (1) the motion round a canal in the form of a circular arc, 
(2) the motion between rotating circular cylinders with a 
given normal flow over the surfaces, as m a centrifugal 
pump, (3)the flow between two infinite planes inclined at 
any angle. 

If u, v be the components of velocity, p the mean pressure, 
V the potential of the external forces, v the kinematic 
viscosity, and p the density of the fluid, the equations of 

Communicated by Prof. Karl Pearson, LF.R.S. 
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456 )1r. G. B. Joffery on the Two-])imensgonal 

motion in two dimensions are 

au , au  au l a p  a V ,  ~ - .u~+v-- -  at av - - ~ ~ - a ~  * ' v  ~'(. ( l~ 
by av av l a p  a v .  ~ : , (  
a-~ +us )  +%9 = - ~  ~ - a Y  *~v ~) 

Eliminating the pressure from these equations we have 

a a(,/,, V~,/,) ~ .  
a-~ (V~r ~ ~ , j )  = ' v  ~,, 

where a ~  a@, ~ = - a ~ '  ~'=~- 

being Earnshaw's current function. 
Take a system of orthogonal curvilinear coordinates de- 

fined by conjugate functions a,/~ of x, y. The equation for 
may then be written 

a ( ~ , V ~ : )  [ a  ~ a '  

or if the motion is steady 

w 1. Solutions for  which the lines of eo~mant vorticlty 
are a possible set of equipotential lines. 

The coordinates can be so chosen that the curves a--cow, st. 
are identical with any given set of eqnipotential lines in free 
space. Hence the characteristic property of this type of 
solution is that it is possible to choose the system of co- 
ordinates % B so that ~72~ is a function of a only, say 

v=,k=/(=). 

Substitute in (2) and we have 

a~.j, =,,t" - a - ~  (~) (~)' 

o r  --v d (log f '  a ~  = (~))" 

Integrating with respoct to i~ 

4F=--vf l  d ( logf '  (~)) + F(a). 
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Hence 

Steadt d Motion of  a VTscous Jb'luid. 457 

Using u well-known property of conjugate functions this 
may be written 

d(x+iy ! ,  2 = 1 ,13 ( logf ' ( , ) )  + F"(a), 

so that we have to determine a function of a+i /3  such that 
the square of its modulus is linear in/3. Mr. G. N. Watson, 
to whom I submitted this problem, has supplied me with the 
complete solution. If  

[ 4,(a+i/3) I " = A ~ + B ,  

where A, B are real functions of a, then 

where X is real hut x may be complex. In this case 

A = 0 ,  B =  [~1 ~e ~ .  

Applying this result to the problem in hand 

d(x + ty) e~(~+~) ' 
d(~ + t~) = ~ 

~ 0 o g  f' (~)) = 0, 

t:IellCe 

F" (~)= ] ~ I ~ �9 

j (a) = ]e~+b~+cd~,, 

The constants x, X merely determine the scales oE measure- 
ment in the different systems of coordinates, and we have 
only two distinct: solutions (1) ~=1,  X=0,  (2) ~=1,  ~.=1. 

The first case gives 

~+/5--x+/y, 
and we have a solution in Cartesian coordinates 

eaz2+bx +c (a:~) 3. 
J J J  
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458 Mr. G. B. Jeffery on the Two-Dimenslonal 

I f  a = 0  this gives 

~ =  --buy + A e~X+ Bx ~ + Cx, (L )  

while if a is not zero, a shift of origin gives 

r  -- 2,,a.vv + aJ.i~! "e ~ (dx)'. ( I I . )  

(I.) and (II.) are the only distinct solutions for which tile 
lines of constant vorticity are a set of parallel straight lines. 
In the second case, when ~r 1 and X=  1 

+ iB = log (x + ig). 

Hence, if r, 0 be polar coordinates 

a =  log r, fl=O, 
and 

a T . a  .a 7, " 

This also leads to two distinct solutions according as a is or 
is not zero. 

I f  a = 0  

~ = - b v S + A # + ' + B ~ a + C l o g r  (b=/=0 or - '2)-~ 
=2vO+A(logr)=+Br=+Clogr ( b = -  2), j-(III.) 

while if a is no~ zero, a change in the scale of ~' gives 

(IV.} 
j r j  d r 

(III . ) ,  (IV.) are the only distinct solutions for which the 
lines of constant vorticity are a se~ of concentric circles. 
We have thus obtained all the solutions for which the lines 
of constant vorticity are the equipotential lines in free space 
of some possible distribution of matter. 

w 2. Solutions ./br which the stream-lines are possible 
equipoterdial lines. 

The characteristic property of this type of solution is that 
it is possible to choose a set of curvilinear coordinates a, 
so that ~b--f(a).  I t  has not been found possible to solve 
this ease wi~h the generality of the previous section. Sub- 
stituting in (2) we have 

+ 
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Steady Motion of a lqscm,s Fhdd. 459 

or writing M=\~-[~l + \ 5 x  ] 

we see that %/3, f are rest rieted by the condition that 31 
must satisfy the equation 

, ,/b~31 b~M\ - - , , . .  b31 .,, B31 g"~.a~B 7 + 8~-)+'eet t~<)~a-t (-) 

+ ~./""' (~)31= 0. (a) 

This will be satisfied by any system a, t9 whatever, if 
f ' =  0, which corresponds to the otherwise obvious fact that 
any solution of V ~ b = 0  is a solution of ('2). Thus an)- 
irrotational motion is a possible motion of a viscous fluid. 

Suppose 
o~ + 75 = (* + iy)", 

then '-'-I 
3I = ~ (~ + 5 :) ~ , 

equation (3) gives 

2v (,z-- 1)(n -- 2)f"(=) + 4v,z (n -- 1)a/ '"(a)  -- 2n (n -- 1)/3/' (a ) f"  (~) 

+ vn=f""(a)(s ' +,8') = O. 

I f  n =  1, it is sufficient that .f""(=)= O, which leads to the 
well-known solution for the motion between infinite parallel 
planes : 

= Ax 3 + Bx~+ Cx. 

Other~vise, equating coefficients of powers of fl separately to 
zero~ 

.f '"'(=)=O, f'(o,) f"(r . f " ' ( , ) = 0 .  

EIenee f (a )  is a linear function of a, which corresponds t(~ 
the ease of irrotational motion. I t  appears, therefore, that 
for lie value of n other than unity is there any new solution 
of this class. 

Next consider polar coordinates r, 0. Equation (2) 
becomes 

b ( ~ ,  v ' , / , )  = ~ , . v ~ , .  . . . .  (~) 
b(r, o) 

l ? / r ~ r  ) 1 ~3 "~ and V" = ; ~3r \ + ?~ i30 2' 

First  seek a solution of the form 

=f(, '). 
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460 

From (4) 

and hence 

Next seek a 
Let 

then 

and 

Substituting in (4) 

Integrat ing 

and 

Mr. G. B. Je~bry o,. the 7koo-Dime~sional 

= Ar  ~ log r + Br 0= -4- C log ~'. 

solution for which ~ is , function of fl 

1 0 "  V N +  = 

1 (40"  + 0 " " ) .  V'q,= 

(V.)  

only- 

20'0"---- 4vO r' + v ~ " ' .  

0I~=- 4~0' + vO/' /+ a, 

Ot~2  
0'~ =2rO"o+v +aOV+b, 
3 5 -  

or + = -  .r, ~r 
O-- l ~ v l  . . . . .  ~'~' _ 

This may be written 

O= ~/ (o ' - ) , ) (o ' -~) (~ ' -~ ,+~ ,+~) '  

where X,/~ are constants. 
Write 

O' =X sin += ~b + t t  cos -+ ~b, 

and the integral becomes 

I6~- -X- -2 t*~  ( O - O o ) = j "  dq~ . .  
?~--tt 6v ) - V  1 -  ~in"+ <b o 6v--?~--2t~ ~ 

Finally introduce new constants, k, m 

k+__ X--/~ 6~--X--2~, 

6v -- ~.- 21, ' 6. 
and we have 

~ = o ' =  2~(1 - . + - k + , ~ 9  + 6 ~ / ~ m ~  '~{-,(o - o0) } ( v L )  ~o 
.xhere It, m, 0 o are arbitrary constants. 
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Stead# Merle:,. of a Viscous _Fluid. 46]_ 

w 3. Solutions which are independent oJ the degree 
of viscosity. 

If we consider the motion of a fluid between two con- 
centric circular cylinders rotating with given angular 
velocities, an increase in the viscosity of the fluid would 
necessitate an increase in the couples which maintain the 
rotation of the cylinders, but otherwise the motion would be 
unchanged. This will be true for any solution for which 
is independent of ~, i. e. the two sides of the equation (2) 
vanish separately. Taking the equation in its Cartesian 
form we have 

and 

a ( q ,  x 7 ~ )  = 0, (5) a(~', y) . . . . . .  

V ' , ~ = o .  . . . . . .  (65 

It will be noted that equation (6) is the usual equation for 
the two-dimensional motion of a viscous fluid on the assump- 
tlon that it is so slow that squares and products of the 
velocities may be neglected. [For an exact solution equation 
(5) must also be satisfied, and hence 

x 7 % = f ( r  

that is the vorticity is constant along each streamollne. 
Substituting in (6), 

. ; ( a ~  ~ {a~Yt +f'(q4/(~)=0. ]"(~) t k ~ x ]  + \i3y ] J 
Hence either (1) the resultant velocity is a function of ~ ,  
and is therefore constant along each stream-line, or (2).t"(~) 
and.fl(4F) are zero. In the latter case 

V ~  ---- const. ---- 4a, say 

of' which the general solution is 
~,'=a(:~"" + y~) + X, 

where X is any solution of V'~X--0. Hence any solid body 
rotation superposed upon any irrotational motion is a possible 
motion of a viscous fluid. The only other solutions of this 
class are those for which the velocity and the vorticity are 
constant along each stream-line. 

w 4. Discussion of" solutions obtained. 

-Flow between two planes inclined at anlj angle.~We will 
first consider solution VI. We may without loss of generality 
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462 Mr. G. B. Jeffery on the 2wo-])ime~,sio~,al 

take 0o=0, so that 

d ~  _ 2~(1 --m ~ --,,~k ~) + 6~r'm~sn~(,ne, 10. 
d O -  

= 9~(1 + _~,,~-- ,z~k~)-- 6~,~2d,~(,,~0, ~). 

The stream-lines are all straight lines passing through the 
origin. I f  u be the velocity of the fluid 

ld,/, 

The constants m, k can be chosen so that the velocity is zero 
when (~=:*, and hence, since u is an even fimction of t?, 
when 0 =  ~ a ,  while the values of ~ appropriate to these 
~wo stream-lines differ by a given amount. Thus we have 
a solution for the motion of a fluid between two fixed planes 
inclined at an angle 2a due to a line source of given strength 
along their line of intersection, or if we exclude the origin, 
for the flow along a canal with converging banks. I f  Q is 
~he total flux of fluid outwards from the origin 

f Q = - 4w( 1 + 2,n"- - m2k 2) + 12~,,n' dn~ k)dO. 

:Now . f  dn'[z,  k ) d z = E ( ~ ,  k) 

where E denotes the elliptic integral of the second kind. 
Hence 

Q = - 4v~(1 + 2m" --m~k ') + 12vine (m,,, k). 

This relation, together with 

3k2m=sn~'(ma, k) + 1 - -  m ~" - m ~ k  ~ = O, 

is sufficient to determine m and k. ( N . B . ~  must he ex- 
pressed in circular measure.) 

I f  the angle between the planes is small, we umy write 
sn. z----z, and we have as an approximation when the planes 
are nearly parallel 

dO 
I f  the anglo between the planes is 2a we have 

1 -- m "~ --m~k"(1 -- 3m%t ~) = O, 

or 1--me 
k2 = m2 ( 1 -  3m~,~) ' 

and d_~_ 6vm'~(1--m ~) (02_a~).  
d8 -- l--3,n2a 2 
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Stead~j Motion eta  F~scous Fluid. 463 

We see that to this approximation the velocity across any 
cross section follows the same parabolic law as in the flow 
between two parallel planes. 

Solutions I., II., and IV. lead to some interesting sets of 
stream-lines. They cannot, however, be realized physically, 
and they seem to be of little importance. We pass to the 
consideration of solution III .  

A centrifugal pump.--We have 

q/, = - -  bvO + A* a+'~ + Br  ~ + C log r, 

and the components of velocity are given by 

U :  . . . . . .  

~ *  = A(b + 2)~ ~§ + 2By + C 
v =  57- 

From the equations of" motion we can determine the mean 
pressure. If  there are no external forces 

p= -~tbp,,BO + pf (,'), 
where f(q') can readily be determined if necessary. I[ we 
include the whole of the space round the origin, p must be 
single xalued, and hence B----0. In this case the solution 
corresponds to the motion generated by the rotation of a 
perforated cylinder, which, as it rotates, either sucks in or 
ejects fluid uniformly over its surface. The fluid may either 
flow away to infinity, or it may be absorbed by a coaxial 
porous cylinder, which may be at rest or may be rotating 
with any angular velocity. The total flux of fluid will 
determine b, while the angular velocities of the cylinders 
will determine A and C. Such an arrangement will be in fact 
a centrifugal pump. When the fluid is viscous vanes are 
not absolutely necessary, although, of course, they may 
increase the efficiency of the machine. I f  there is no second 
cylinder so that the fluid extends to infinity, then we must 
have A = 0  if the fluid is flowing outwards, for in that case 
b>0 .  Let the radius of the cylinder be a, and let it rotate 
with angular velocity ~2, and eject a volume Q of fluid in 
unit time; then 

C = a ~ ,  b = Q/27rv, 

and we find without difficulty, 

1 
~, =po--  ~ .,p,,~( 4~'.~'a~ + q~), 

where too is the pressure at infinity. Thus we have the 
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46J: Two-Dimensional Steady Motion of a Viscous Fluid. 

pressure head created by the pump when it rotates with a 
given velocity and discharges a given volmne of fluid per 
unit time. 

_Flow under pressure alonq a circular canal.--Finally, we 
will consider solution V. 

= Ar ~ log r + Br 2 + C log r. 

I f  u, v are the radial and transverse components of velocity 

1 ~_,..~ --_0, 
7 . 1  - -  n _ 

ri~0 

v = ~ ,  ~ = '2At l o g r +  ( A +  2B)r § 
C 

I f  A----0, this is the well-known solution for rotating con- 
centric cylinders. Using tile equations of motion in polar 
coordinates we can without difficulty find the value of the 
mean pressure p. 

p =  4vpAO + p f  (r), 
where 

f ( r )  = 2A (log v) ~(Av ~ + C) + 2 log r (AB, "~ + AC + 2BC) 

C ~ + 1 (A'+4B~)~'~-- 1 ~o . 

The constants B, C may be chosen so that the velocity is 
zero for any two values of r, and we have the solution for 
the flow of a viscous fluid round a canal bounded by two 
concentric circular arcs. The pressure will not be constant 
across a radial cross-section, but will vary in a way which 
is represented byf ( r ) .  I t  will be noted, however, that f ( r )  
contains only the squares of the coefficients A, B, C, and is 
therefore of the order of the square of the velocity. 

Suppose the canal is bounded by circular arcs of radii 
a, b, which subtend an angle a at their common centre, and 
let P be the pressure difference between corresponding points 
on the two bounding cross-section~. Then 

P ---- 4/~Aa, 

whore tt is the coefficien* of viscosity and is therefore equal 
to vp. The condition that the ,elocity shall vanish when 
~.=a, l, gives the following equations to determine the 
constants B, C 

C = 0 ,  ( r = a ,  b), A(r log ~,2 + r )  + 2Be+ ~" 
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On the Theory of.Dispersion. 465 

from which we have 
B =  -- A(a" log a'~--b 2 log b~ + a  2 -  b:) 

2 (a 2 - b "2) 

C-= Aa'~b2 (log a: --log b:_). 
- a~ _ 5 2 

If  Q denotes the volume of fluid which flows through the 
canal per unit depth in unit time, it is equal to the difference 
of ~he value o f ~  for r-~a, b. 

Q = A(b' log b--a ~ log a) + B(b "~- a:) + C(log b--log a) 
_ _ e  

I f  a, b tend to infinity in such a way that a--b  ~ d  and 
pd,~ 

aa -~ l Q ..~ 121~1' 

which agrees with the known result for the flow between 
parallel planes. 

LI. Theory of.Dispersion. 
B y  Prof. D. H. MALLIK, Sa.D., F .R .S .E .*  

1 IT is well-known that the electromagnetic theory, as 
expressed by the equations of Maxwell and Hertz, 

cannot account for aberration, dispersion, aud allied pheno- 
mena. In analysing the reason for this, we note that the 
theory is based on the following postulates : - -  

(1) The energy of the electromagnetic field is that of the 
dielectric medium alone, arising from a certain 
strained condition of the medium. 

(2) The conductors having static charges serve only to 
limit the dielectric region so that, no part of the 
energy resides on them. 

(3) The strained condition of a dielectric is due to electric 
displacement or polarization f,  g, h, subject to the 
condition 

ay+ag ah_ 0 b~ bu + b~ . . . . . .  (1> 

This displacement is apparently held to involve 
motion of t]~ rather in the medium, subject to a pro- 
perty akin to elasticity (due to inter-action of matter 

* Communicated by the Author. First appeared as a Bulletin of the 
" Ind ian  Association for the Cultivation of Science," Calcutta. 

_Phil. Mag. S. 6. Vol. 29. No. 172. April  1915. 2 H 
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