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ON THE REPRESENTATION OF THE SYMMETRICAL NUCLEUS
OF A LINEAR INTEGRAL EQUATION

By E. W. Hosson.
[Received February 10th, 1914.—Read February 12th, 1914.)

Ir K (s, t) denote a symmetrical function of s, ¢ defined in the funda-
mental square a <s<<b, a<t<D, then it may be regarded as the
nucleus (Kern) of the linear integral equation

b
f&) = ¢(s)—-7\j K (s, {) ¢p(8) dt.

If {¢n(s)}, {A,} denote the characteristic functions and numbers of
the equation corresponding to the nucleus K(s, ¢), the following funda-
mental theorems relating to the representation 6f K(s, t) are well known
for the case in which K (s, £) is a continuous function :—

(@) If the series Z n(5) (9 converges uniformly in the fundamental

n=1 An
square, then K (s, ¢) is its sum-function.

() If all the characteristic numbers {)\,} with the possible exception
of a finite number of them are of one and the same sign, then

= () $a (D) certainly converges uniformly to the sum K(s, #). This

n=1 12

theorem was first established by Mercer.

It can easily be shewn that the uniform convergence of the series in
the whole square necessarily involves its absolute convergence at each
point.

The present communication contains the results obtained in the
course of an endeavour to ascertain how far the nucleus K (s, £} is repre-
sented by the series when that nucleus is not necessarily continuous, but
may have finite or infinite discontinuities in the fundamental square. In
many of the most important applications of the theory of linear integral
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equations the case in which K(s, #) is discontinuous on the line s = ¢
arises ; it is therefore desirable on this account, as well as on the general
ground of the desirability of restricting the generality of the theorems as
little as possible, that the relation of the series fo a discontinuous nucleus
should be elucidated. Throughout the investigation it is assumed that
all the integrals employed exist in accordance with Lebesgue’s definition
of an integral. The Riesz-Fischer theory relating to series of normal
functions and to integral equations of the first kind is extensively used.
b
It is shown that a nucleus K (s, #) such that 3’ | K(s )}2dt is a limited

function of s exists, such as to have preseribed characteristic functions and
numbers {¢.(s)}, {A\.}, provided the series 21 { ¢;:(S) } :
each value of s to a value which is a limited function of s in (@, ). It is
further shewn that the funection K (s, ¢) determined in accordance with
the prescribed conditions is umique, except for equivalent functions not
differing essentially from it. Several theorems are deduced from this
result, and a simple proof of Mercer’s theorem is obtained by these means.

By means of an extension of a well known theorem due to Hilbert, to
the case of a discontinuous nucleus, an extension of Mercer’s theorem is
obtained which applies to all nuclei which are not infinitely discontinuous
on the line s = ¢. Various other special theorems are obtained relating to
the convergence of the series.

It is shown that, in case the repeated function of K (s, #) is continuous,
or at least equivalent to a continuous function, the nucleus K (s, t) may be
divided into the sum of two functions KW(s, ¢), K® (s, ¢) that are orthogonal
to one another and are such that K®(s, & has for its sole characteristie
numbers those characteristic numbers of K(s, ¢) that are positive, and
that K@ (s, ¢) has for its sole characteristic numbers those characteristic
numbers of K (s, £) that are negative. The characteristic function
corresponding to a characteristic number of KD(s, &) or of K¥ (s, ¢) is the
same as the characteristic number of K(s, £) corresponding to the same
characteristic number. This result may possibly help to decide whether,
or under what conditions, Mercer’'s theorem can be extended to the case
of a continuous nucleus that has an infinite number of characteristic
pumbers of each sign. The question is shewn to depend upon whether
KW, t) and K®(s, ©) are infinitely discontinuous, or not, upon the line
s=1t.

converges for

1. If K{(s, ¥ be a summable and symmetrical function defined for the
points of the square a <s<< b, a K<t b, it may be regarded as the
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nuclevs of the linear integral equation

h.
f@ = ¢(s>—>~j K(s, &) () de,

with symmetrical nucleus.

The method of Fredholm is directly applicable to the equation in case
K(s, t) is a limited function. In case K (s, {) is not limited, but when all
the repeated nuclei from and after the one of some fixed order are limited,
Fredholm’s method ig capable of extension so as to provide the solution of
the integral equation.

It K, (s, 8, Kuyi(s, £, ..., are all limited, and ¢.(s) is a characteristic
function for the nucleus K, (s, f), with A% as the corresponding charae-
teristic number, then ¢,.(s) is also,* in general, a characteristic function
for the nucleus K (s, ), the corresponding characteristic number being A,
a real n-th root of A?; and, conversely, every characteristic function for
K(s, §) with the' corresponding characteristic number ean be obtained in
this manner. The case in which » is even, and two or more characteristic
functions correspond to one and the same characteristic number, is
exceptional.

(1)

Thus, let $00s) ¢ O+ 91" () 67 (8

AM—N)
be that part of the resolvant for the nucleus K,(s, ©) whieh becomes
infinite when A" = A" In this case the characteristic functions ¢ (s),
#P(s) are not uniquely determinate. For we may replace ¢{(s), ¢{? (s)
by cos a. ¢ (s)+sin a. ¢P(s), sin a. ¢ (s) —cos «.${?(s) respectively, where
a is arbitrary, without altering the expression @M (s) g (£)+ ¢2 (s) P (8).
The corresponding part of the resolvant of K (s, ¢) will bet of one of the
forms M

$r

() ¢ () F ¢24s) S (B)
A—A, !

(8) $ () F v (5) P (2)
AA, ’

(cosa. gy (s)Fsina. 2 (s)][cos a. 4 (B)+sin a. po ()]
A—A,

0
$r

. 1 1 . (1) (2)
+ [sin a.gbf. )(s)— cos a.</>(, )(s)] [sin a.¢, () —cos a.¢,” (f)]
A+A, ’
* See my paper ‘‘ On the Linear Integral Equation,”’ Proc. London Math. Soc., Ser. 2,
Vol. 13, p. 307.

+ Ibid., p. 332, where it is shewn that there is one canonical sub-group for X (s, t, A)
corresponding to each such sub-group for K. (s, ¢, A"), and vice versa.
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where a has some particular value. It is now clear that the characteristic
funetions for K,(s, ¢), corresponding to A™ == A, may be so chosen that
they are also characteristic functions for the nucleus K (s, ¢) corresponding
to A=A, t0 A= —A,, or to the two characteristic numbers A == A,
A== —A,.

We may thus in all cases regard the characteristic functions for
K (s, 1) as identical with those for K, (s, #).

Unless K (s, ?) is in some way restricted it will not necessarily be the
case that the characteristic functions {¢,(s); are continuous functions.

It is, however, a sufficient condition that they may all be continuous,
that K (s, ¢) should be a limited function with its discontinuities regularly
distributed, in accordance with the extended meaning of that term given
in the paper referred to above. It is there shewn that, if ¢(f) is any

b
summable funection, then for such a function K (s, ), J K@, 0)p () dt 1s
a continuous function of s; thus the relation “

$e(6) = A, j" Kis, ) ol dt

can be satisfied only by a continuous function ¢, (s).

If K(s, &) be unlimited, but K.(s, &), Kuui(s, ¥, ..., be limited
functions, it is sufficient to ensure the continuity of the characteristic
functions that K,(s, #) should have its discontinuities regularly dis-
tribunted, in the sense referred to above.

When K(s, ) is any symmetrical summable function that differs from
zero at points of a set of which the plane measure is greater than zero, the
proof due to Kneser* that K (s, £) has at least one characteristic number
is applicable, whether the function be continuous or not, provided it
be limited. In case the function is unlimited, but the repeated nuclei
K.(s, &), Kpi1(s, O, ..., are limited, the proof establishes that K,(s, t) has
at least one characteristic number, and this will also be a characteristic
number for K (s, ?).

Two symmetrical nuclei K (s, ¢), K'(s, t) of the linear integral equation

Fl&) = () —A Jb K(s, O ¢ (B)dt

will be said to be equivalent to one another when they differ from one
another only at points of some set such that its section by any straight
line parallel to either the s- or ¢-axis is a set of which the linear measure

* Qee the Rendiconti di Palermo, Vol. xx11, p. 235.
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is zero. It is clear that equivalent nuelei have the same characteristic
functions {¢.(s)} and the same characteristic constants {A,}. Also they
have the same repeated nueclei.

2. Let it be assumed that the symmetrical nucleus K(s, ¢}, although

not necessarily continuous or limited, is sueh that j {K(s,®}%ds 18 a

122

b
limited function of ¢, and that the repeated nucleus j K, YK, thdt
a

ig either equal to, or equivalent to, the continuous function K,(s, £). The
characteristic functions {¢.(s)} are then all continuous.
It will then be shewn that X M converges uniformly to the
n=1 n
value of K,(s, £); the convergence being absolute,
Since

a nI ~

s, 3
a n=1 ’\n

2
it follows that the series Z { ;\(‘f)} is convergent for every value of ¢,
=1 by

=
and that its sum is <5 {K(s, ©)}*ds, which is less, for every value of ¢,

than some fixed positive number M. We have

(S) E"'() } \m+r {(Pn(s)}g m+r J¢;\(t)lﬂ< ]ﬂmgr { ,n)g)}z

n=im n n=n " n=m

J m+r

‘71 m

For a fixed value of ¢, let m be so chosen that

s’ {Qn(t)}

n=H R .B [

n

for every value of 7, where ¢ is an arbitrarily chosen positive number; we

have then miT (o) Qn( n(s) u(2)

n=m

m+r

l<e

n n
for every value of . Since ¢ is arbitrary, it follows that, for a fixed value
of ¢, the series X "(37)\2 »(8) converges absolutely and uniformly, and
n=1 »

has therefore a sum that is continuous with respect to s. From the
symmetry of the variables s and ¢, we see that for all values of s and ¢
the series converges to a function that is continuous with respect to the
variables s and ¢ separately, at every point (s, #).
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2
Congidering the series X | ’;\(f)} , we have

n=1

mir _1 Zn(t)}ﬁ 1 m4r { n(t)}2 M )
z <5z X if 3 25
n=m A?L Am n=m An Am
m+r

12
hence, if m be sufficiently large, = iﬁ‘i(fl is less than an arbitrarily

n=m

chosen positive number, for all values of » and of ¢£. Thus the series
s g0}

)\4 is uniformly eonvergent. From this we deduce at once that
=1 n

the series X ¢"(S))\4 AU is absolutely and uniformly convergent, sinece

=1

| ¢ (3) $u®)] < 3 1)} >+ {0 O}

It follows, from a known theorem, that the series converges to K (s, f);

and we have a
@ o (£
K, )= 2 ﬁﬁ}\&—)}— .

n=1

Since

b n y 2 w 2
S {K,(s, H— 3 M} ds = K, (¢, t)— %‘, { 7;\(:&)}

2 ’
@ n=1 /\n 1

we now see that

lim J’b { Ky(s, t)— § El)L(éi)—ll)i@l}ﬂds =0.

Z
m~w n=1 AL

From this, we infer, by employing the Riesz-Fischer theory,* that for any
fixed value of ¢ there exists a sequence of values of m, such that

= ¢"(s;2 AU) converges to K, (s, t) as m passes through the values of the
n=1 n

sequence, the convergence taking place for all values of s with the possible
exception of those belonging to some set of linear measure zero. Since it
has been shewn that the series X "(8;\2 n (D) is everywhere convergent,
n=1 n
1t now follows that, for each fixed value of ¢, it converges to K,(s, ), for all
values of s except possibly those belonging to some set of linear measure
zero. The points of convergence to K, (s, £} are, for each value of ¢, every-
where dense on the line @ < s <, and the sum of the series is continuous

* See, for example, the account of this theory given by W. H. Young and G. Chisholm
Young in the Quarterly Journal of Mathematics, Vol. xL1v, p. 47.



1914.] THE SYMMETRICAL NUCLEUS OF A LINEAR INTEGRAL EQUATION. 11

with regard to s ; therefore the series converges to the eontinuous funetion
K,(s, t) for every value of s; ¢ having any fixed value.
It has now been shewn that = "(8;2 n (8) converges for all values of
n=1\ n
s and ¢ to the sum XK,(s, £).

. 2
Since Z { ;\(f)} , in which all the terms are positive, converges to

n=1 n

the continuous function K, (s, s), its convergence must be uniform.

Since
mEr IL( ) n (t) 7n+r n S n t ‘“1+T n.(s) 2 mr e t 2
T 280) O5 0060] o T SO0 F 1e0E

the integer m can be so chosen that, for all values of »,

O NG N RSN OP NG
X AL

n=m » n=gn

bd

are less than an arbitrarily chosen number, for all values of (s, f). It

bu (s) P 1G]

follows that the convergence of 21 — to Ky(s, ) is uniform and
absolute. "= "

The following theorem has been established :—
1. If K(s, t) @s any symmetrical nucleus, whether continuous or not,

b
and for which 5 {K(s, ©)}*ds s less than some fixed positive number in-

[+

dependent of t, and if K (s, t) is such that its repeated nucleus s equal to,

. - (1 it t
or equivalent to, @ continuous function K,(s,t), then X (—L—(E)X_?S——(—z
n=1

verges uniformly and absolutely to the value of Ky(s, ?).

con-
n

The case of this theorem in which K(s,?) is continuous has been
established by Kowalewski.*

3. It is known that, if ¢, (#), ¢(f), ..., be a sequence of orthogonal
funections defined for the interval (7, 0), and normalized so that

Y {palt)}2dt = 1,

and if ¢;, g --+ Cns ..., DE & sequence of real numbers, the necessary and
sufficient condition that a funection I (t), of which the square is summable

* See his treatise Hinfithrung in die Determinantentheorie,
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in (a, b), should exist and be such as to satisty the conditions
b
J F)gu)dt =cn for n=1,28, ..,

is that the series ¢;+c3+...4¢ -+ ... should be convergent.

The function F'(#) is unique, disregarding the distinction between
functions that differ from one another at points of a set of measure zero,
only in case the set of orthogonal functions is closed ; i.e. when no other
function orthogonal to them all exists, such that its square is summable,
that it differs from zero at points of a set of measure greater than zero,
and such that if is not a linear function of a finite number of the given
orthogonal functions. Even when the set of orthogonal funetions is not
closed the function F (£) can be so determined that

f (F@}rat

[

is equal to the sum of the series cidcot... .
If x(?) is any independent function, of which the square is summable,
and such as to be orthogonal to all the functions {¢,(f)}, then we have

jb F(t) x(8) dé = 0.

The truth of this last statement follows from a consideration of the
fact that

J'b [F(t)—x(t) Sz F@x@®dt— é] cn¢n(t):r dt

has a value that is essentially positive. It is equivalent to

b . ((® ] 2 mo,
| iropa—{|Foxoanl - o,
14 LS n=1

b
it being assumed that j Ix®}*dt = 1.

a

As this expression is positive for every value of m, we see that
(3
j F(tyx(dt = 0.
a
Let us now suppose that A, Ag, ..., Ay, ... 18 any sequence of real

numbers arranged in order of increasing absolute magnitude, and such
that |, | increases indefinitely as » does so.
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Let it be assumed that, for a fixed number s in the interval (a, ), the
1, 2
series X '—(E"a\—(fl is convergent.

n=1

Then the equations

%;(s) — SbF(t) ¢n(t) dt (n= 1, 2, 3, u-)

are all satisfied by a function ¥(f), such that

jb {F(t)}2 di = § {¢n(:))r2.
a n=1 }\n

Conversely, the convergence of the series is necessary for the existence
of the function F'(f), such that its square is summable and that it satisfies
the equations. The funection F (¢) is unique in the sense that it can be
replaced only by another funetion which differs from it at points of a
set of which the measure is zero.

s {pn(8)}?

When we consgider different values of s for which the series Y
n=1 »

is convergent, we may denote F'(f) by K(s, ).
12
Let it now be assumed that = *—?’;\—(gﬂ'— is convergent for all values
=1 2
of s in the interval (@, b). Then K(s, ¢) is defined, execept that it may be
replaced by a function which differs from it at points of a set of which the
section by each line parallel to the #-axis has linear measure zero.

The function K (s, #), so defined, is such that

b
bul) = A j K (s, ) pul)dt,

for all values of #. Also, if x(¢) is any independent function such that
x (s) is orthogonal to all the functions {¢.(s)}, we have

Y K(s, §) x(® dt =0,

and thus x (%) is not a characteristic function.
We have now

n=m b n=m 2
f {K(s, H— = -——‘?5“(5;\"5"“” “at —j (K p)a—"5 12017,

L — 5 H
} 3 n=1 >\n

and therefore for each fixed value of s we have

b n=m P
1im5 (K 9T 200201 gy = o,

n=1 /\n
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From this it follows, by using the Riesz-Fischer theory, that for each
value of s a sequence of values of m can be determined so that

S a6 ()

n=1 An

converges to K (s, ?), except for a set of values of ¢ of measure zero, as the
values of the sequence are assigned to m. It thus appears that the
function K (s, #) is symmetrical, and that it may be regarded as the
nucleus of an integral equation of Fredholm’s type, of which the functions
{¢a(s)} are the characteristic functions and {X,! the characteristic
constants.

The following theorem has now been established :—

II. If {¢puls)} denotes a sequence of prepared orthogonal functions for
the interval (a, b), and {\,} denotes a sequence of real numbers in ascend-
ing order of absolute magnitude, the necessary and sufficient condition

b
that a symmetrical nucleus K (s, t) should exist, for which j {K(s, )} *dt

is finite for each value of s, and for which {¢.(s)} are the characteristic
Sunctions, and {\,} the characteristic numbers, is that the series
{ 2
lﬁ;\(fi should be convergent for all values of s in (a, b).

n

n=1

It should be observed that the plane set of values of (s, f) for which no

sequence of values of m exists such that = “(s; n (£) converges to

n=1 n .
K (s, t) is such that its sections by lines parallel to the axes are all sefs
of linear measure zero. It follows that the plane set has its plane measure
Zero.
2
In case X { ,;\(28)} is divergent for a set of values of s of linear

n=1 n
measure zero, the method given fails to determine a function K (s, ¢} for
which {¢.(s)} and {A.} are the cbaracteristic functions and numbers. In
this case the given functions {¢,(s)} may be replaced by a modified set of
orthogonal functions for which K (s, #) may be determined so as to have

the given characteristic numbers {A,}. Let ¢:,,(s) = ¢n(s), for all values

{ 2

of s for which X ﬁf}\(fi
n=1 n

values of s. The function K(s, ) will then be determined, as above, for

those values and s and ¢ which do not belong to the exceptional set; when

s or ¢ belongs to the exceptional set, we assign to K (s, ) the value zero.

is convergent, and let ¢.(s) = O for all other
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The equations N b _
Fus) = Anj K(s, & gult) t

are then satisfied for all values of s in (a, b), and for all values of 7.

4. Let it now be assumed that the given functions {¢.(s)} and the

{ b (s) 2
iven numbers {\,! are such that = —'¢”—(,g)—’—
g { f st A2

each value of s, but also that its sum is a limited fuunction of s, in the
interval (a, b).
In accordance with what has been established in § 8, a symmetrical

function K (s, £) exists, such that

is not only convergent for

b
¢als) = A,LJ K, b) ¢pu(t)dt, for n=1,2,38, ...,

4 » ! P2
and such that 5 (K@, p)2dt = = 1 Pu(8); "

2
n=1 An

It will now be proved that there can exist no other function H (s, £)
/]

not equivalent to K (s, ¢), such that J’ {H(s, ©'*d¢ is finite for each value

of s, and limited for all values of s, which shall have the functions {¢,(s)}
for its sole characteristic functions, and {X.} for the corresponding
characteristic numbers.

For assume H(s, ) to be such that

b
S Hs, &) gty dt = %'AL(S)-, for n=1,2,38,....

We need consider only the case in which {¢.(s)} is not a closed
system, for, if it were closed, H (s, £} and K (s, £) must be equivalent.
It is known * that any normal orthogonal system is enumerable ; we

* It was shewn by E. Schmidt (Comptes Rendus de U'Académie des Sciences, Dec. 10,
1906, p. 955), that any orthogonal set of continuous functions {¢ (s)} must be enumerable.
The proof will here be adapted by means of a slight alteration to the case of functions that are
not necessarily continuous, Let F (s) be any function whose square is summable in (a, b),
and let ¢, (s), ¢p, (), ..., ¢p, (s) be any finite set of the functions { (s)} ; we have then

] " b }2 b vofh }'2
[re-ze, 0| Foo0a] a=[ (Fopa-3 {76 e, @)

It follows from this equality, since the expression on theright-hand side is essentially positive,
that, if k¥ be any fixed positive number, there can exist only a finite number of the functions
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may therefore assume that {¢,(s)} is a part of some* closed system of
normal orthogonal functions which is obtained by adjoining an orthogonal
system {x.(s)}, where n=1,2, 8, ..., so that {¢.(5)}, {xa(s)} taken
together form a closed orthogonal system.

Let us suppose that

b
j Hs, 8 xnl6) A6 = you (6),

where . (s) may be zero for some values of », but not for all values of n,
in which latter case H(s, ¢) would be necessarily equivalent to K (s, ?).
‘We have now

8

‘r (H, 012dt= 3 {Yu(®))?+ 3 {gn(@}*

2
n=1 n=1 >\1L

the convergence of the series being necessary for the existence of H(s, ?).

¢ (s), such that "
ILF(s)¢(s)ds| > k.

Assigning to & a sequence of values diminishing towards the limit zero, we see that the set of
those functions ¢ (s), for which b
I [ F(s)cp(s)dst >0
B

is enumerable. We have then only to consider those functions ¢ (s) for which
b
[ F(s) ¢ (s)ds = 0.

Taking for simplicity @ = —w, b = =, which involves no lois of generality, let F'(s) have
successively the values 1, cos s, sin s, cos2s, sins, ...; we have then an cnumerable set of
enumerable sets in each of which one at least of thé integrals is in absolute value > 0; the

whole composite set is enumerable. There is no function x (s) such that JW {x (s)}*ds exists

as a positive number, and such that
J" x (s) g’; nsds = 0,

for every value of n. For, in accordance with a known theorem, first established by Fatou,
for such a function x (s) we have

r = ) S £ . 2
lJ' {x@)}ds = = wa x (s)cosnsdst + 3 {J x () sinnsdsl )
L g weo 1o, J et VJom }
and thus it is impossible that all the integrals on the right-hand side can vanish. It has thus
been shewn that the set {¢ (s)} must be enumerable, whether it be closed or not.

* Tt may be noticed that a set of orthogonal functions may form part of more than one
closed set of orthogonal functions. For example, in the interval {—or, =) consider the or-
thogonal set sinwx, sin2r, ..., sinna, ... This forms part of the closed set 1, cosz, sinz,
cos 2z, sin2x, ... ; but we might also adjoin to the set sin z, sin 2z, ..., sinnz, ... the ortho-
gonal functions Py (wz), P,(wx), ..., P: (w2), ...; where Py, (x) denotes the Legendre's func-
tion of order 2n ; the extended set is then still an orthogonal set.
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Let us consider H(s, ) —K (s, {) as a nucleus ; we have

H
J' {H (s, )— K (s, )} ¢u(&)dt =0,

@

and thus the functions {¢,(s)} are not characteristic functions for this
nucleus. Also

b
5 {H (s, )—K (s, B} xa (B dt = Yru(5) ;

a

and therefore it appears from these two sets of equations that
b 3 _
[ w6, 0—K06, 0170t = 2 y.0)
It is now seen that the repeated nucleus of H(s, ) —K (s, t), viz.,

b
j {Hs, ¢)—Ks, )} {H (G, ) —K (¢, ¢)} at,

a

is numerically less than

b
’

2 ¥} £ )]
and this is a limited function since it has been assumed that

b
j | H(s, 6245,

and consequently = {vr,(s)}? is a limited function of s. It now follows,
n=1

in accordance with what has been pointed out in §1, that the nucleus
H(s, )— K (s, ©) has at least one characteristic function u(s), and we have
seen that this cannot belong to the set {¢.(s)}. We have therefore
b
j (H(s, )—K (s, t)}u(t)dtz"—is—),

where v is the characteristic number corresponding to u(s).
From this we see that

b ] b
L1 w6 gt s = |Lu at [/ {6, 6= K, 0] a9 ds = 0
hence u(s) is orthogonal to all the functions {¢.(s)}, and hence we bave

b
S K@, Hu®dt=0.

geR. 2. vor. 14. wno. 1222. c
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b
It follows that s H(s, ) u () dt = -’ilfs—) ;

and therefore u(s) is a characteristic funetion for the nucleus H (s, £).
This is contrary to the supposition that H(s, £) has {¢.(s)} for its sole
characteristic functions. Hence H (s, t) must be equivalent to K (s, ?).

The following theorem has now been established :—

II1. If {¢pu(s)} be a system of normal orthogonal functions, and |\, }
a set of numbers arranged in order of increasing absolute magnitude, the
necessary and sufficient condition that a symmetrical nucleus K (s, t), such

b
that J {K (s, )}2dt is a imited function of s, may exist and be such that

10}, (A} are its sole characteristic functions and numbers, is that
< {¢(3)

nzl{ >\
limited function of s. This function K (s, ) is the only nucleus, apart
Jrom equivalent ones, which satisfies the above conditions.

2
} should converge for each value of s to a value which is a

n

The set of values of (s, #) for which no sequence of values of m exists
n=m
such that X "(S)A n (0 converges to K (s, £), is such that its sections by
n=1 n
lines parallel to the axes are all of linear measure zero, and therefore the
set has plane measure zero.

We have now established the following theorem :—

IV. If K(s,t) 4s any symmelrical nucleus, mot necessarily con-
b
tinuous or limited, but such that j {K (s, O}2dt exists as a limited

Sfunction of s, for all values of s in (a, b), then for each set of values of

(s, &) with the possible exception of those belonging to a set of which all

the sections by lines parallel to the axes have linear measure zero, there

exists a sequence of values of m such that > ”(sl w9 converges to
n=1 An

K (s, ¥) as m passes through the values in the sequence.

If, at any point (s, ¢) not belonging to the exceptional set of points, the

. " " t) » - ~
‘geries = M;\L(— Is convergent, 16t must converge to the value K (s, & ;
n=1 n

we have then the following theorem :—

V. If the series X d’l(g;—d)“(t) corresponding to a nucleus K (s, t), for
n-=1 n
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4
which J’ {K (s, &)}2dt is a limited function of s, be such that it is conver-
a
gent for every point (s, t) which does not belong to some set of plane
measure zero, then the series converges to K (s, t) with a similar exception.
If the series is everywhere convergent, it converges to K(s, t) except
possibly at points of a set of which the sections by lines parallel to the

azxes have linear measure zero.

The following theorem is immediately deducible :—

VL. If K (s, t) be such that the functions ¢,(s) are all continuous, and
such that r {K(s, )}2dt is a limited function of s, for all values of s in
{a, b), and :f it be continuous in a closed connex set G, consisting of @
domain and tts boundary, and if the series nEl ﬂ(—'g))—\%”ﬁ) is uniformly

convergent in G, then it converges throughout G to the sum K (s, t).

For the series converges in G to a function that is continuous in G.
Moreover, G has its measure greater than zero, and thus, in the arbitrary
small neighbourhood of any point of G, there are points which do not
belong to the exceptional set. Hence K (s, ¢) ecannot differ at any point of
‘@ from that function, continuous in G, which represents the sum of the
series.

For example, if K(s, ¢} is continuous except when s = ¢, where it may
have any finite or infinite discontinuities consistent with the condition

b
that S {K(s, ©)}* dt should exist for each value of s as a limited function
[+

of 5, and if X 2 (8) $u () is uniformly convergent for all values of s and

n=1 A'n,
¢, such that |s—¢| > ¢, when e is an arbitrary positive number, then

the series X n(5) fn (&) converges to K(s, £) at all points such that s=£¢.

. -n=1 An i f(S, t)
This applies, for example, to the case K (s, {) = |_s:t—l‘"

& continuous function, and a << }.

where f(s, t) is

5. Let all the numbers A, A,, ..., be positive, and let K(s, £) be
-continuous ; then, in accordance with a known theorem due to Hilbert,*

* See E. Schmidt’s paper in the Math, dnnalen, Vol. 63, p. 453.
c 2
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we have

b b 2

[[[reorosoama=23{|ron0as),
where f(s) is continuous in (a, b). If f(s) is chosen so as to vanish except
in the interval (s;, s;+¢), and to be positive within that interval, the
number e being so chosen that K (s, {) has the same sign as K (s, sy)
in the square s; < s < 8,+Fe 5 <t s;+e unless K(s;, 85) =0. Ibis
clear that that sign must be positive, since the right-hand side of the
above equation is positive ; hence K (s, s;) >> O, and, as s, is any point, we
have K (s, s) >> 0. If we now consider the nucleus

.K(S, t) ___(.slﬁ__

which is symmetrical and continuous, and has only the positive charac-
teristic pumbers A,.1, Ans2, ..., We see that

K (s, 5)— S {n(e)}2>0

2
Thus the series X { ’;\(S)} is convergent for every value of s, and its
n=1 n

sum is limited for all values of s.
It follows from theorem III that there exists a nucleus k(s, £) such that

r{k(s, pyrdt = = { ;\(S)F""

n

of which the characteristic numbers are 7\?, xg, ..., and of which
¢1(8), ¢py(s), ... are the characteristic functions. This nueleus is unique,
except for equivalent ones.

The repeated nucleus

ky(s, ) = 5: ks, )Yk, t)at
has for its sole characteristic values A;, Ay, ..., and for its sole character-
istic functions ¢ (s), ¢a(s), ... (see § 1).
Hence, since r {ky(s, ©}2dt is a limited function of s, it must, in
accordance with wcilat has been shewn in theorem III, be equivalent to
K (s, t), and therefore by the theorem I of § 2, we see that 2 gi_s_)_«p,,_

n=1

converges uniformly to K (s, %).



1914.] THE SYMMETRICAL NUCLEUS OF A LINEAR INTEGRAL EQUATION. 21

If a finite number of the numbers {\,! be negative, we may apply
the above result to the nucleus

Kl(s, {)— 7l§'r ¢n(3) ¢n(t)
’ S W

n=1 n

where 7 is so large that all the negative characteristic numbers are in-
cluded in the first ». This nucleus has its characteristic constants
Arils Argo, ... all positive, and the above result may be applied to it. It
has thus been shewn that—

VIL. If the symmetrical nucleus K (s, t}) be continuous, and all its
characteristic constants, with the possible exception of a finite number of

them, are of one sign, then "(s; n () converges uniformly to K(s, t)
Hne=1 "
as sum.

This is Mercer’s theorem.*

6. The theorem of Hilbert quoted in § 5 will now be extended to the
case of discontinuous functions of which the squares are summable.
We shall assume that K (s, f) is limited only by the condition that

h

5 1K (s, )} ?d¢t exists for each value of s, and ig a limited funetion of s

in the interval (a, ). Let p(f) be a function whose square is summable
b

in the interval (a, 8). Then, if g(s) =S K{(s, H)p(t)dt, we see that ¢ (s) is

a limited summable function.
Consider the function

@ b
F(s) = g(s)— ?1 zpn(s)j g () ps (8) dt.
The series in the second term on the right-hand side is equivalent to

w b b b
S A j K (s, t) pult) dt j S K (¢ ) p(t) gul®) dtdt,
n=1 a a Ja

or to b jb K(s, £) ga(t)dt jb $u(t) p (&)L,

n=1

* See Phil. Trams., Vol. 209a. Another proof has been given by Kneser, in the Rend.
di Palermo, Vol. xxxvix, p. 195.
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which, in accordance with a theorem * due to E. Schmidt, is absolutely and

uniformly convergent.
We have now

(/] b
j F(s) pu(s)ds = rg(s) ¢n(s)d3—j g@) pn(t)dt = 0,
and hence, in accordance with what has been shewn in § 8, we see that
b
j K(s, ) F(t)dt = 0.

‘We have now

» 5 b (b
j {F(s)}%ds =J’ F(s)g(syds = J j F(s)K (s, t) p(t) dsdt = 0.

aJa

It follows that F(s) = 0 for every value of s, with the possible
exception of those belonging to a set of measure zero.
Therefore the uniformly convergent series

b
2 0 [ 90 a0

converges to g(s) for all values of s with the possible exception.
The series is equivalent to

3 20 [y gpwar

Multiplying by ¢(s)ds and integrating, we have

© 1 b 4 b

21 X'j ¢n(5)Q(3)d35 SO p(t) dt = rj K (s, ) p(t) q(s)dsdt,

n= n a a aJa
where g (s) is a function whose square is summable. The legitimaey of
the term-by-term integration is unaffected by the possible existence of

the exceptional set of points of measure zero.
We have now shewn that

© b
[ xeop0qoaa=3 3| noawa sop0a,

where p(s), g(s) are any functions whose squares are summable in (a, b),

* Math. Annalen, Vol. Lxi11, p. 440,
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and where, K(s, t) is subject only to the condition that r {K (s, t)}2dt

exists for each value of s and is limited as a function of s.
Let p(s) and g (s) be identical ; the theorem then becomes
p h » 1 ( b 1 2
5 5 K@, Hp@E)pydsdt = = = -(5 ¢n(s)p(s)dsJ .

a n=1

7. Let it now be assumed that K (s, £) is such that all the charae-
teristic numbers {A,} are positive. Let p(s) be defined by p(s) = 1, when
si—e L s s+e and p(s) =0, for all other values of s, where ¢ is a
fixed positive number, and s, a fixed value of s.

‘We see then that ” K{s, t) dsdt,

taken over a square with its centre at the point (s, s)) and its sides
of length 2 parallel to the axes, is essentially positive.

Let us now assume that all the characteristic functions {¢n(s)} ave
continuous, and let us apply the result just obtained to the nucleus

K@, — S 226 $n®

=1 An ?
b n=m )
which is such that 5 (K, 0— = ?n“})\ x () : i,
« =1 » k
b w 2
or j 1K@, l2dt— = {L;(S) I :
@ n=1 w

is a limited function of s, the value of m being fixed.
We see that

1 HK(S, 5 dsdt—%ﬂ 5" "'(S;\ ) gsa

2
46 n=1 W

is essentially positive for each value of m and each value of ¢; the integrals.
being taken over the square with centre at (s, s,).
n=1m
Now 2 n(8) fu () being a continuous function of (s, #), we see that.

n=1 An

(S n=n Y2
feﬁ H s @A goq =S L’»;\M__'_nm,

n=1 v n=1 n

where 7, converges to zero as e does s0, and thus can be made arbitrarily
small by taking e small enough, for each fixed value of m.



24 Pror. E. W. Hosson [Feb. 12,

1 —ﬂ\im {ql’n(s])}g _
Fhus il ﬂ K (s, tYdsdt 2T, T

is essentially positive.

If K (s, t) be such that it is not infinitely discontinuous at the point
(s1, $;), we can choose e so small that |K (s, )| is limited in the square
$i—e L s S1Fe si—e L L 54

1 ([

In that case id M K(s,t)ydsdt << N,

where N denotes the upper limit of | K (s, #)| in the square so chosen. We

2
now see that the series X _{ ¢n>(\51)}

n=%t
can choose m so large that

cannot diverge, for if it diverges we

and since 7, may for this value of m be taken arbitrarily small by proper
choice of ¢, the expression

1 HK(S, Hdsdt— = { ;\(s)}ﬂ_”m

4¢* n=1

would then be negative, which is impossible.
2
Therefore the series X { "\(s‘)} is convergent, provided K (s, £) is not
=1 An
infinitely discontinuous at the point (s, s,).

In case X {gnlont” $u o)}
n=1 An
tinuous at (sy, sp).

In case K(s,f) is such as to have no infinite discontinuity on the

is divergent, K (s, f) must be infinitely discon-

18
straight line s = ¢, the series = _{_@).T(s)_; is convergent for every value of

n

sin (a, b). It then follows that the series = "(37)\ n(f) is everywhere
n=1 n
absolutely convergent.
Employing the theorem V established in §4, we now have the

following theorem :—

VIIL. If K(s,t) be any symmetrical nucleus for which all the charac-

teristic numbers are positive and the characteristic functions all con-
b

frnuous, such that J. {K(s, t)}?dt is a Umited function of s, and also such

a
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as not to be infinttely discontinuous at any point on the straight line s=1,

the series 21’1(_'?))?‘&_@ converges to K (s, t) everywhere with the possible

& 2

-exception of points of a set of which the sections by lines parallel to the
azes have linear measure zero.

This is an extension of Mercer’s theorem to the case of discontinuous
nueclei with positive characteristic numbers. It is easily seen that it can
be extended to the case in which a finite set of the characteristic numbers
are negative.

8. Let K (s, {) be any symmetrical nucleus for which {¢,(s)} and {X.}
are the chamcteristic functions and constants, and -let it be assumed that

the series X is convergent.
n=1 [ Aal >\ l
Let e;, €, ..., denote a sequence of decreasing positive numbers such

that el+eg+... converges to a positive number { arbitrarily chosen. Let
my, My, My, ..., be a sequence of increasing integers so chosen that

IS I
bmg-—l
We have then 5 —%fl)—Lds <é,
5” st i?ln(83|r_ds<e§
Ry .
'm.-‘-l
It follows that @}

’Iﬂl ‘ xn I

in the points of a set of linear measure > b—a—e¢;; that
ﬂa—'l 2
jgn(s)[ <e
S bW
in the points of a set of linear measure > 5 —a—e,y, and 80 on.

It follows that in the points of a set of linear measure > b—a—¢,

m+r {¢n(3)}2
= ]

<,

for all values of 7.

Now choose a set of values of {, say {;, {;, ... converging to zero, and
such that {;+{,-+... converges to a positive number ¢ arbitrarily small.
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2
We see then that in a set of measure > b—a—4J, the series = —{—%)\(i)‘}—
n=1 n

2
converges uniformly. Since ¢ is arbitrarily small, we see that = | ,;\(s)}

n
is convergent for all values of s that do not belong to some set of linear
measure zero.

Since

Da(5) P (D) {pn(s)}? {pn(®)}?
l . |<% TR our

we see that the series 2= "(sy)\qs"(t) is absolutely convergent, provided

neither s nor ¢ belong to the exceptional linear set. We thus see that
= ”(S;\ n(® is convergent, except possibly at points of a set of which
n=1 n

the plane measure is zero.

It has thus been shewn that :—

IX. If K (s, t) be any symmetrical nucleus not necessartly continuous
or limited, such that the series of which the terms are the reciprocals of

its characteristic numbers is absolutely convergent, then = n(‘?\ n(8) s

=1 n
absolutely convergent, except possibly at points of a set of which the plane
measure s zero.

Employing theorem V, we now obtain the following theorem :—

X. If K(s, t) be any symmetrical nucleus, limited or unlimited, such
that <its characteristic functions are continuous, and such that

b
J 1K (s, &);2dt is a limited function of s, then, if the series of which the

a

terms are the reciprocals of the characteristic numbers is absolutely con-

vergent, the series X ”(S))\ A0 converges to K (s, ) with the possible
n=1 iy

exception of points (s, t) of a set of which the plane measure is zero.

9. Let K(s,t) be such that, provided |s—¢| is e, where ¢ is an

arbitrarily chosen positive number, | £ ¢,(s) ¢.(f) | is less than some
1

fixed positive number, for all values of m, and for all the values of.s and ¢
which satisfy the prescribed condition. Also let us assume that all the
characteristic numbers {A,! corresponding to K (s, ) are positive.
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It can then be shewn, by employing Abel’s lemma, that the series

3 €n(8) fnld) (3; n (6) converges uniformly for all the values of s and ¢, such that
n=1 n

fs—t|>e
For
n=m+p ﬂ'(s) ¢"(t) 1 m;{-‘p
s 2 - 4 »
n=m+1 An Am+p~4l-1 m+1 ¢n(8) ¢ ( )
+q§ﬂ ( 1 1 ) 'mgq .
g=1 x7?1.-4»/1 Am+p+1 m1 ¢1l(s) ¢‘B( ) ’
. 1 1
d 1 oo
e e A”H'a Am+p+1 >
n=m+p
we have > Mt)'< P +P<1 1 )<P’
w=m+1 Kn xm+p+1 7\m+1 7\m+p+] xm+1

s

where P is a fixed positive number, dependent only on e. Since Y
m+1

arbitrarily small, by making m large enough, the uniform convergence of
the series is established.
If we assume that K (s, ) is continuous exeept on the line s = ¢, where
b
it is infinitely discontinuous, and that J' {K (s, ©12dt is a limited function

of s, the functions {¢.(s)} are all continuous, and the theorem VI of § 4 is
applicable.
We obtain then the following theorem :—

XI. If K (s, t) is continuous except on the line s = t, where it may be

b
wnfinitely discontinuous, but such that J {K (s, t)}2dt s a limited func-

Te=m

tion of s, and if %1 P (5) ()

independent of m, for all values of s and t such that |s—t| > e, where ¢

18 an arbitrarily chosen positive number, then the series Z P (6) $n ()

n=1 n

converges uniformly to K (s, t) for all values of s and t such that

is less than some fixed fintte number,

|s—t| > e

This theorem is applicable to the case of the Sturm-Liouville functions
and to other orthogonal funetions which arise in connexion with linear
differential equations.
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b
10. Let K (s, ) be such that;j 1 K(s, )} ®d¢ is a limited function of s,

and that the repeated function of K (s, {) is equivalent to a continuous
function Ky(s, £).

Then, as has been shewn in theorem I, X L@—?-"—) converges uni-
formly to K,(s, #). n=1

Therefore X - ¢;( )}) converges to a continuous function of s.

1

Let us consider separately those values of A which are positive and
those which are negative ; let the former be denoted by

7\<P) )\(P)

and the latter by >\(1N), 7\‘;‘”, >\(3N)

ey

each series being arranged in order of increasing absolute magnitude. It
is then clear that the two series

([ $%(s) $i (s)) *
2 AP } ’ nzl{ A

are each convergent and have limited sum funetions.

Let K®(s, &) be that nucleus, constructed as in §38, which has
[P @}, NP} for its sole characteristic functions and numbers, and
let K® (s, ) be the nucleus, similarly constructed, which has {¢(s},
AWML for its sole characteristic functions and numbers. We have then

(F) (V) 2
jb (KOs, b))%t = _I{M} 2, Sb (RO, g par= 3 {2201

n=1 L }\("’N)

and therefore
(4 b b
j { KO (s, t)}“’dt-{—}’ (K@, t)} 2 dt = 5 {E(s, )} dt.

Since ¢07(f) is orthogonal to all the characteristic functions of K® (s, {),.

we have
j KW, ) g (t)dt = 0;

]
and gimilarly, we have s KO, t) Pty dt = 0.
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It follows that

f {ED(s, )+ KE® (s, )} D@0 dt = A ¢ (),

and f (KD, ) +ED (s, £)} D@ dt = AP P (s) ;

Hence the nucleus EK®M(s, )+ K®(s, £) has the same characteristic
funections and constants as K (s, ¥). It will be shewn that it has no other
characteristic. functions than these.

Since KM (s, ¢') is orthogonal to ¢ (t'), ¢M(¢), ..., we have

f KOs, t) KO, ¢)dt' = 0,
a

hence Y[K(‘)(s, Y+ KD, ¢)][KO@, )+ KD, ] dt
= F KW, t) KO, t) dt'+jb KO3, th KO, t) dt’,

and thus the repeated funection of KWs, t)4K®(s, t) is the sum of the
repeated functions of KM(s, ¢) and K (s, 1).

Also f {K(s, )%t = j” (KOs, )4+ KD(s, §)}2dt,

a

b
since j’ KM (s, t) KO, tydt = 0.

y (P) 2 (N) 2
. _ ¢ ’(s) ¢n (5) |
sione 106 050001200 = 3 [ B} "+ 2 {650}
it now follows that KM (s, &) + K® (s, ¢) has no characteristic functions and
constants other than those of K (s, £).

The following result has been established :—

XIL. If K(s, t) be such that its repeated function is equivalent to a
continuous function, then K (s, t) may be expressed as the sum of two func-
tions KW (s, ©), K®(s, t), orthogonal to one another, and such that KM (s, t)
has for its sole characteristic numbers those mumbers corresponding to
K (s, t) which are positive; and such that K¥) (s, t) has for its sole charac-
teristic numbers those numbers corresponding to K (s, t) which are negative.
The characteristic function corresponding to @ characteristic number of
KW (s, t) or of K® (s, t) ts the same as the characteristic function of K (s, t)
corresponding to the same characteristic number.
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This theorem is applicable in particular to a continuous nucleas
K(s, t), which may have an infinite number of characteristic numbers
of each sign.

If it were certain that KM(s, t), K®(s, ) were not infinitely dis-
continuous on the straight line s = ¢, theorem VIII would be applicable
to these nuclei, and the uniform convergence of X Mf@(_t) to K (s, ©)

could be deduced. As, however, this possibility cannot be excluded, at
all events a priori, no further general result has been obtained for the
case of a continuous nucleus with an infinite number of characteristic
numbers of each sign beyond that obtained in § 8 ; that, for each point
(s, ), with the possible exception of points belonging to a set of measure
zero, a sequence of values of m can be so determined fhat ni? M’?\&(—o

converges to K (s, ) as m goes through the values in the sequence.





