THE INHERITANCE OF GLUME-LENGTH AND GRAIN-LENGTH IN A WHEAT CROSS.

By F. L. ENGLEDOW.
(With 1 Text-figure.)

CONTENTS.

Section page
I. The Experimental Material and the Nature of the Breeding 109
II. The Observations and the Method of Mensurement 111
III. The Inheritance of Glume-Length 112
IV. The Moasurable Characters of the P, I, and K Glume Types in F_{0}, F_{2}, and F_{3} 116
V. The Inheritance of Grain-Longth 119
VI. The Measurable Characters of the K, I, and P Grain Types in F_{0}, F_{2}, and F_{3} 121
VII. Concerning the Apparent Gonetic Insoparability of Certain Charaoters in the Cross 123
VIII. An Apparent Relationship between Glume-Length and the Developmont of Hairs on the Glume 125
IX. The Inheritance of Solidness of Straw in the Cross 126
X. Evidence conoerning the Endosperm in Inheritance 126
XI. Conclusions 129
Tables of Frequency Distributions of Glume- and Grain-Lengths 130
Bibliography 134

I. The Experimental Material and the Nature of the Breeding.

The inheritance results in wheat published by Biffen (1) in 1905, made it clear that certain simply "measurable" or "quantitative" characters behaved, in inheritance, in much the same general fashion as the "qualitative" ones. Manifestly most of the economic plant-breeding questions, e.g. "yield" inheritance, must depend upon "measurable" characters, and the investigations to be described were undertaken with the primary object of ascertaining the precise mode of inheritance of some simply measurable character. Biffen's observations on length
of glume had revealed the segregation of "long" and "short" glumes (apparently of the parental forms) in the F_{2}^{\prime} and, in addition, of heterozygous forms of intermediate length. It seemed desirable to determine whether or not the numerical limits which characterised the parents of the cross, also characterised the apparently "parental" types found in the F_{2}.

Glume-length was chosen as the experimental character partly because of the general definiteness of Biffen's results, and further, on account of its botanical suitability to the requirements of a simply measurable character. It was such that numerous and accurate measurements were obtainable, and moreover, as a general experience proved, it was less liable to wide and sudden fluctuations than were most of the other length characters of the wheat-plant.

Grain-length it was clear, bore some definite relation to glumelength [vide (1), p. 38], and as it appeared to have an economic significance, it was included as an experimental character in the investigation.

The parents (F_{0}) of the cross were " Polish " (T. polonicum L.) and "Kubanka" (a variety of T. durum Desf.). They had been grown for some years by Professor Biffen, and were known to satisfy the requirements of a definition of "pure line" with regard to origin, behaviour, and mode of maintenance.

The sequence of the breeding was:
$1911\left\{\begin{array}{l}\text { Cross made, viz. \& Polish } \times{ }^{2} \text { Kubanka. } \\ \text { Parental stocks continued. }\end{array}\right.$
$1912\left\{\begin{array}{l}F_{1} \text { plants grown and harvested. } \\ \text { Parental stocks continued. }\end{array}\right.$
Every grain borne by the F_{1} plants was sown and $530 F_{2}$ plants thus raised. The main ear of every F_{1} plant was
1913 harvested and labelled with a serial number (1-530). Of these plants only 487 set ripe grain.
Parental stocks continued.
Every grain of every labelled ripe F_{2} ear (one per plant) was sown, and $5145 \quad F_{3}$ plants were thus raised. The main ear of every plant was harvested. The ears from those plants
1914 which sprang from the seeds of any one F_{2} plant were bunched together, and the bunch was labelled with a "family number" which was the number allotted in 1913 to the corresponding F_{2} parent plant.
Parental stocks continued.

The investigation began in 1913. Prior to that year the material was in the hands of Professor Biffen.

A certain amount of sterility was encountered, but as the details given below make clear, its incidence wis neither selective nor sufficiently heavy to bias the numerical results recorded.

In the F_{2} a few plants failed to mature by harvest time, and consequently they were not measured. These again were not selective, but included all three of the length types found in F_{s}.

The F_{3} plants were kept unthreshed during 1914-19, and it is hoped to raise on F_{4} in 1920 .

II. The Observations and the Methon of Measuremlet.

The class-intervals of measurement are, throughout:
For glumes, 1.0 mm ; for grains, 0.5 mm .
As a fact, the glumes were measured to 0.5 mm ., but on this basis the frequency distribution, in the case of Polish, covered a range of 45 clnsses. Hence to facilitate statistical work and to smooth out the irregularities introduced into such a distribution by very small classes, the observations were regrouped into 1.0 mm . classes. As a result of this regrouping a non-integral ($x \cdot 5$) number of individuals is to be found as the class frequency in some parts of the tables of observations.

In all the generations one ear per plant was harvested and one glume per ear was measured. The grain situated nearest to that glume was measured also. Either glume of the median spikelet on either side of the rachis (i.e. any one of a specified set of four glames) was selected for measurement.

The acceptance of one glume-length as a characteristic of the ear concerned, was justified by a separate investigation. It was first established that the glumes of the median group of four spikelets on an ear, were all of practically the same length. Thus the average of this set of eight glumes (from four spikelets) could be regarded as a characteristic of the ear. Next, for every F_{2} plant (total 492 plants) these eight glumes (and with them the corresponding eight grains) were measured. The frequency distribution of the deviation of every single measurement from the mean of the set of eight to which it belonged, was then compiled, regard being paid to the sign of the deviation. The mean quartile deviation of the distribution was 0.401 mm . by direct calculation and 0.435 mm . when calculated from the standard deviation of the distribution on the assumption of normality. That is to say, ifty per

112

cent. of the single measurements deviate from the means of the sets of eight to which they belong, by no more than $\pm 0.4 \mathrm{~mm}$. The accuracy of measurement is only $\pm 0.5 \mathrm{~mm}$., and consequently one glume measurement per ear wis considered to be justifiable.

III. The Inineritance of Glume-Lengith.

The symbols " P," " I," and " K " are used to facilitate reference.
Thus " P " implies " Polislı" or " of Polish type."
$F_{0} . P$ designates a population of pure "parental" Polish type, the type which was employed as one parent in the cross.
F_{9}, M_{P} (glume) denotes the mean glume-lengtlı of a population of parental Polislı plants.
$F_{0} \cdot \sigma_{P}$ (glume) denotes the standard deviation of the glume-length frequency distribution for such a population.
" K " is similarly used in the case of "Kubanka."
" I " implies the heterozygote form which, as later appears, is roughlyspeaking intermediate between " P " and " K ".

The glume-length distributions in successive generations were as follows:

$$
F_{0}
$$

Both parent varieties were grown and measured in 1913 and 1914. For comparative purposes the results of 1914 are by far the more useful, for they are based on much greater numbers of observations, and the F_{3} was also grown in that year, the conditions being precisely similar. Summarised, the results were:

Glume-lengths of Parent Varieties ($F_{0} . P$ and $F_{0} . K$) of the Cross.

Year	Variety	Mean Glumb-Length	σ	No. of Observations	No. of Table contalning frequency distribution of glume-length
1913	Polish	$F_{0} . M_{P}=28.6 \pm 0.34$	-	80	-
1914	"	$F_{0} \cdot M_{P}=30.84 \pm 0 \cdot 10$	3.784	600	I
1913	Kubanka	$F_{0} . M_{\kappa}=11 \cdot 23 \pm 0 \cdot 24$	-	25	-
1914	"	$\Gamma_{0} \cdot M_{\kappa}=11.70 \pm 0.04$	1.260	400	II

That the variability of Polish is great and that of Kubanka small becomes clear from an inspection of Tables I and II.

$$
F_{1}
$$

During 1914-19, the F_{1} measurements were lost. From memory it can be stated simply that the F_{1} mean lay somewhere between the parental means-probably it was close to the arithmetic mean of the
parental values. Backhouse (2) records extensive crosses between PolishKubanka, and the following values are from his results:

$$
F_{0} . M_{P}=29.0 \mathrm{~mm} . ; F_{0} . M_{K}=9.0 \mathrm{~mm} . ; F_{1} . M=18-19.0 \mathrm{~mm} .
$$

Similarly from the records of Biffen [(1), p. 36] for reciprocal Polish x Rivet crosses, the numerical intermediateness of the F_{1} is quite definite.

In the cross to be described the F_{1} value was thus probably

$$
=(30 \cdot 84+11 \cdot 70) / 2=21 \cdot 27 \mathrm{~mm} .
$$

but no further use is made of this speculative value.

$$
F_{2} .
$$

Although $530 \quad F_{2}$ plants were raiserl, only 487 of them furnished grain for the raising of an F_{3}. The causes and distributions of the failures are explained in the tables which follow. The frequency distributions of F_{2} glume-lengths were:

Table III (p. 133). The complete F_{2} of 530 plants.
Table IV. The $487 F_{z}$ plants which matured and whose grain was sown to raise the F_{3}.

Table V. The $17 F_{2}$ plants which, although they contributed no grain for the F_{3} sowings, did set one or more imperfect grains. They were unripe at harvest.

Table VI. The $7 F_{2}$ plants which matured but were sterile.
Table VII. The $19 F_{2}$ plants which were unripe at harvest, and which gave no evidence of being able to set grain.

It is with the plants of Table IV that further observation is concerned, for they alone gave F_{3} progeny, from the examination of which they themselves could be sorted into genetic classes. Table IV (like Table III) exhibits a definite tri-modality.

Two conclusions may be drawn from the F_{2} glume-length frequency distributions (Table III or Table IV) viz:
(1) Three glume-length types appear in l_{2}.
(2) None of these types corresponds exactly to the Polish parent. It appears that this parental type is represented in the H_{0}^{\prime} by a groups of plants whose mean and fluctuation ranges for glume-length have been "shifted" down towards the lower end of the seale.

In the first place an attempt was made to "dissect" the tri-modal F_{2} distribution into its three constituent types by purely mathematical methods. It was assumed that the distribution of the heterozygote type of F_{2}^{\prime} did not extend below the lowest "peak" of the total F_{2}

114 Glume-Length and Grain-Length in Wheat

distribution (i.e. 11.5 mm . in Table IV). If this were so, then that part of Table IV lying between 11.5 mm . and 9.5 mm . (both values inclusive) was the lower half of the distribution of all the plants of Kubanka type in the F_{2}. The upper half of the distribution was obtained by writing down the frequencies symmetrical about 11.5 mm . to those of the lower half. From the distribution so completerl the standard deviation (σ) and mmber of observations (N) were found, and the mean M was, of course, 11.5 mm . The "normal" curve equivalent to this distribution was calculated [see Yule (5) for formula and tables for use in calculation]. By the same processes the normal. curve for the distribution of the Polish type of F_{2} was obtained. Subtraction of these two normal distributions from the total F_{2} gave the distribution of the heterozygote or intermediate type. 'Thus calculated, the frequencies of the F_{2} types were:

$$
\begin{array}{ccc}
K & I & P \\
23 \cdot 29 \% & 57.76 \% & 18 \cdot 94 \%
\end{array}
$$

while the modes were:

$$
11.5 \mathrm{~mm} . \quad 16.5 \mathrm{~mm} . \quad 24.5 \mathrm{~mm} .
$$

This theoretical "dissection" was carried out for the sole purpose of testing the reliability of mathematical analysis of the F_{a} as against the far more lengthy and laborious genetic analysis by means of a complete F_{3}.

Clearly, the analysis of F_{2} into constituent genetic types necessitaterl the raising of a complete F_{3}.

$$
F_{13}
$$

The F_{3} plants were kept in "families," an F_{3} family consisting of all the plants raised from the grain bome by any one F_{2} "mother" plant. From the nature of the F_{y} family the genetic type of the corresponcling F_{2} plant was judged. Thus an F_{3} family in which all the plants were P, must have originated from a homozygously P plant of the H_{2}; similarly in the casc of K. An F_{3} family containing plants of two or more types, e.g. P, I, and K, or P and I, or I and K, or P and K, must have come from an F_{z} plant that was heterozygous, i.e. an I plant.

The sorting into types of the F_{3} familios necessilated a definition of the three types P, I, and K (the tri-modlality of the F_{2} distribution pointed to the existence of only three types). Measurement as opposed to eye-judgment was intended to be the essence of this investigation, and an attempt was made to set up measurable (quantitative) type
standards. 'Table II suggests that an F_{a} fitmily should be regarded as K if, and only if, no plant in it was of greater glume-length than 14.5 mm . Since the accuracy of measurement was only $\pm 0.5 \mathrm{~mm}$., and the class interval was 1.0 mm ., the value of 15.5 mm . was finally adopted as an upper limit defining the K type of F_{s} fimily.

From the records of observations, the serial numbers were noted of all F_{3} familics in which occurred no plant of glume-length greater than 15.5 mm . These families were inspected, and every plant of every family proved to be to the judgment of the cye-at this stage fairly practisedof K lype in general appoarance. Thas far, therefore, the metrical standard was applicable; moreover it harmonised with eye-judgment.

For the Polish (P) standard it was natural to turn to Table I ($F_{0} . P$ distribution) and, for the time being, ignoring the ontlying observation at 12.5 mm ., to adopt 19.5 mm . ($20.5-1 \cdot 0$) as the lower limit for the P type. F_{3} families w.,uld thus be accepted as P if, and only if, they containcd no plant of glume-length less than 19.5 mm . Certain F_{3} families were found which, although they failed to pass this numerical test, were obviously composed entirely of plants possessing the unmistakable Polish eye-appearance. The "shift" downwards in glume-length exhibited in F_{2} had persisted in F_{3}, and this had rendered mapplicable the metrical " P " standard derived from the distribution of $F_{0} . P$. A fresh metrical standard was essayed in the form of the total range of glume-length variation in F_{3} families. This too failed tor harmonise with facts of eye-judgment-facts so defmed that they could not be ignored.

After finll trial, the metrical stemdard was abandoned in the case of Polish, and in its stead eye-judgment was adopted. Polish and Kubanka are so well characterised in glume-form that the practised eye has little difficulty in separating the one type from the other and from heterozygotes (intermediates). The intermediates proved to be in every one of the numerous glume (and grain) characters, excellent "blends" of the parent forms.

The standards thus finally adopied were applied, every F_{3} plant being twice judged. The second judgment accorded with the first and the result was:

$$
F_{3}=\left\{\begin{array}{llll}
114 K & \text { families } & =1237 & \text { plants } \\
267 I & & =2854 & " \\
101 P & " & =1054 & ,
\end{array}\right\}=5145 \text { plants. }
$$

Regarding all F_{g} plants as simple heterozygotes, if in their F_{3} families

116

 Glume-Length and Grain-Length in Wheatthere occurred more than one type, and denoting the heterozygote by " I," the F_{g} ratio is:

$$
\begin{aligned}
H_{2}=K: I: P & =114: 267 \quad: 101[=482 \text { plants }] \\
& =23 \cdot 65 \%: 55 \cdot 39 \%: 20 \cdot 95 \% .
\end{aligned}
$$

[N.B. $487 F_{2}$ plants set good seed, but only $482 F_{:}$fimilies were obtained at harvest.]

From the H_{2} distribution it is concluded that there are three distinct F_{2} types. The classification of the F_{2} plants by means of the F_{3} should, on the assumption of a one-factor difference between P and K, reveal a 1:2:1 ratio among these types. Actually the ratio (given above) deviates considerably from this expectation, and as Tables V, VI, and VII show, the deviation is not explicable on the basis of selective mortality or sterility. Confirmatory evidence is to be found in Biffen [(1), p. 36] with Polish \times Rivet, Backhouse (2) with Polish \times Kubanka, and Caporn (3) with Polish \times Eloboni. In all three of these cases the evidence for a one-factor difference for glume-length was very substantial, and close approaches to a 1:2:1 ratio were obtained in the F_{2}. No other explanation appears to accord as closely with the results of observation above described as does that of one-factor difference; and consequently as a working hypothesis it is assumed that either P or K possesses a factor for glume-length which the other lacks, and that the heterozygote is, broadly speaking, intermediate between the parental forms.

IV. The Measurable Characteristics of the P, I, and K Glume
 Types in F_{0}, F_{2}, and F_{3}.

In F_{2} and F_{3} every plant was classified as P, I, or K. The next step was to evaluate the measurable characteristies-frequency distribution, mean, and standard deviation-of all three types in F_{0}, F_{2}, and F_{3} successively. The P (and similarly K) plants of F_{3} are of two kinds, the one descendants of $F_{2} . P$ (designated $F_{3} . P$ ex $F_{2} . P$) and the other of $F_{2} . I$ (lesignated $F_{3} . P$ ex F_{2}, I). For the time being the characteristics of $F_{3} . P$ ex $F_{2} . I$ and $F_{3} . K$ ex $F_{2} . I$ will not be considered. The measurable characteristics of the three types in the three generations were as follows:
$M=$ mean glume-lengtl $; \sigma=$ standard deviation of glume-length frequency distribution and $N=$ the number of observations in the distribution.

K.

Measurable Charcateristics of the Kubanka Glume Type in F_{1}, F_{1}, and F_{3}.

Year	Generation	M	σ	N	'Table of Prepmency fistribution
1914	$I_{0}^{3} \cdot \mathrm{~K}$	11.70土0.043	1-2 ${ }^{\text {j }}$	100	I [
1913	隹. K	$11 \cdot 42 \pm 0 \cdot 075$	$1 \cdot 18$	114	V1II
1914	$r_{2} . K$ ex $F_{2} . \kappa$	$11 \cdot 98 \pm 0 \cdot 025$	1-30	1237	IX

The $F_{2} . K$ population was small (114 plants) and the 1913-14 seasonal difference was doubtless responsible to a considerable extent for differences in growth. From the above values it is concluded that the K type maintained its measurable characters practically constant in F_{0}, F_{2}, and F_{3}.

P.

Measurable Characteristics of the Pol sh Glume Type in H_{0}, F_{2}, and H_{3}.

Year	Generation	M	σ	N	Trable of lirequency matribution
$1!114$	F_{0}, P	$30 \cdot 8.4 \pm 0 \cdot 10.4$	3.78	(:00)	I
1913	H_{2}, P	$23 \cdot 18 \pm 0 \cdot 186$	$2 \cdot 75$	101	X
1914	H_{3}, P ex F_{2}, P	$94 \cdot 66 \pm 0 \cdot 078$	$3 \cdot 78$	105.4	XI

As in the case of Kubanka, the mean of ($F_{3} 1914$) is slightily greater than that of $F_{2}(1913)$ and the difference is small enough to be attributable to season.

The differences

$$
\begin{aligned}
& F_{0} \cdot M_{p}-F_{3} \cdot M_{p}=7.66 \mathrm{~mm}=24.83 \% \text { of } F_{0} \cdot M_{p} \\
& F_{0} \cdot M_{p}-F_{3} \cdot M_{p}=6.18 \mathrm{~mm}=20.04 \% \text { of } F_{0} \cdot M_{p}
\end{aligned}
$$

and
are so great in comparison with the relevant probable errors that there is full justification for stating that in the $P \times K$ cross, the parental P does not re-appear in F_{2}. In its place are found P plants which closely resemble $F_{0} . P$ in general appearance but whose mean glume-length is more than 20% lower than that of $F_{0} . P$. This "reduced" form of P in F_{0} produces, when selfed, P plants of the same "reduced" glume-length in F_{3}. The possibility that "minor multiplying factors" are responsible in some way for this phenomenon of "reduction" or "shift" demands, perhaps, some form of reservation. It may be that the true $F_{0} . P$ type is reproduced in F_{2} but in extremely small proportion. Apart from the value of a safeguarding reservation there is nothing to recommend any theory of multiplying factors in this case. On the grounds of simplicity and agreement with observation, the most acceptable theory is that of the segregation of one facior with the attendant phenomenon of "shift."

118 Glume-Length and Grain-Length in Wheat

Interesting evidence of the occurrence of "shift" accompanying an otherwise apparently single segregation of one factor is to be found in the results of a number of investigations. Caporn [(3), p. 259] has remarked upon it and it is clearly shown in some of Backhouse's results [c.g. (2), p. 130, Fig. 1a]. In both of these cases Polish was one parent of the cross. The importance of a recognition of "gametic impurity" or "contamination" has been emphasised by Ruggles-Gates (9) and in a varicty of crosses the occurrence of the phenomenon is exemplified. Among these are Pumett and Bailey (10) and (11), Castle and Phillips (12), Davenport (13), Martin Leake [(14)--leaf factor in Cotton], East (15), Balls [(17), p. 69 on seed-weight], and possibly some of the intangible facts discovered in Tomato investigations by Groth (7) might be explained as results of "shift." It is interesting to observe that the results recorded by Belling (16) constitute one of the closest studies of length inheritance and that they show complete absence of "shift."

I.

Measuruble Characters of the Heterozyyous Glume Type in F_{0}, F_{2}, and F_{3}.

Yenr	Generation	M	σ	N	Table of Frequency Distrilbution
191:	$r_{2} .1$	$16 \cdot 407 \pm 0.078$	$1 \cdot 89$	267	XII
1914	F_{3}, I ex F_{2}, I	$17 \cdot 480 \pm 0 \cdot 058$	$2 \cdot 09$	580	XIII

From Tables XII and XIII it appears that the frequency distribution of glume-lengths for the plants of F_{2} and F_{3} which are neither P nor K (and are therefore classed as I) is unimodal, and this is in accordance with the one-factor explanation which has been adopted. With regard to the relation of the mean glume-length of the heterozygote to the means of the parents, the following values are of interest.

$$
\begin{gathered}
\left(F_{0} \cdot M_{P}+F_{0} \cdot M_{K}\right) / 2=21 \cdot 27 \mathrm{~mm} . \quad\left(F_{0} \cdot M_{P} \times F_{0}^{\prime} \cdot M_{K}\right)^{\frac{1}{2}}=19 \cdot 0 \mathrm{~mm} . \\
\left(F_{2} \cdot M_{P}+F_{2}^{\prime} \cdot M_{K}\right) / 2=17 \cdot 30 \mathrm{~mm} . \quad\left(F_{2} \cdot M_{P} \times F_{2}^{\prime} \cdot M_{K}\right)^{\frac{1}{2}}=16 \cdot 27 \mathrm{~mm} . \\
F_{2} \cdot M_{I}=16 \cdot 41 \mathrm{~mm} .
\end{gathered}
$$

It will be observed that a modified form of the "golden mean" theory of Groth (7) and (8) appears to fit the facts of this case.

The complete F_{3} progeny of the $F_{2} . I$ plants should, on the hypothesis adopted, present a glume-length distribution similar to the distribution of the complete F_{2}. That this is the case is shown by Table XIV. There appear to be three constituents with modes approximately at:
$11.5 \mathrm{~mm} . \quad 17.0 \mathrm{~mm} . \quad 245 \mathrm{~mm}$.

On expectation, these constituents are K, I, and P, and in order to determine their measurable characteristics, all plants of all $F_{3} . I$ families (between family No. 51 and family No. 265 both inclusive) were re-measured and re-classified as K, I, or P. From a sample of 1190 plants thus obtained the following values were calculated:

Measurable Characters of the K, I, and P Glume Thypes breth from F_{1}. I phents.

Year	Gencration	M	σ	N	Table of lirequency Distribution
1914	$r_{3}^{\prime} . K_{\text {ex }} H_{2} . I$	11.81 ± 0.053	$1 \cdot 35$	20.2	SV
',	r_{3}, I ex $r_{2} . I$	17•48: $0 \cdot 058$	2.0!	580	XIII
"	I_{3}^{\prime}, P ex r_{2}, I	$21 \cdot 6 \mathrm{Nt}$ 上 $0 \cdot 1.11$	3•73	318	XVI

Comparison of these values with those given moder \boldsymbol{R}^{r} (p. 117) and P (p. 117) show that for the mean glume-lengths:

$$
\begin{aligned}
& {\left[\left(F_{3}^{\prime} . K \text { ex } F_{2}^{\prime} . K\right)-\left(F_{3}^{\prime} . K \text { ex } h^{\prime} \cdot I\right)\right]=11 \cdot 98-11 \cdot 81=+0 \cdot 17,} \\
& {\left[\left(F_{3}^{\prime} . P \text { ex } F_{2}^{\prime} . P\right)-\left(F_{3}^{\prime} . P \text { ex } F_{2}^{\prime} . I\right)\right]=24 \cdot 66-24 \cdot 68=-0 \cdot 02 .}
\end{aligned}
$$

That is to say, although "shift" was first exhibited by the P descendants of heterozygous plants (viz. by $l_{2}^{\prime} . P$ ex l_{1}) it is not again exhibited by the P descendants of r_{2}^{\prime} heterozygotes (viz. $F_{3} . P$ ex l_{2}^{\prime}, l). It appears that the reduced or "shifted" value of Polish glume-length camot be further shifted by either
(a) Selfing-for $F_{3} \cdot P$ ex $F_{2} \cdot P$ (mean) $\bumpeq F_{2}, P$.
(β) Hybridisation, as in the zygosis performed by $F_{2} . I$ plants-for $F_{3} . P$ ex $F_{2} \cdot I$ (mem $\bumpeq F_{3} . P$ ex $F_{2}^{\prime} . P$.

V. The Inheritance of Grain-Length.

It was originally intended to deal with grain-length entirely by measurement but the principle of metrical type-standards proved inapplicable just as it did in the case of glume-length. In fact the breakdown was more complete, for the parental (K and P) mean grain-lengths lie, comparatively, very close, and the overlap of their distributions is considerable. From the early stages of the work upon $l_{2}^{\prime \prime}$ it was quite certain that " P " grains were never associated with " K " glumes or vice versâ and after extensive trials of sorting grains into types, it was concluded that in F_{2} three types only were found (K, I, and P), and that on any plant K glumes were invariably accompanied by K grains and similarly for I and for P. Consequently in $F_{\underline{2}}$ and F_{i} the classification by glunes was accepted as a classification by grains. Biffen [(1), p. 38] remarked upon the relationship between grain and glume.

In what follows the phrase " $b_{2}^{\prime}: K$ grains" refers to the grains borne by those F_{0} plants which have K glumes and so on, the plant eategories in F_{2} and F_{3} being thus identical with those of the glume-classification already described. On account of shed-grain etc., the number of plants in a grain-category is sometimes slightly less than the number in the otherwise identical glume-category.

In the successive generations the grain-length distributions were:

$$
F_{0}
$$

(iruin-Lengths of Parent Varieties (F_{0}, P and $F_{0} . K$) of the C'ross.

Year	Variety	M	σ	N	Table of Frequency Distribution
1913	Polish	$F_{0}, M M_{P}=10 \cdot 8 \pm 0 \cdot 102$	--	80	-
1914	,	$F_{0}, M_{r}=10.2 \pm 0.019$	0.66	526	XVIII
1013	Kubanka	$F_{0} \cdot M_{S}=8.2 \pm 0.077$	-	25	-
1914	"	$F_{10} \cdot M_{N}=7 \cdot 7 \pm 0.017$	0.49	395	XIX

The grain-length distributions are more smooth than those of glumelength and K again shows less dispersion than P.

$$
F_{1}
$$

Like the F_{1} glume measurements, those of the grains were lost. From memory and from previously published investigations it is concluded that the heterozygote length is roughly intermediate between the parental ones. In the F_{2} the intermediate or heterozygote grain can, with practice, always be distinguished from P and K. In some five or six well marked characters, it is a very even blend or intermediate between the characters of the parent grain-forms.

$$
F_{2} .
$$

In maize, the occurrence of "double fertilization" has been established. Assuming it in wheat, the expectation is that the endosperm of the grain (like the embryo) will be one generation aheal of the plant which bears $i t$. Later on the question is more fully considered but for the present the grain borne by an F_{x} plant will be referred to as F_{x} grain. This convention is in no sense prejudicial and it simplifies the designation of the grains of different generations.

Table XX contains the grain-length frequency distribution for the complete k_{2}^{\prime}. Comparison with Table XVIII ($k_{0}^{\prime} . P$) and Table XIX ($k_{0}^{\prime} . K$) indicates that:
(a) The F_{2} distribution contains no constituent exactly like $F_{0} . P$ for the frequency at 10.2 mm . is almost zero ($F_{0} . M_{P}=10 \cdot 2 \mathrm{~mm}$.).
(β) Similarly it contains no component exactly like

$$
F_{0} \cdot K\left(F_{0}, M_{K}=7.7 \mathrm{~mm} .\right)
$$

(γ) The F_{2} distribution is unimodal but (α) and (β) suggest that 'shift" has occurred. Possibly therefore the distribution consists of three constituents which lie very close on account of shift and which, by marked overlap, produce unimodality of the whole.

If the grain be one generation ahead of the plant which bears it, the ratio in F_{3} should be $3: 2: 3$; if not a $1: 2: 1$ is expected. The ratio is investigated in § VI below.

It is to be observed that the F_{y} distribution is based entiroly on measurements and consequently the phenomena of "shift," "unimodality," etc. are unaffected by the fact that in sorting it will be assumed that K (or I or P) grains always accompany K (or I or P) glumes only.

$$
F_{i}
$$

The measurements and numbers of plants correspond with those for glime-length in §III above. Owing to the sterility of a few F_{3} plants the distribution totals differ in some cases from those for the corresponding glumes.

VI. The Measurable Characteristics of tie K, I, and P Grain Types in F_{0}, F_{2}, and F_{3}.

It is necessary to recall that " K grain" (or I or P) implies the grain borne by plants whose glumes have been classed by eye as " K " (or I or P). That is to say, glume-length and grain-length are assumed to be "genetic inseparable," to be governed by the same factor. Eyc-impressions amply support the assumption, and its validity may now be tested. Glume-length showed segregation in F_{2}, as was made clear by examination of the F_{3} progenies of the F_{2} plants. The vindication of the assumption necessitates a demonstration of the segregation of grainlength in F_{2} similar to that given for glume-length. This is afforded by the measurable characteristics of the K, I, and l^{\prime} grain types in F_{0}, F_{2}, and F_{3}, which were as follows:

$$
K
$$

Measurable Characteristics of the Kubanka Grain Type in F_{0}, F_{2}, and F_{3}.

Year	Generation	M	σ	N	Table of Frequency Distribution
1914	$F_{0} \cdot K$	$7 \cdot 70 \pm 0 \cdot 017$	$0 \cdot 49$	395	XIX
1913	$F_{2} . K$	$8 \cdot 33 \cdot \pm 0 \cdot 042$	$0 \cdot 6 t$	112	XXI
1914	$\boldsymbol{F}_{3} \cdot K$ ex $F_{2} \cdot \boldsymbol{H}$	$8 \cdot 19 \pm 0 \cdot 012$	$0 \cdot 63$	1214	XXII

Tables XIX, XXI, and XXII show that the F_{0}. K type is not reproduced in F_{2} as does the equation $F_{2}, M_{K}-F_{0} . M_{K}=0.63 \mathrm{~mm}$. An upward "shift" in mean ghame-length appears to have occurred, and the shifted value to have bred true, for despite the 1913-14 seasonal difference, $F_{2} . M_{K}$ and $F_{3} . M_{K}$ differ by 0.14 mm . only. It will be recalled that in the case of K glume-length the differences concerned were so small that they could not saifely be aceepted as evidence of shift.
P.
Measurable Characteristics of the Polish Grain Type in F_{0}, F_{2}, and F_{3}.

Year	Generation	M	σ	N	Table of lirequency Distribution
1914	F_{0}, P	10.20 ± 0.019	$0 \cdot 66$	526	XVIII
1913	$F_{2} . P$	8.84 ± 0.038	0.56	101	XXIII
1914	F_{3}, P ex F_{2}, P	$8 \cdot 75 \pm 0.026$	0.83	1028	XXIV

The tables of frequency distribution and the values of M show that F_{2}, P very closely resembles its F_{3} progeny, but that both of them are definitely "shifted" down from $F_{0} . P$. The amount of the shift is:

$$
\begin{aligned}
& F_{0} \cdot M_{P}-F_{2} \cdot M_{P}=1.36 \mathrm{~mm}=13.34 \% \text { of } F_{0} \cdot M_{p}, \\
& F_{0} \cdot M_{P}-F_{3} \cdot M_{P}=1.45 \mathrm{~mm}=1421 \% \text { of } F_{0} \cdot M_{P} .
\end{aligned}
$$

That there is a segregation of grain types in F_{0} is shown by the regularity and resemblance of the distributions etc. of F_{2}, P and $F_{3} . P$ (cf. also F_{2}, K and F_{3}, K).

I.

Measurable Charateristics of the Heterozygous Grain Type in F_{0}, F_{2}, and F_{3}.

Year	Generation	M			
1913	$F_{3} . I$	8.67 ± 0.026	0.62	266	Table of Frequency
Distribution					

Thus the classification of the grains of the F_{2} and F_{3} plants by means of the glumes with which they are associated, has led to the conclusion that three grain types occur in F_{2}. These types naturally have the same frequency relations as the glume types, and as pointed out in §IV above the evidence indicates that the relations are actually an experimental expression of a $1: 2: 1$ ratio. A unimodal distribution (Table XX, i.e. grain-lengths of the complete F_{2}) has thus been shown to consist of three overlapping separate constituents K, I, and P, the overlap having been much accentuated by the "inwards" shift of P and K from the F_{0} values.

In the glume-length results of §IV (under " I ") it was shown that the progenv of the $F_{2} . I$ plants had a length distribution similar to
that of the complete F_{2}^{\prime} (i.e. the progeny of F_{1}, which is also " I "). Table XXVI is for the grains of the complete descendants of the $F_{2} . I$ plants, and its general resemblance to Table XIX furnishes an analogous proof in the case of grain-length.

In connection with glume-length a special series of measurements was made to ascertain if the means of $F_{3} . P$ ex $F_{2} . P$ and of $F_{3} . P$ ex $f_{2} . I$ were the same (and similarly for K). Some of the data of it separate investigation may be used as a similar test in the case of grainlength. In F_{3} families Nos. 1-50 (both inclusive) and 450-494 (both inclusive) every grain in the ear was measured for plants ex $F_{2} . P$ and for all P plants ex F_{2}^{\prime}. I. The results were:

Yen'	Generation				
1914	$F_{3} \cdot P^{\prime}$ ex $F_{2} \cdot I^{\prime}$	8.589 ± 0.010	1.08	4396	Trable of Frequency
Distribution					

Both of the values of M are less than the value given previously for $F_{3} . P$, for the last named was based upon the measurement of one "outside" grain per ear. The inner grains of a spikelet being smaller than the outside ones lower the value of M.

The difference shown, viz. $8.532-8.389=0.143 \mathrm{~mm}$., is small in comparison with the relevant probable errors, but, as compared with the values of M to which it relates, it appears to be not sufficiently significant to imply any difference in type between F_{8}, P ex F_{2}, P and $F_{3} . P$ ex $F_{2} . I$.

The conclusions so far reached may be thus briefly stated:
(a) The one factor which governs the $P-K$ glume difference also governs the P - K grain difference.
(β) "Shift" occurs, so that the P and K types as seen in F_{2} (glume and grain) are numerically "shifted" forms of the true F_{0} type.

The shifted values persist in F_{3}.
(γ) In spite of the demands of the "double fertilization" theory, the grain appears in so far as its length is concerned to belong to the same generation as the plant on which it is borne, i.e. grain-length is a maternal character and segregates on the 1:2:1 basis in F_{2}.

VII. Concerning tee Apparent Genetic Inseparability of Certain Characters in the Cross.

The glumes of parental P plants are of a definite, recognisable, general form ; their grains are equally characteristic. F_{2} or F_{3} plants whose glumes are P, invariably have grains which also, to the eye,

124

 Glume-Length and Grain-Length in Wheatare P. Moreover, no plants are found, in any generation, whose glumes wre other than P and yet whose grains are P. That is to say the P-form of glume and the P-form of grain appear to be inseparables, remaining associated throughout the vicissitudes attendant upon the production of F_{2} and F_{3} plants. Such characters may be called "genetic inseparables" [cf. "Correlation" as used by Collins (4)]. For the K type the same association prevails. Heterozygous plants (I) present an appearance best described as a skilful blend of the P and K forms. With I glumes, I grains are always found.

Glume-form or appearance, like grain-form, is the resultant of a number of chariacteristics and since the resultants are inseparable, so must the constituents be. Close inspection of a great number of plants ($F_{0}-F_{3}$) leads to the conclusion that there is a considerable number of such inseparable constituent characters, and a list of them is given below. The simplest view of this matter is that one factor controls all the inseparables. The list is:
(1) Length of glume.
(2) Ribs on main lamina of glume.
(3) Shape of tip of glume.
(4) Curvature of keel of glume.
(5) Consistency of material of glume (P is "papery," K is more rigid).
(6) Length of grain.
(7) Shape and size of cross-section of grain.
(8) The angle at which the embryo of the grain is set into the endosperm.
(9) Number and length of the hairs at the apex of the grain.
(10) Distinctness of the outline of the apical pad of the grain (" (Gipfel-polster"-Kcke).
For every one of these characters I proves to be an interparental blend.
To test the closeness of the association, the correlation between glume-length and grain-length was evaluated for $F_{0} . P$ and $F_{0} . K$. If $r=$ coeff. of correlation:

$$
\begin{aligned}
& \left(F_{0} . K\right) \cdot r=+0.348 \pm 0.044(N=395), \\
& \left(F_{0} . P\right) \cdot r=+0.392 \pm 0.037(N=526) .
\end{aligned}
$$

The values of the coefficient are, at first sight, surprisingly low. It is to be borne in mind however that circumstances of environment which affect grain-length, do not of necessity exercise a proportionate or
indeed any influence upon glume-length. Some two months before harvest the ear of the wheat plant has fully energed from the sheath and, whereas its glumes have attained practically full development, the grain is just commencing to form-fertilization having, it may be supposed, just taken place. Two plants of the same glume-length may thus, if their post fertilization enviromments be markedly different, develop grains of distinctly different length, whereas under identical conditions they would, presumably, have developed grains of the same length

Whatever may be the explanation of the low values of r, it is to be expected that if classifying by glume-length automatically ensures grainlength classification, then the value of r will be the same for P (or K or I) in F_{0}, F_{2}, and F_{3}. As a test, r was evaluated for F_{2}. P. The first of the eight pairs of measurements made in every F_{2} plant (see \S II above) was used, i.e. first glune-length and first grain-length. Calculation gave:

$$
\left(F_{2} \cdot P\right) \cdot r=+0 \cdot 301 \pm 0 \cdot 090,
$$

and it may be noted that:

$$
\left(F_{0}, P\right) \cdot r-\left(F_{2}, P\right) \cdot r=+0 \cdot 09=\mathrm{p} . \mathrm{e} . \text { of }\left(F_{2}, P\right) \cdot r
$$

Thus r glume/grain appears to have reasonable constancy and therefore although the absolute value of r is not great, a constant relationship between glume-length and grain-length is inferred. Owing to the fact that glume development is not contemporaneous with that of grain, the relationship is liable to be concealed by envirommental influences, particularly when it is expressed as a coefficient of correlation.

VIII. An Apparlent Relationship betwefn Glume-Lengti and the Development of Harrs on the Glume.

Both Polish and Kubanka are, from the point of view of ordinary descriptive botany, regarded as smooth-glumed wheats. As a fact each, and in particular $F_{0} . P$, exhibits a slight development of hairs on the glumes. In F_{2} there were found a few plants decidedly hairy and very noticeably different in this respect from the parents. All plants more hairy than $F_{0} . P$ were noted and the distribution of their glume-lengths is given in Table XXIX. They numbered 56/494, but the data available do not permit of any particular construction being placed upon this ratio. It will be observed that the increased development of hairs appears to have taken place in association with glumes of lengths below the length runge of $F_{0} . P$. This fact and the impression gained from an examination of the glume hairs of great numbers of $F_{0} . P$ plants, is in agreement with the finding of Backhouse (2) that "leugth of glume has
acted as an inhibitor of pubescence." Confirmatory evidence cannot be sought from the F_{3} plants, for it is found that, comparatively quickly, glume hairs fall off or become so brittle that they are very readily rubbed off in handling, and the F_{8} plants have been stored for five years.

IX. The Inieritance of Solidness of Straw in the Cross.

When the "shift" in glume-length became apparent, it was decided. to investigate some character unconnected with glume- or grain-length, to see if it manifested in H_{2}^{r} any feature corresponding to the shift of glume-length. The straw was selected. P is solid, K is hollow, and it is noteworthy that in all cases in which "shift" of glume-length is observable [vide cases cited in $\S T V$ above], one parent was solid in straw and the other hollow. Absence of shift characterises one case only, viz. the Polish \times Rivet cross [Biffen (1)], and in this both the parents are solid in straw. Thus the nature of the straw might possibly be related to the shift in glume-length.

Biffen (1) for a Turgidum (solid) \times Vulgare (hollow) cross (Rivet and Red King were the varieties actually used) found a sharp $3: 1=$ hollow : solid in F_{2}. In the cross here clescribed it was difficult on many occasions to separate hollow and solid straws. "Intermediate-solids" were encountered and finally were included as solids. The H_{2}^{\prime} was classified for straw by examination of its F_{s} progenies, but in all three of the glume types (P, I, and K) the ratios were such as could not be ascribed to ordinary factor segregation, whether of one or more than one factor: Different ratios were found for every one of the glume-type constituents (K, I, and P) and a different one, again, for the complete F_{3}.

The result is therefore negative-shift of glume-length is not connected with any simple peculiarity of straw inheritance-but the fact that unaccountably irregular ratios were obtained points to the need of a continuation of the straw investigation in subsequent generations.

X. Evidence concerning the Endosperm in Inheritance.

That grain-length is a maternal character was one of the conclusions arrived at by a comparative study of the inheritinces of glume-length and grain-length [see § VI (y), p. 123 above]. Singleness of length-type of all grains borne by " I " plants was manifestly a sine quà non of the acceptance of such a conclusion and it was thought well to re-examine the " I " grain question both theoretically and in practice.

For the cross here described F_{1} data are not available but Biffen [(1) p. 38] found that all the grains borne by all the F_{1} (and therofore " l ") plants were identical in form and appearance and, within the limits of natural fluctuation, of one common length-type. His conclusion is thus precisely the one which has already been expressed in this paper-a conclusion which appears to be decidedly out of harmony with the double fertilization hypothesis.

As already recorded, the F_{2} of the Polish \times Kubanka cross contained 267 " I " plants and their grains afford material for a more extensive inquiry than is possible with the necessarily limited number of F_{1} plants in any cross. Table XXV contains the frecgnency distribution of the lengths of these grains, and it exhibits clear unimodality. That unimodality ol' distribution is unreliable as an index of singleness of grain-type has, however, already been demonstrated. By measming the grains of the more numerous $F_{3} . I$ plants a distribution based on a greater number of observations might be obtained but it could afford no more evidence as to the existence of sub-types of length than docs the F. I distribution. Only by measuring a great number of grains and grouping the lengths of those which grew respectively into K, I, and P plants would it be possible to determine whether the same length of grain (i.e. of endosperm) was or was not associated with the K, I, and P types of embryo. It is proposed to make this test next year but in the meantime, metrical methods lailing, the assistance of eyc-judgment has been sought. Suitably devised tests demonstrated the ability of the cye to pick out infallibly the members of the three types from an artificially prepared mixture of K, I, and P grains. Beyond this, however, the eye could not go. Despite very extensive trials no evidence of sub-types either for lengtl or appenrance could be found among the grains borne by "I" plants. Il, owing to "double fertilization," the endosperm is "hybrid" in nature, the fact appears to find no expression in the length or appearance of the endosperm both of which are such that they mary be described as "matemal" characters.

The expectation derivable from an extension of the clouble fertilization hypothesis is of interest. Correns (6) and others assume that the secondary or definitive nucleus of the embryo sac exerts twice as much influence on the endosperm as clocs the single generative nucleus of the pollen grain-the reason lor this being that the definitive nucleus is formed by the union of two of the polar cells of the original nucleus of the ovule. The male generative nucleus unites, of course, with the female definitive nucleus and from the divisions which follow this union,
the endosperm results. To express the effect of such a "double dose of femaleness":
let $p=$ either a generative nucleus of a pollen grain which carries the "Polish" factor or one of the polar cells which unite to form the definitive nucleus of an ovule bearing the "Polish" factor. Let k be similarly used for "Kubanka."
From the gametogenesis of a heterozygous (l) plant the δ generative nuclei will be one half (p) and one half (l) ; the $i+$ definitive nuclei will be one half ($2 p$) and one half ($2 k$). When such a plant is selfed the following endosperms will result:

$$
3 p, \quad 2 p \mp k, \quad 2 k \mp p, \quad 3 k .
$$

Thus four types of endosperm are expected among the grains borne by " I" plants.

An endosperm of constitution $3 p$ develops, when nourished by an $F_{0} . P$ mother plant, into the characteristic " Polish" form of endosperm; but it may be that when nourished by the less vigorous " I " type of plant it is imperfectly weaned. Consequently its final length may be below the F_{0}. P grain-length standard. Similarly $3 k$ may be above the F_{0}. K standard. The remaining types $2 p \mp l c$ and $2 k \mp p$ will presumably lie between the $F_{0} . P$ and $F_{0} . K$ types and thus the expectation for the grains borne by " I " plants is four constituents whose length-modes have, owing to irregular development of the endosperms, closed inwards. The intensified overlapping would certainly produce unimodality of the whole distribution.

This theoretical consideration casts no new light upon the problem. As will be observed, it might be elaborated into an explanation of "shift"-an embryo, genetically Polish, fed during development on an " I " plant and nourished during germination by a similarly improperly weaned ($3 p$) endosperm, may be expected to grow into a reduced or "shifted" P plant'. Several experimental methods of investigating

[^0]this problem are possible but it has been decided to apply them to a cross whose parents are more widely separated in grain-length, -form, and -weight, than are Polish and Kubanka.

XI. Conclusions.

(1) In this cross, length of glume appeus to segregate simply and in the F_{2} the ratio long : intermediate : short $=1: 2: 1$.
(2) The "longs" and "shorts" of F_{2} although recognisably of the same form as the parents (F_{0}), yet differ from them in mean glumelength. The average of the longs is reduced by $24: 8 \%$ of the F_{0} value. In the case of the F_{y} shorts there is an increase over the F_{0} shorts but it is smaller.

This change or "shift" in the longs of the F_{2} is quite definite and cannot be explained by errors of sampling, seasonal variation, or any such cause.
(3) The "shifted" form of longs of F_{2} breeds true as far as F_{3} (it has not yet been carried further).
(4) When, in the selfing of F_{2} heterozygotes, plants of parental type are again evolved, there is no evidence of super-added "shift." Lilrewise there is no evidence of a tendency to the restoration of F_{0} values of mean glume-length, i.e.

$$
\left(F_{3}, P \operatorname{ex} F_{2}, I\right)=\left(F_{3}^{\prime} . P \operatorname{ex} F_{2}^{\prime}, P\right)=F_{2}^{\prime} . P<F_{0} . P
$$

(5) For grain-length results are obtained analogous to (1), (2), (3) and (4). The percentage value of the "shift" is, however, less than it is for glume-length, e.g.

$$
F_{0} \cdot P-F_{2} . P=12.5 \% \text { of } F_{0} . P .
$$

(6) All the available evidence supports the view that grain-length and glume-length belong to the same generation or, differently expressed, that grain-length is a maternal character. It is difficult to harmonise this view with the double-fertilization hypothesis.
(7) Numerous grain and glume characters appear to be genetic inseparables. Long-type glumes never contain short-type grains and vice $v e r s \hat{a}$. Despite the association of glume-length and grain-length, the correlation between these two variables is low. Certain reasons may be urged in explanation.
(8) A development of hairs, far more marked than that exhibited by cither parent variety, is found in certain of the F_{2} plants. These plants are all of short glume type. Length of glume appears in some manner to inhibit the full development of hairs.
(9) The Inheritance of Hollow and Solid Straw is complicated and a relationship may possibly exist between "shift" in glume-lengtlı and nature of straw inheritance.
(10) The investigation is to be continued by growing on the pure F_{0} types as well as the "shifted" parental forms from the F_{3}. By crossing the "shifted" and F_{0} types it is hoped to test the behaviour of "shifted" types in inheritance.

Table XVII (p. 131) presents diagrammatically a résumé of the measurable characteristics of the glume types in successive generations.

Opportunity is taken here to thank Professor R. H. Biffen, F.R.S., and Mr G. Udny Yule, M.A., C.B.E., for the help they have kindly given during the investigation.

TABLES OF FREQUENCY DISTRIBUTIONS OF GLUME- AND GRAIN-LENGTHS.

Glumes.

Table No.

Type and Generation
I $I_{0}^{\prime} . P$ i.e. Parent variety
II $F_{0} . K$, i.e. Parent varioty
III I_{2} complete
IV The $487 I_{2}^{\prime}$ plants from which seed was obtained for F_{3}
V $17 F_{2}$ plants which though fertile were unripe at harvest
VI $\quad 7 F_{2}$ plants ripe at harvest but sterile
VII $19 F_{2}$ plants unripe at harvest and sterile
VIII $\quad F_{2} . K$, i.e. Kubanka type of the F_{2}
IX $\quad F_{3} . K$ ex $F_{2} . K$, i.e. descendants by selfing of the plants of VIII
$X \quad F_{2} . P$, i.e. Polish type of the F_{2}
XI $H_{3} . P$ ex $F_{2} . P$, i.e. descendants by selfing of the plants of X
XII $\quad F_{2} . I$ i.e. heterozygote (intermediate) plants of F_{2}
XIII $\quad I_{3} . I$ ex $F_{2} . I$, i.e. heterozygous descendants of plants of XII
XIV Complete descendants of the plants of XII (by selfing)
XV $\quad F_{3} . K$ ex $F_{2} . I$, i.e. K type of descendents of the plants of XII
XVI $H_{3} . P$ ex $F_{2} . I$, i.e. P type of descendents of the plants of'XII
XVII Diagrammatic résumé of mensurable characteristics of K, I, and P in F_{0}, F_{2}, and F_{3}.

132 Glume－Length and Grain－Length in Wheat

Grains．
Table No．
Type and fieneration

XVIII	$F_{0} . P$ ，i．e．Parent varicty
XIX	$F_{0} . K$ ，i．c．Parent variety
XX	F_{2} complete
XXI	$F_{2} . K$ ，i．e．Kubrnka lype of the F_{2}
XXIE	$F_{3} . K$ ex $F_{2} . K$ ，i．e．descendants by sulfing of the plants of XXI
XXIII	$F_{2} . P$ ，i．e．Polish type of the F_{2}
XXIV	$F_{3} . P$ ex $F_{2} . P$ ，i．e．descendants by selfing of the plants of XXILI
XXV	$I_{2} . ~ T, ~ i . o . ~ h e t e r o z y g o t e ~(i n t e r m e d i a t e) ~ p l a n t s ~ o f ~ F F_{2}$
XXVI	Complete descendants of the plauts of XXV
XXVII	
XXVIII	$\left.F_{3}, P \text { ex } l_{2}^{\prime}, I\right\} \text { from seprate series of mensurements (see § VI of text) }$

N．B．Trable XXIX is a table of glume－lengthe nud refers to § VIII of the text．

Grains．

	Numbers of Tables											
	Menis	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV	XXV	XXVI	XXVII	XXVIII
\square_{8}	$5 \cdot 5$	－	2	－	－	2	－	－	－－	－	20	4
＊	$6 \cdot 0$	－－	－	－	－	5	－	－	－	10	43	19
即	6.5	－	9	3	2	17	－	9	－	31	123	53
当	7.0	－	47	11	5	50	1	36	5	82	262	94
召	$7 \cdot 5$	－	111	32	10	169	2	73	16	199	609	207
－	$8 \cdot 3$	4	187	89	30	399	14	167	45	589	679	324
．	$8 \cdot 5$	7	36	127	36	347	20	199	68	721	864	321
蜀	$9 \cdot 0$	37	2	101	24	189	40	274	87	691	845	343
－	$9 \cdot 5$	56	1	67	4	25	23	149	40	340	585	199
\％	$10 \cdot 0$	165	－	7	1	5	1	95	5	138	319	76
－	10\％	154	－	－	－	－－	－	23	－	19	112	4
$\stackrel{\circ}{\square}$	$11 \cdot 0$	8 l	－	－	－－	－	－	3	－	2	30	－
\％	11.5	18	－	－	－	－	－	－	－	－	3	－
空	$12 \cdot 0$	1	－	－	－	－	－	－	－－	\cdots	2	－
	otals	526	395	487	112	1214	101	1028	266	2822	4396	1644

TABLIE XXIX．

Class Means	9.5	10.5	11.5	$12 \cdot 5$	$13 \cdot 5$	$14 \cdot 5$	$15 \cdot 5$	$16 \cdot 5$	$17 \cdot 5$	$18 \cdot 5$	$19 \cdot 5$	Total
Frequencies	4	7	17	2	4	3	5	4	3	4	3	56

F. L. Eingledow 153

134 Glume-Length and Grain-Length in Wheat

BIBLIOGRAPHY.

1. Birfen, R. H. "Mendel's Laws of Inheritance and Wheat Breeding." Journ. Ayric. Sci. Vol. I. 1905-6.
2. Backhodes, W. O. "The Inheritance of Ahme-Length in Triticum polonicum ; A Chse of Zygotic Inhihition." Journ. of Genctics, Vol. vir. 1917-18.
3. Caporn, A. St Clair. "On a Cage of Permanent Variation in the GlumeLength of Extracted Pirental Types and the Inheritance of Puple Colour in the Cross T'. polonicum \times T' Eloboni." Journ. of Genetics, Vol. vin. 1917-18.
4. Collins, G. N. "Correlated Characters in Maize Breeding." Journ. Agric. Research, Vol. vi. 1, 1916.
5. Yole, G. Udny. An Introduction to the Theory of Statistics, Ed. 1919, 1). 303.
6. Correns, C. G. Biblio. Bot. lifi. 1--161.
7. Groth, B. H. A. Bulletins of N. Jersey Ag. Exp. Sta. Nos. 228, 238, 239, 242, and 278.
8. -. Science, April, 1914.
9. Gates, R. Ruggles. "On the Modification of Characters by Crossing." Amer. Nat. Vol. xlix. 1915.
10. Punnett, R. C., and Balefy, P. G. "On the Inheritance of Weight in Ponltry." Journ. of Genetics, Vol. Iv, 1914-15.
11. --and the late Major P. G. Baley, R.F.A. "Genetic Stadies in Rabbits. I. On the Inheritance of Weight." Journ of Genetics, Vol. vini. 1918-19.
12. Castle, W. F., and Phaldes, J, C. "Piehald Rats and Selection; an Experimental Test of the Effectiveness of Selection and the Theory of Ganetic Purity in Mendelinn Crosses." Carnegic Publ. No. 195, 1914.
13. Davenpont, C. B. "Inheritance in Ponltry." Carneyie Publ. No. 52, 1906.
14. Leake, H. Martin. "Stuclies in Indian Cotton." Journ. of (renetics, Vol. I. 1911.
15. Eas", [1. M. "Inheritance in Crosses between Nicotiana Lanysclorfii and N. alata." Genetics, Vol. I. 1916.
16. Belling, J. "Inheritance of Length of Pod in Certain Crosses." Journ. Agric. Research, Vol. v. 1, 1915-16.
17. Balls, W. L. Stedies of Egyptitan Cotton, 1909.
18. KIDD, F., and WEST, C. "Physiological Pre-determintion; the Inflnence of the Physiological Condition of the Seed mon the Course of Snbsequent Growth and mpon the Yield." Amn. App. Biol. Vol. v. Nos. 3 and 4, April, 1919.

[^0]: ${ }^{1}$ The probable validity of such au explanation of "ehift" is very greatly increased by the interesting facts collected by Kidd \& West [(18) especially Part IY, pp. 222-234]. A close - almost linear-relationship is clained between the anount of food reserve available for the embryo and the adult vigour and nltimate yield of the plant resulting from the seed. If this claim be justified, it is to be expected that in the $P \times K$ eross, there will be a relationship between sead-weight and length of glume of plant resulting from the seed. That F_{2}.K gluma-length exceeds $F_{0} . K$ ie consistent with the explanation suggested, for a $3 k$ endosperm nouriehed by an F_{I} " I " mother ${ }^{\text {plant }}$ is likely, on an average, to be heavier than if nourished by an $F_{0} . K$ mother plant. In the anme circumatances an increase in vigour of the ombryo nccompanying the endosperm is perlanps a legitimate expectation.

