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L I X .  On Convection Currents in a Horizontal Layer ~f 
Fluid, when the [[~her Temperature is on the Under Side. 
B y Lord RAYLm~g, O.M., F .R .S .*  

T H E  present is an attempt to examine how far the inter- 
esting results obtained by B4nard t in his careful and 

skilful experiments can be explained theoretically. B6nard 
worked with very thin layers, only about 1 ram. deep, standing 
on a levelled metallic plate which was maintained at a uni- 
form temperature. The upper surface was usually free, and 
being in contact with the air was at a lower temperature.  
Various liquids were employed--some, indeed, which would 
be solids under ordinary conditions. 

The layer rapidly resolves itself into a number of cells, the 
motion being an ascension in the middle oi' a cell and a 
doscension at the common boundary between a ceil and its 
neighbours. Two phases are disti,guishod, of unequal dura- 
tion, the first being relatively very short. The limit of 
the first phase is described as the " semi-regular cellular 
r e g i m e " ;  in this state all the cells have already acquired 
surfaces ~early identical, their forms being nearly regular 
convex polygons of, in general, 4 to 7 sides. The boundaries 

* Communicated by the Author. 
Revue gdn(ra/e des Sciences~ vol. xii. pp. 1261, 1309 (1900) ; Ann. d. 

CMmie et de .Physique, t. xxiii, p. 62 (1901). N. Bgnard does not appear 
to be acquainted with James. Thomson's, paper " On a Chang:ng Tesselated 
Structure in certain Litulds (Prec. Glasgow Phil. Soc. 1881-2), where 
a like structure is described in much thicker layers of soapy water cooling 
ti'om the surface. 

1-'hil, M(~g. S~ 6. Vol. 32  No. 192, Dec, 1916. 2 0 
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are vertical, and the circulation in each cell approximates to 
that already indicated. This phase is brief (1 or 2 seconds) 
for the less viscous liquids (alcohol, benzine, &c.) at ordinary 
temperatures. Even for paraffin or spermacetti, melted at 
100 ~ C., l0 seconds suffice ; but in the case of very viscous 
liquids (oils, &c.), if the flux of heat is small, the deforma- 
tions are extremely slow and the first phase may last several 
minutes or more. 

The second phase has for its limit a permanent regime of 
regular hexagons. During this period the cells become equal 
and regular and allign themselves. I t  is extremely pro- 
tracted, if the limit is regarded as the complete attainment 
of regular hexagons. And, indeed, such perfection is barely 
attainable even with the most careful arrangements. The 
tendency, however, seems sufficiently established. 

The theoretical consideration of the problem hero arising 
is of interest for more than one reason. In general, when a 
system falls away from unstable equilibrium it may do so in 
several principal modes, in each of which the departure at 
time t is proportional to the small displacement or velocity 
supposed to be present initially, and to an exponential factor 
eq t, where q is positive. If  the initial disturbances are small 
enough, that mode (or modes) of falling away will become 
predominant for which q is a maximum. The simplest 
example for which the number of degrees of freedom is 
infinite is presented by a cylindrical rod of elastic material 
under a longitudinal compression sufficient to overbalance 
its stiffness. But perhaps the most interesting hitherto 
treated is that of a cylinder of fluid disintegrating under 
the operation of capillary force as in the beautiful experi- 
ments of Savart and Plateau upon jets. In this case the 
surface remains one of revolution about the original axis, 
but it becomes varicose, and the question is to compare the 
effects of different wave-lengths of varicosity, for upon this 
depends the number of detached masses into which the 
column is eventually resolved. It  was proved by Plateau 
that there is no instability if the wave-length be less than 
the circumference of the column. For all wave-lengths 
greater than this there is instability, and the corresponding 
modes of disintegration may establish themselves if the 
initial disturbances are suitable. But i[ the general dis- 
turbance is very small, those components only will have 
opportunity to develop themselves for which the wave- 
length lies near to that of maximum inst:~bility. 

I t  has been shown* that the wave-length of maximum 
* Prec. Lend. Math. Soc. vol. x. p. 4 (1879) ; Scientific Papers~ vol. i. 

p. 361. Also ~ Theory of Sound,' 2nd ed. w167 357, &c. 
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instability is 4"508 times the diameter of the jet, exceeding 
the wave-length at which instability first enters in the ratio 
of about 3 : 2. Accordin~oly this is'the sort of disintegration 
to be expected when the jet is shielded as far as possible from 
external disturbance. 

I t  will be observed that there is nothing in this theory 
which could fix the phase of the predominant disturbance, 
or the pa,'ticular particles of the fluid which will ultimately 
form the centres of the detached drops. There remains a 
certain indeterminateness, and this is connected with the 
circmnstanee that absolute regularity is not to be expected. 
In addition to the wave-length of maximum instability wo 
must include all those which lie sufficiently near to it, and 
the superposition of the corresponding modes will allow o~' 
a slow variation of phase as we pass along the column. The 
phase in any particular region depends upon the initial cir- 
cumstances in and near that region, and these are supposed 
to be matters of chance*. The superposition of infinite 
trains of waves whose wave-lengths cluster round a given 
value raises the same questions as we are concerned with 
in considering tile character of approximately homogeneous 
light. 

In the present problem the case is much more compli- 
cated, unless we arbitrarily limit it to two dimensions. Tim 
cells of B6nard are then reduced to infinitely long strips, 
and when there is instability we may ask for what wave- 
length (width of strip) the instability is greatest. The 
answer can be given under certain restrictions, and the 
manner in which equilibrium breaks down is then approxi- 
mately determined. So long as the two-dimensional cha- 
racter is retained, there seems to be no reason to expect the 
wave-length to alter afterwards. But even if we assume a 
natural disposition to a two-dimensional motion, the direc- 
tion of the length of the cells as well as the phase could 
only be deter~nined by initial circumstances, and could not 
be expected to be uniform over the whole of the infinite 
plane. 

According to the observations of Bdnard, something of this 
sort actually occurs when the layer of liquid has a general 
motion in its own plane at the moment when instability 
commences, the length of the cellular strips being parallel 
to the general velocity. But a little later, when the general 
motion has decayed, division-lines running in the perpen- 
dicular direction present themselves. 

* When a jet of liquid is acted on by an external vibrator, the reso- 
lution into drops may be regularized in a much higher degree. 

2 0 2  
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In general, it is easy to recognize that the question is 
much more complex. By Fourier's theorem the motion 
in its earlier stages may be analysed into components, each 
of which corresponds to rectangular cells whose sides are 
parallel to fixed axes arbitrarily chosen. The solution for 
maximum instability yields one relation between the sides of 
the rectangle, but no indication of their ratio. It  covers the 
two-dimensional case of infinitely long rectangles alread)r 
referred to, and the contrasted case of squares for which 
the length of the side is thus determined. I do not see that 
any plausible hypothesis as to the origin of the initial dis- 
turbances leads us to expect one particular ratio of sides in 
preference to another. 

On a more general view it appears that the function 
expressing the disturbance which develops most rapidly 
may be assimilated to that which represents the free 
vibration of an infinite stretched membrane vibrating with 
given frequency. 

The calculations which follow are based upon equations 
given by Boussinesq, who has applied them to one or two 
particular problems. The special limitation which charac- 
terizes them is the neglect of variations of density, except in 
so far as they mod~f.y the action of gravlty. Of course, such 
neglect can be justified only under certain conditions, which 
Boussinesq has discussed. They are not so restrictive as to 
exclude the approximate treatment of many problems of 
interest. 

When the fluid is inviseid and the higher temperature is 
below, all modes of disturbance are instable, even when we 
include the conduction of heat during the disturbance. But 
there is one class of disturbances for which the instability is 
a maximum. 

When viscosity is included as well as conduction, the 
problem is more complicated, and we have to consider 
boundary conditions. Those have been chosen which are 
simplest from the mathematical point of view, and they 
deviate from those obtaining in Bdnard's experiments, 
where, indeed, the conditions are different at the two 
boundaries. I t  appears, a little unexpectedly, that the equi- 
librium may be thoroughly stable (with higher temperature 
below), if the coefficients of conductivity and viscosity are 
not too small. As the temperature gradient increases, in- 
stability enters, and at first only for a particular kind of 
disturbance. 

The second phase of Bdnard, where a tendency reveals 
itself for a slow transformation into regular hexagons, is not 
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touched. It would seem to demand the inclusion o[ the 
squares of quantities here treated as small. But the size of 
the hexagons (under the boundary conditions postulated) is 
determinate, at any rate when they assert themselves early 
eaough. 

An appendix deals with arelated analytical problem having 
various physical interpretations, such as the symmetrical 
vibration in two dimensions of a layer ot ~ air enclosed by 
a nearly circular wall. 

The general Eulerian equations of fluid motion are in the 
usual notation : ~  

D U - - x  l dp Dv l dp Dw l dp 
D r - -  p a x '  D ~ = Y  , --=Z----- . (1) p dy Dt p dz ' 

where 
D d d d d 

~t  = ~ +uU~ + v u  v +w dz' (2) 

and X, Y, Z are the components of extraneous force reckoned 
per unit of mass. If, neglecting viscosity, we suppose that 
gravity is the only impressed tbrce, 

X = 0 ,  Y=0 ,  Z =  --g, . (3) 

z being measured upwards. In equations (1) p is variable 
in consequence of variable temperature and variable pres- 
sure. But, as Boussinesq ~ has shown, in the class of 
problems under consideration the influence of pressure is 
unimportant and even the variation with temperature may 
be disregarded except in so far as it modifies the operation 
of grarity. If  we write P=po+ ~p, we have 

gp =gpo( i + ~p / po) =gpo-gpo~o, 

where 0 is the temperature reckoned from the point where 
p=po and a is the coefficient of expansion. We may now 
identify p in (1) with P0, and our equations become 

D u  1 dP Dv 1 dP Dw 1 dP 
Dt pd~' D ~ = - p d - ~ '  Dt p d~ +~0 , .  (4) 

where p is a constant, 5' is written for ga, and P forp+ypz. 

* TMorie Analyti~ue de la Chaleur~ t. it. p. 172 (1903). 
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Also, since the fluid is now treated as incompressible, 

du dv dw 
a ~ + ~ v + & = 0  . . . . . .  (5) 

The equation for the conduction of heat is, 

DO {d~O d~O d~O' I 
D--i = ~ , ~  + ~ + &~] '  . . . .  (6) 

in which a is the diffusibility for temperature. These are 
the equations employed by Boussinesq. 

In the particular problems to which we proceed the fluid 
is supposed to be bounded by two infinite fixed planes at 
z----0 and z----~, where also the temperatures are maintained 
constant. In the equilibrium condition u, v, w vanish and 
0 being a function of z only is subject to d'~Oldz~=O, or 
dt~/dz=fl ,  where/3 is a constant representing the tempera- 
turo gradient. If  the equilibrium is stable, /3 is positive; 
and if unstable with the higher temperature below, /3 is 
negative. It  will be convenient, however, to reckon 0 as 
the departure from the equilibrium temperature O. The 
only change required in equations (4) is to write ~ for P, 
whore 

~ = l , - p v S o a ~  . . . . . .  (7) 

In equation (6) DO/Dt is to be replaced by DO/Dt+u,/3. 
The question with which we are principally concerned is 

the effect o[ a small departure from the condition of equi- 
librium, whether stable or unstable. For this purpose it 
suffices to suppose u, v, w, and t~ to be small. When we 
neglect the squares of the small quantities, D/Dt  identifies 
itself with d/dt and we get 

du 1 dn~ dv 1 d~  dw 1 d ~  
d r -  p dx '  ~ t = - - p - @  ' ~ = - -  ~ d~ +Ve' " 

do + ~w = ,~[d"O d~O d~O~ 
d--[ \ d x  ~ + ~ + dz~] ' " 

(8) 

(9) 

which with (5) and the initial and boundary conditions 
suffice for the solution of the problem. The boundary 
conditions are that w=0,  0 = 0 ,  when z = 0  or ~. 

We now assume in the usual manner that the small 
quantities are proportional to 

eiZ~ ei"Y e ~t, . . . . . .  (10) 
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so that (8), (5), (9)become 

il~r im~r 1 dn~ 
n u = - - - - ,  n v =  , nw . . . . .  ~-70, . (11) 

p p p dz 

i l u + i m v + d w / d z = O ,  . . . .  (12) 

~o +/3w =,~(d'/dz~ - l~- m~)o, ( la) 

from which by elimination of u, v, w, we derive 

n d2w 
l~+m~ dz, ~ =nw--,,/O . . . . .  (14) 

Having regard to the boundary conditions to be satisfied 
by w and t?, we now assume that these quantities are pro- 
portional to sin sz, where s=qir /~ ,  and q is an integer. 
]-Ience 

/3w-b {nq-tr ~ q-m 2 + s 2) }t?=0, (15) 

.(z~ + . ~  + ~)  w -  ~(l~ + m~)0 = 0, (16) 

and the equation determining n is the quadratic 

n~(l ~ + -~  + s ~) + n~ (Z ~ + m ~ + s~) " +/3~(1 ~ + ,n ~) = 0. (17) 

When  ~ = 0 ,  there is no conduction , so that each clement of 
tile fluid retains its temperature and density. I f  /3 be 
positive, the equilibrium is stable, and 

+ iv/{/3~Il ~ + ,~) } 
" =  --~/~Z~+,n~+s~} . . . . .  (lS) 

indicating vibrations about the condition of equilibrium. 
It', on the other hand,/3 he negative, say --/3', 

+ ~/{~'~(l~ + m~) } 
. =  v /{ t~+ , ,  ,~+ s~} . . . . .  (19) 

When n has the positive value, the corresponding disturbance 
increases exponentially with the time. 

For  a given value of l 'Z+m ~, the numerical values of n 
diminish without limit as s increases--that  is, the more sub- 
divisions there are along z. The greatest value corresponds 
with q = l  or s=ir]~. On the other hand, if s be given, 
I nl increases from zero as l~+ m 2 increases from zero (grea~ 
wave-lengths along x and y) up to a finite limit when l l + m  ~ 
is large (small wave-lengths along x and y). This case of 
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no conductivity falls within the scope of a former investi- 
gatiou where the fluid was supposed from the beginning to 
be incompressible but of variable density * 

Returning to the consideration of a finite conductivity, we 
have again to distinguish the cases where/3 is positive and 
negative. When /3 is negative (higher temperature below) 
both values of n in (17) are real and one is positive. The 
equilibrium is unstable for all values of l~+m: and of s. 
I f / 3  be positive, n may be real or complex. In either case 
the real part of n is negative, so that the equilibrium is 
stable whatever l"+ m: and s may be. 

When/3  is negative (--tiP), it is important to inquire for 
wha~ values of' l~+n? the instability is greatest, ibr these 
are the modes which more and more assert themselves as 
time elapses, even though initially they may be quite 
aubordinate. That the positive value of n must have a 
maximum ~ppears when we observe it tends to vanish both 
when t 2 + ~ :  is small and also when 12+m ~ is large. Setting 
for shortness P + m 2 + s : = ~ r ,  we may wrife (17) 

~ + . ,~o~-/3'~ (~ - ~ )  = 0 ,  ( 2 0 )  

and the question is to find the value of a for which n is 
greatest, s being supposed given. Making dn[do-=O, we 
get on differentiation 

n~+2~K~--fl'7=O ; . . . . .  (21) 

and on elimination of n ~ between (20), (21) 

n =  tg' ~l~s" (22)  
i C O . 2  * , �9 �9 �9 �9 . 

Using this value of n in (21), we find as the equation for o- 

2s~ = 1 --  B'"I s' (23) ~ . . . . . .  

When tc is relatively great, a =2s  ~, or 

l ~ + m ~ = s ~ . . . . . . .  ( 2 4 )  

A second approximation gives 

l ~ + m 2 ~ s" + 

The corresponding value of n is 

�9 Prec. Lend, Math, Soc. vo]. xiv. 
vol, it. p, 200, 

f l '~  (25) 
~ / ~ 2 8 2  " * . * * * 

2. (26) 
~xis, J . . . . .  

p. 170 (1883) ; Scientific Pa]pers~ 
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The modes of greatest instability are those for which s is 
smallest, that is equal to 7r]~, and 

. . . .  ( - 2 7 )  z, + 

For a two-dimensional disturbance we may make m-----0 
and l =  27r/k, where X is tile wave-length along x. The )~ of 
maxiumm instability is thus approximately 

X=2~. . . . . .  , (28) 

Again, if l=m-=2cr/.~., as for square cells, 

X = 2 v / 2 .  ~, . . . . . .  (29) 

greater than before in the ratio v /2  : 1. 
We have considered especially the cases where ~ is 

relatively small and relatively large. Intermediate cases 
would need to be dealt with by a numerical solution of (23). 

When w is known in the form 

w=Wei t~e~mVs ins z . e  '~t, . . . .  (30) 

n being now a known function of l, m, s, u and v are at onto 
derived by means of (11) and (12). Thus 

il dw im dw  
u = l ~ + m ~  d z '  V=l~+mZ dz . . . .  (31) 

The connexion between w and ~ is given by (15) or (16). 
When fl is negative and n positive, ~ and w are of the same 
sign. 

As an example in two dimensions of (30), (31), we might 
have in real ibrm 

w = W cos x .  sin z .  e "t, . . . .  (32) 

u = - - W  sinx .cosz .  e =t, v = 0 . .  (33) 

Hitherto we have supposed the fluid to be destitute 
o[ viscosity. When we include viscosity, we must add 
v(V~u, VZv, V2w) on the right of equations (1), (8), and 
01) ,  v being the kinematic coefficient. Equations (12) and 
(13) remain unaffected. And in (11) 

V 2 = d ~ / d z ~ - - l ~ - - m  2 . . . . .  (34) 

We have also to reconsider the boundary conditions at z = 0  
and z=~.  We may still suppose 8=-0 and w = 0  ; but for a 
further condition we should probably prefer d w / d z = O ,  
corresponding to a fixed solid wall. But this entails much 
complication, and we may content ourselves with the 
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supposition d~w]dz~=O, which (with w = 0 )  is satisfied by 
taking as before w proportional to sin sz with s-----qw]~. This 
is equivalent to the annuhnent of lateral ]'orces at the wall. 
For (Lamb's ' Hydrodynamics,' w w 323, 326) these forces are 
expressed in general by 

dw " du dw dv (35) 

while here w--0 at the boundaries requires also dw/da=O, 
dw]dy = 0. Hence, at the boundaries, d~u/dx dz, d2v/dg dz 
vanish, and therefore by (5), d~w/dz ~. 

Equation {,15) remaina unaltered : - -  

. (15) 

and (16) becomes 

+ + (3G) 

Writing as he[ore a = l 2 + m ~ + s ~, we ge~ the equation in n 

( .  + ,~ ) (n  + vo')~- + fl.yq~ + m~)=O, (37) 

which takes the place of (17). 
If  ~/=0 (no expansion with heat) the equations degrade, 

and we have two simple alternatives. In the first n + K ~ - 0  
with w----0, signifying conduction of heat with no motion. 
In the second n+vtr-~0, when the relation between w and 0 
becomes 

. . . . . .  (38) 

In both cases, since n is real and negative, the disturbance is 
stable. 

If we neglect K in (37), the equation takes the same 
form (20) as that already considered when v=0 .  Hence 
the results expressed in (22), (23), (24), (25), (26), (27) 
are applicable with simple substitution of v for ~. 

In the general equation (37) if fl be positive, as 7 is 
supposed always to be, the values of n may be real or 
complex. If  real they are both negative, and if complex 
the real part is negative. In either case the disturbance 
dies down. As was to be expected, when the temperature 
is higher above, the equilibrium is stable. 

In the contrary case when /~ is negative (--f~') the roots 
of the quadratic are always real, and one at least is negative. 
There is a positive root only when 

> (39) 
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If  x, or u, vanish there is instabil i ty;  but if tc and I, are 
finite and largeenough,  the equilibrium for this disturbance 
is stable, although the higher temperature is underneath. 

Inequality (39) gives the condition of instability for tho 
particular disturbance (l, m, s). I t  is of interest to inquire 
at what point the equilibrium becomes unstable when there 
is no restriction upon the value of l'~+ m ~. In the equation 

fl'V(l ~ + m ~ ) -  K~r ~ = fl'V ( r  s:) -- ~,o~ = 0, . (40) 

we see that the left-hand member is negative when 12+m ~ 
is small and also when it is large. When the conditions 
are such that the equation can only just be satisfied with 
some value of 12+ m :, or a, the derived equation 

/3'7-- 3tcvaY= 0 . . . . . .  (41) 

must also hold good, so that 

= 3s~ /~ ,  1 ~ + m ~ - ~ -  ~ s ~ , ( 4 2 )  

and fl '7 = 27~z, s4/4 . . . . . . . .  (43) 

Unless /~'7 exceeds the value given in (43) there is no 
instability, however l and m are chosen. But the equation 
still contains s, which may be as large as we please. The 
smallest value of s is ~r/~'. The condition of instability 
when l, m, and s are all unrestricted is accordingly 

27~-4Kv 
f l ' 7>  4~. 4 . . . . . . .  (44) 

I f  ]~'V falls below this amount, the equilibrium is altogether 
stable. I am not aware that the possibility of complete 
stability under such circumstances has been contemplated. 

To interpret (44) more conveniently, we may replace fir 
by (| and ~, by g(py--pl)/p~(|174 so that 

/ 3 'v  = g P ~ - P '  ( 4 5 )  pl ' . . . . . .  

where | 01, py, and Pl are the extreme temperatures and 
densities in equilibrium. Tiros (44) becomes 

27,rr4tcv 
p2--pl > (46) 

P1 4g~ 3 . . . . . .  

In  the case of air at atmospheric conditions we may take 
in C.(~.S. measure 

v= '14 ,  and K=.~v (Maxwell's Theory). 
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Also g = 980, and thus 

P~-p l  "033 
P1 . - ~  . . . . . .  (47) 

For  example, if ~=1  cm., instability requires that the 
density at the top exceed that at the bottom by one-thirtieth 
part, corresponding to about 9 ~ C. of temperature. We 
should not forget that our method postulates a small value 
of (p2--p~)[pl. Thus if ~v be given, the application of (46) 
may cease to be legitimate unless ~ be large enough. 

I t  may be remarked that the influence of viscosity would 
be increased were we to suppose the horizontal velocities 
(instead of the horizontal forces) to be annulled at the 
boundaries. 

The problem of determining for what value of 12+m ~, 
or r the instability, when finite, is a maximum is more 
complicated. The differentiation of (37) with respect to o- 
gives 

~ + ~ n ~ ( ~ + ~ )  + 3 ~ v o ' - ~ ' ~ = o , .  (48) 
whence 

, 8 ' ~ / s  2 - -  2 ~ : v a  3 n =  - - ~  , . . . . .  (49) 

expressing n in terms of o-. To find o" we have to eliminate 
n between (44) and (45). The result is 

o0~v(~- v)~ + ~,~'~(~ + v ) , -  ~ .  2~'~s, (~ + ~)  - ~%,~, = 0, 
(50) 

from which, in particular cases, a could be found by 
numerical computation. From (50) we fall back on (23") 
by supposing v----0, and again on a similar equation if we 
suppose ~ = 0 .  

But  the case of a nearly evanescent n is probably the 
more practical. In an experiment the temperature gradient; 
could not be established all at once and we may suppose the 
progress to be very slow. In the earlier stages the equi- 
librium would be stable, so that no disturbance of importance 
would occur until  n passed through zero to the positive side, 
corresponding to (44) or (46). The breakdown thus occurs 

by (42) l~+rn~=Tr ~ 2~ And since the for s=~r]~, a n d .  . ] . . 
evanescence of n IS eqmvalent to the omission of d]dt in the 
original equations, the motion thus determined has the 
character of a steady motion. The constant multiplier is, 
however, arbi trary ; and there is nothing to determine it so 
long as the squares of u, v, w, 8 are neglected. 
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In a particular solution where w as a function of x and y 
has the simplest form, say 

w = 2  c o s x .  cosy, . . . . .  (51) 

the particular coefficients of x and y which enter have 
relation to the particular axes of reference employed. I f  
we rotate these axes through an angle 4), we have 

w---- 2 cos {x' cos 4) - -y '  sin 4)}. cos {x' sin 4) + y '  cos 4)} 

= cos {x'(cos sin 6 ) } .  cos { : / ( cos  + s t .  4))3 

+ sin {x'(cos 4)-- sin 4))}. sin {yZ(cos 4)+ sin 4))} 

+ cos {x' (cos 4) + sin 4)) }. cos {y'(eos 4) -- sin 4))} 

- -  sin {x'(cos 4) + sin 4))}. sin {y'(cos 4)-- sin 4))}. (52) 

For  example, if 4)=�88 (52) becomes 

w =  cos + cos  ( x ' r  . (53) 

I t  is to be observed that with the general value of 4), if 
we call the coefficients of x', y', l and m respectively, we 
have in every part l~+m%-=2, unaltered from the original 
value in (51). 

The character of w, under the condition that all the 
elementary terms of which it is composed are subject to 
/~+m2=constant  (k:), is the same as for the transverso dis- 
placement of an infinite stretched membrane, vibrating with 
one definite frequency. The limitation upon w is, in fact, 
merely that it satisfies 

(cl~/dx' +clV@' + k~)w=O . . . . .  (5~) 

The character of w in particular solutions of the mem- 
brane problem is naturally associated with the nodal system 
( w = 0 ) ,  where the membrane may be regarded as hold fast ; 
and we may suppose the nodal system to divide the plane 
into similar parts or cells, such as squares, equilateral 
triangles, or regular hexagons. But  in the present problem 
it is perhaps more appropriate to consider divisions of the 
plane with respect to which w is symmetrical, so that dw/dn 
is zero on the straight lines forming the divisions of the 
cells. The more natural analogy is then with the two- 
dimensional vibration of air, where w represents velocity- 
potential and the divisions may be regarded as fixed walls. 

The simplest case is, of course, that in which the cells are 
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squares. I f  the sides of the squares be 2qr, we may take 
with axes parallel to the sides and origin at centre 

w=cos,~+cosy, . . . . .  ( 5 5 )  

being thus composed by superposition of two parts for each 
of which k : = l .  This makes dw/dx=--sinx, vanishing 
when x =  • Similarly, dw[dy vanishes when y---- • so 
that the sides of the square behave as fixed walls. To find 
the places where w changes sign, we write it in the form 

x + ~ x - y  ( 5 6 )  w = 2 c o s _ _ 2  ~ - . c o s - ~ - ,  . . . . 

giving x + y =  +~-, x--y=•  lines which constitute the 
inscribed square (fig. 1). Within this square w has one sign 
(say +) and in the four right- 
angled triangles left over the 
-- sign. When the whole plane 
is considered, there is no want 
of symmetry between the + and 
the -- regions. 

The principle is the same 
when the elementary cells are 
equilateral triangles or hexa- 
gons ; but I am not aware that 
an analytical solution has been 
obtained for these cases. An 
experimental determination of 

Fig. 1. 

Iu 
I 

I 
k ~ might be made by observing 
the time of vibration under gravity of water contained 
in a trough wi~h vertical sides and of corresponding 
section, which depends upon the same differential equation 
and boun&try conditions*. The particular vibration in 
question is not the slowest possible, but that where there 
is a simultaneous rise at the centre and fall at the walls all 
round, with but one curve of zero elevation between. 

Iu the case of the hexagon, we may regard it as deviating 
comparatively little from the circular form and employ the 
approximate methods then applicable. By an argument 
analogous to that formerly developed J" for the boundary 
condition w = 0 ,  we may convince ourselves that the value 
of k ~ for the hexagon cannot differ much from that appro- 
priate to a circle of the same area. Thus if a be the radius 

* See Phil. Mag. vol. i. p. 257 (1876); Scientific Papers, vol. i. 
pp. 265,271. 

J" Theory of Sound, w 209 ; compare also w 317. See Appendix. 
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of this circle, k is given by Jo' (/ca)= O, Jo being the Bessel's 
function of zero order, or ka=3"832. I f  b be the side o[ 
the hexagon, a * = 3 ~/3.  b:/2~r. 

APPENDIX. 

On the nearly symmetrical solution .for a nearly circular 
area. when w satisfies (a2/d,~ ~ + d2/ay ~ + k~)~,= 0 and makes 
dw/dn=O on the boundary. 
Starting with the true circle of radius a, we have w a 

function o[ r (the radius vector)only,  and the solntion is 
w = Jo(kr) with the condition Jo'(ka) = O, yielding ka = 3"832, 
which determines k if a be given, or a if k be given. In 
the problem proposed the boundary is only approximately 
circular, so that we write r = a + p ,  where a is the mean 
value and 

p=atcosS+t~ls inO+. . .+a,~cosnS+f i ,  sinnS. . (57) 

In (57) 8 is the vectorial angle and ~1 &c. are quantities 
small relatively to a. The general solution of the differ- 
ential equation being 

w = AoJ0(kr) + Jl(kr){ A1 cos 0 + B~ sin 0} 

+ . . .  + Jn(kr) {An cos n8 + B~ sin 0}, (58) 

we are to suppose now that A1, &c., are small relatively 
to A0. I t  remains to consider the boundary condition. 

I f  r denote the small angle between r and the normal dn 
measured outwards, 

dw dw ddo d-n = ~-r c~ ~ -  sin ~b . . . . .  (59) 

and 
dr dp n . 

tansb-- r d 8 -  ado = ~(--r (60) 

with sufficient approximation, only the general term being 
written. In formulating the boundary condition dw/dn=O 
correct to the second order of small quantities, we require 
dw/dr to the second order, but dw/dO to the first order only. 
We have 

1 d~ = A0{ J0' (ks) + kp J~ + ~k~/J0"'(ka) } 
]c d r  

+ {J~'@a) + kp J~"(]ca)} { h ,  cos nO + B. sin n0}, 

dw naJ~@a){_A, sinnO+ B,  cosnO} 
a dO = 
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and for the boundary condition, setting ka=z and omitting 
the argument in the Bessel's functions, 

Ao{ Jo'. cos + kp Jo"+ 
+ {J~' + kp J~"} {A~ cos n~ + B,  sin n~} 

n 2 
- -  --  J~{ - A~ sin n~ + B~ cos n~} { --a~ sin n~ 

~Z 

+B~cosn~} = 0 .  (61) 

I f  for the moment we omit the terms of the second order, 
W e  h a v e  

AoJ0' + kAoJo'I{a~ cos nO + fl~ sin nO~ 
+J,J{A,,cosnO+B,~sinnO}=O ; . (62) 

so that Jo'(Z) = 0, and 

kAoJo", a~+ J , ' .  A~=0  , kAoJo". ~,, + J~ .  B~= 0 . .  (63) 

To this order o[ approximation z, =ka ,  has the same value 
as when p = 0 ;  that is to say, the equivalent radius is equal 
to the mean radius, or (as we may also express it) k may be 
regarded as dependent upon the area on]y. Equations (63) 
determine A~, B~ in florins of the known quantities an, /~. 

Since Jo' is a small quantity, cos ~b in (61) may now be 
omitted. To obtain a corrected evaluation of z, it suffices 
to take the mean o[ (61) for all values o[ 8. Thus 

A0{2J0' + �89 '' ' (~J + fl ~) } 
+ { kJ,"--n2J~/az} { a~A~ + B,,B~} -- 0, 

or on substitution of the approximate values of A,,  B~ 
from (63), 

J o "  ,, _ "!o'/"~. Jo, = ~k~(~,, +/3 ~) (~-~t ( J  ~ __ n~'T~ 

This expression may, however, be much simp]ifiod. In 
virtue of the general equation for J~, 

~t ~ Z 
J ~ - -  ~ J~ = -- ~z ~ - J~ ; 

and since here 'Jo I-- 0 approximately, 

Jo'---- --Jo, Jo M-- --z-lJo~=z-lJo " 
Thus 

l l  
Jo'(Z)=�89 (~,J + Bj )  (65) 

the sign of summation with respect to n being introduced. 
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Let us now suppose that a + d a  is the equivalent radius, 
so that J0/(ka + kda) =0,  that is the radius of the exact circle 
which corresponds to the value of k appropriate to the 
approximate circle. Then 

Jo'(z) + k d a  Jo"(z) =0 ,  
and 

da = k-~o, / = k ~ ( a,, ~ + 

Again, if a + da' be the radius of the true circle which has 
the same area as the approximate circle 

!E (a2 + ~ ' ) ,  (67) d a ' =  4a . . . .  
and 

d a ' - - d a =  - - ~  a~2 +B'2 zJ=(z) 2a (68) 

where z is the first root (after zero) of J0 ' (z)=0,  viz. 3"832. 
The question with which we are mainly concerned is the 

sign o f  d s  for the various values of n. When n =  1, 
Jl(z) = - J0 ' ( z )=0 ,  so that da=da ' ,  a result which was to be 
expected, since the ferms in al, B1 represent approximately 
a displacement merely of the circle, without alteration of size 
or shape. We will now examine the sign of J~/J~' when 
n=2 ,  and 3. 

For this purpose we may employ the sequence equations 

Z 

which allow J= and J~  to be expressed in terms of J1 and Jo, 
of which the former is here zero. 

J 2 = - J o ,  J 3 = - 4 z - l J o ,  
J l ' = Jo ,  J~'=2z-lJo, 

Thus 
J1 J~ z 
~ , = 0 ,  J ~ = - - 2 '  

We find 

J4=(1- -24z-2)Jo ;  
Ja '=(12z-2--1)Jo.  

J.~ 4z 
~= z2--12 ; 

whence on introduction of the actual value of z, viz. 3"832, 
we see that J2/J2 ' is negative, and that JJJ3 '  is positive. 

When n>z ,  it is a general proposition that J~(z) and 
J. '(z) are both positiveS'. Hence for n = 4  and onwards, 
J J J , /  is positive when z=3"832. We thus arrive at the 

* See, for example, Theory of Sound, w 210. 
.Phil. Mag. S. 6. Vol. 32. b~o. 192..Dec. 1916. 2 P 
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curious conclusion that when n=2, dat>da, as happens for 
all values of n (exceeding un i ty )when  the boundary con- 
dition is w=O, but that when n > 2 ,  dar<da. The existence 
of the exceptional case n =  2 precludes a completely general 
statement of the effect of a departure from the truly 
circular form ; but if the terms for which n = 2  are absent, 
as they would be in the case of any regular polygon with 
an even number of sides, regarded as a deformed circle, we 
may say that da'<da. In the physical problems the effect 
of a departure from the circular form is then to depress the 
pitch when the area is maintained constant (da'=O). But 
for an elliptic deformation the reverse is the case. 

At first sight it may appear strange that an elliptic 
dofbrmation should be capable of raising the pitch. But 
we must rememb,r that we are here dealing with a vibration 
such that the phase at both ends of the minor axis is the 
opposite of that at the centre. A parallel case which admits 
of complete calculation is that of the rectangle regarded as a 
deformed square, and vibrating in the gravest symmetrical 
mode *. I t  is easily shown that a departure from the square 
form raises the pitch. Of course, the one-dimenslonal vibra- 
tion parallel to the longer side has its pitch depressed. 

LX. On some Investigations of the Spectra of Carbon and 
Hydrocarbon. By (~ttARLES W. RAFFETY, F.R.A.S. t  

[Plate KILL] 

T HE spectrum of the Bunsen flame (the " Swan"  
spectrum) has been made the object of a vast amount 

of experimental work directed rewards the determination 
of its chemical origin, a rdsumd of which is given by 
Dr. Marshall Watts in a paper in the 'Philosophical 
Magazine ' of Ju ly  1914 :~. 

~he present communication gives the results of a photo- 
graphic study of the " S w a n "  spectrum obtained from 
different sources, and is intended to direct attention to 
certain features which appear to be worthy of further 
research--namely, the physical significance of the changes 
produced in the spectrum by a change in the conditions 

* Theory of Sound, w 267 (p=q=2). 
~r Communicated by the Author. 
+, "On the Spectra given by Carbon and some of its Compounds; 

and, in particular, the 'Swan'  Spectrum," W. Marshall Watts, Phil. 
Mug. July 1914. 


