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x x v I I  7'he Lateral Vibration of Loaded Shafts in the Neigh- 
bourhood qf a Whirliny Speed.--71'he Effect of Want oJ 
Balance. .By H. H. JEFFCOTT * 

1. - ~ T H E N  a shaft whose centre of mass does not lie 
T T on its axis of figure (the shaft then being said 

to be "out  of balance "), is rotated, its geometrical axis ceases 
to remain straight and in coincidence with the axis of tl,e 
bearings, but becomes bent and rotates round the latter axis. 
The amount of this bending depends on, among other things, 
the relation of the speed of rotation Lo that of' an)" of tile 
free lateral vibrations of tile shait. So long as tht; speed of 
rotation is not too ne~r that of any of these vibrations the 
shaft remains nearly straight unless it is badly "out  of 
balance." If, however, the speed of rotation increases so as 
to approach that of any transverse vibration the bending 
becomes noticeable,--sooner or later according to the per- 
fection of balance of the shaft--and increases ral:,idly ; and 
the shaft bends in one or more loops according to the 
particular transverse vibration whose speed is being ap- 
proached. 

I f  the speed is maintained constant at such a value the 
bending may become excessive and is ultimately restrained 
by the action of the bearings. And if the speed changes 
from one slightly below to one slightly above that of the 
transverse vibration the character of the motion changes. 

In particular, for the slowest transverse vibration of a 
shaft put out of balance by a single mass, the motion changes 
from one in which the centre of mass is nearer to the axis 
of the bearings than is the elastic centre to one in which the 
reverse is true. In this change the shaft appears to shiver. 

Well above the speed of tile transverse vibration the shaft 
settles down again to more or less steady running with the 
axis nearly straight until the speed approaches that of 
another transverse vibration. 

When the shaft is considerably bent it is said to "whirl." 
The speeds of transverse vibration are spoken of as the 
"whirling speeds." 

In the foregoing when the shaft is horizontal~ the straight 
form, or the axis of the bearings, is to be understood to refer 
to the gravitationally deflected form. 

It  is proposed in this note to discuss to some extent how 
want of balance causes these phenomena, and to what extent 
in good practice balancing should be carried. I t  should be 

~ Communicated by the Author. 
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pointed out, however, that an adequate mathematical treat- 
ment of the general case of a loaded shaft is a matter of 
considerable difficulty, and that the discussion which follows 
does not pretend to be more than illustrative. 

2. For the sake of simplicity in illustrating the character 
of these vibrations we will consider the case of a light 
uniform shaft supported freely in bearings at its ends and 
carrying a mass m at the centre og its span, the mass centre, 
however, being slightly eccentric by a distance a from the 
e]astlc centre of the shaft. 

We wiI1 suppose the load to be of tim nature of a thin 
pulley or disk el negligible moment of inertia. Accordingly 
we are dealing with simple lateral vibration, and are not 
concerned with oscillatory vibration about a diameter. 

The conditions given permit a s~atement of the problem 
in a simple form. The motion of the cross-section at the 
centre of the span in its own plane need alone be considered, 
subject to (a) a restoring force varying as the distance of a 
poin~ known as the elastic centre from the axis of the 
bearings, (b) a dampin~ tbrce, and (c) the disturbing effect 
produced by an impressed rotation in its own plane combined 
with the fact that the centre of mass is placed eccentrically 
with respect to the elastic centre. Thus the problem may be 
viewed as the motion in the plane XY of a disk on which is 
impressed a constant angular velocity r 

M 
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In the cross-section in fig. 1, let 0 be the intersection of 
the axis of bearings with the plane XY. Let x and y be the 
co-ordinates of E the elastic centre (which is also supposed to 
be the centre of figure) of the shaft at any instant ; and let 
M be the position of the centre of mass at the same instant. 

I t  is given that the shaft rotates with angular velocity e~. 
This angular velocity de~ermines the angle (~t) which any 
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line in tile disk such as EM makes with a line fixed in space 
such as OX. I t  would not be correct in the statement oi 
the problem to assume that the inclination of the radii 
vectores OE or OM changes as cot. I t  will be shown later 
that  the path of E, when steady motion is established, is a 
circle described with angular velocity co. Hence 0 is the 
instantaneous centre, and the inclinations of' the lines OE 
and OM change as cot. 

The equation of motion of m parallel to OX is 

d~ b dx m ~ (x + a cos cot) + d 7  + c,~= O, 

where b is the coefficient of damping due to viscous resistances, 
and c is the elastic force of restitution at unit displacement. 

Hence 
�9 2 m~&bx+cx=maco cos cot. 

The solution of this equation is well known to be 
bt ~q,laco2 

x = Ae- ~ sin (qt + a) + x~ (c -- mco~) '2 + b:co ~ cos (cot --/~), 

where b,., x / ~  b ~ t an /3=  ; q----- ; 
- -  '/nc-D 2 2 m 

and A and a are arbitrary constants. 
In  like manner the equation of motion parallel to OY is 

d2 + b ~ t  m - ~ ( y + a s i n e o  0 +cy=O,  

and the solution is 
bt l~aco2 

~/-----A'e-~Ssin (qt + a')+ x/(c_mco2),, + b,co2sin (cot--/3), 

where A ~ and od are new arbitrary constants. 
The first term in the solution represents an oscillatory 

motion of amplitude 
bt bt 

Ae - 2~% or Are - ~ 

This amplitude diminishes ~ i th  increase of t, so that  the 
term becomes negligible. 

The second term persists, and is a vibration of amplitude 

maco N 

This forced vibration is caused by the disturbing action of 
the eccentric mass during rotation. 
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I t  is seen from the foregoing values of x and y that the 
terms representing the forced motion satisfy the relation 

x ~ + y~ = constant. 

Accordingly the path of the elastic centre, when the 
oscillatory motion subsides, is a circle round tile axis of the 
bearings of radius 

x / ( c - m t o ~ )  ~ + b~to ~ 

The co-ordinates of M being x Jr a cos tot and y + a sin cot, 
and x and 2/ having the values corresponding to the forced 
motion as already given, it  follows in the same way that the 
path of M is also a circle round the axis of the bearings 
when the steady motion is established. Thus 

f / l a t e  i~ 
x l =  cos (tot--/3) -Jr a cos tot, 

v / ( c - . ~ t o ~ )  ~ + b~to ~ 
m a t e  2 

Y ' --  ~r (c--  mto~) 2 "4- b~to ~ sin (tot--~) + a sin tot, 

OM 2-- x 12 + y'~----- x ~ + y2 + a~ + 2a (x cos tot + y sin tot). 

Now 
�9 ~ a t o  2 

x cos tot + y sin tot = x/(c--mto~) ~ + b~to 2 cos B 

and t a n ~ =  bto 

~ence  O ~ - -  a / c'~ + b2to~ 
- 

I f  all the quantities save to are given the amplitude is 
m a x i l n u l n ,  o r  

,B?~ato 2 

is maximum, when 
20 

This value of to approximates to the speed 

v /  4 m e - b  ~ 

corresponding to the free period, when b is small. 
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At speeds in the neighbourhood of this value of to the 
vibration, caused by a given eccentricity of mass centre, 
may be excessively great. This is the whirling speed of the 
shaft. 

3. Looking next at the value of B which determines the 
phase of the displacement of the mass centre relatively to 
that of the elastic centre, we see that since 

bto 
tan/~= c_mto~,  

the value of/~ is 0 when to is zero. The value of • changes 

with increase of to, until when ma?=c,  f l =  2 '  or the phase 
71" 

of the mass displacement has now shifted by ~ from that 
corresponding to very slow rotation. 

Above this value of to, the phase changes further, and at 
very high values of to, f~-~Tr. 

Now the value of b is usually small, and on closer exami- 
nation it will be seen that the whole phase-change through 
an angle ~" takes place practically entirely between a speed 
very slightly below and another very slightly above the 
critical speed. In other words, this change of phase takes 
place mainly within a comparatively small nmnber of 
revolutions per minute on either side of the critical speed. 

Thus at speeds appreciably below the whirling speed the 
shaft rotates with the mass centre farther from the axis of 
rotation than the elastic centre, while at speeds appreciably 
above the critical speed the mass centre is closer to the 
axis. 

4. This result can easily be obtained directly by considering 
the steady mo~ion in these extreme cases and omitting the 
damping altogether, as is well known. 

0 
r;g. 2 

Thus in fig. 2, let O E = x ,  E M = a ,  where O, E, M repre- 
sent the axis of rotation, the elastic centre, and the centre 
of mass. Equating the centrifugal force to the restoring 
elastic force acting on m in the assumed steady motion, we 
obtain mto~ a 

mto~(x+a) =cx ,  or x =  c_mto2 , 
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so that while taro ~ is less than c, we bare the condition 
illustrated in fig. 2. 

When m~o'Z-----e we have x indefinitely great, and the value 
of oJ is a critical speed. 

E_ E 

s 3 o 

When m~o ~ is greater than c, we have the condition 
illustrated in fig. 3. Then 

me~2(x--a)-~-ex and .v= 
~ 9 ~ f O  2 - -  (3 " 

The transition from one condition to the other in passing 
through the critical speed is clearly brought out above when 
tile damping is included. 

5. The phenomena observed "tt balancing, as to the relation 
of the (marked) point of maximum deflexion on the shaft's 
periphery to the position of the mass centre, at speeds below, 
in the neighbourhood of, or above the whirling speed are 
well known to concord with the above phenomen'a due to 
damping, and a reversal of" the direction of rotation gives 
results confirmatory of this. 

Thus in machines designed for testing the dynamic balance 
of' rotors, the part to be balanced is revolved in bearings 
which are free to move to and fro between controlling spring 
or rubber buffers which limit the amount of their motion in 
a horizontal plane when ~he shaf~ vibrates. 

A scriber or pencil is held near the shaft at the section 
being examined, and thus it is marked at that part of its 
circumference that is most deflected. 

I t  is observed that at all speeds below the critical speed 
an unbalanced body will be marked on the heavy side ; and 
conversely above the critical speed it will be marked on the 
light side. 

The mark, however, is not, at the exact heavy or light 
spot, but it is displaced angularly round the shaft, more or 
less according to the proximity to the critical speed. The 
direction of this angular displacement depends on the 
direction of revolution of the body, and if displaced in one 
direction by revolving clockwise, it will be equally displaced 
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in the opposite direction by revolving counter clockwise at 
the same speed. Thus the true heavy or light spot lies 
midway between the centres of the markings in these two 
c a s e s .  

In most cases, when balancing, the machine is operated 
by running above the critical speed, thereby marking on the 
light side. 

It  is to be noted, however, that the cases of balancing met 
with in practice are usually complicated by having several 
m~sses along the shaft inste,d of only one as considered 
above, so that the resultant displacement at any section then 
depends on the joint action of all the loads, according to 
their several effects at that section. 

6. I t  should be pointed out that, at speeds appreciably 
below the critical valu% the phase-change due to damping 
is small. The introduction of the coefficient b in the equation 
of motion is mainly of interest in showing how the mass 
centre changes from being outside to being inside the 
elastic centre, relatively to the axis of rotation, as the speed 
rises from a little below to a little above the whirling speed ; 
and also that the amplitude of vibration at the critical speed 
in the ide~ll case under consideration, in which no restraint 
to excessive vibration is assumed to be imposed by the 
bearings, would not become indefinitely great. 

Returning now to the amplitude of the vibration, which is 

rouge $ 

v / ( c -  m~,2) ~ + b~, 2' 

its value is not seriously altared by the omission of b except 

in the close neighbourhood of the value ca-- m" 

At this critical value of a~, the effect of b is to diminish 
the amplitude and prevent it increasing to an indefinitely 
great value, as has just been stated. 

7. If  b--~0, and also moJ~--c, the equation of motion is 

-k  ~ 2 x - - ~  aea  s c o s  eat, 

of which the solution is 

x = A sin (~t-{- a) § ~a~t sin eat, 

where A and a are arbitrary constants. 
The amplitude of the forced vibration would in this case 

increase continually with t. But the damping b is not zero, 
and the amplitude therefore does not increase indefinitely. 
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It  is worthy of note, however, that if a shaft be run 
quickly through its whirling speed to a higher working 
speed, there may not be time for serious vibration to take 
place; in fact, the value of t may be so small that tlm 
amplitude of this forced vibration ~a0)t may never be great. 

8. Apart from a knowledge of the numerical value of b in 
any particular calculation, we cannot obtain the exact value 
of the amplitude of vibration; but, as we have seen, it is 
only in the close proximity of the whirling speed that the 
damping seriously modifies the amplitude, and we may omit 
i~ at ,11 except such speeds. 

Also when not too close to the whirling speed we may 
regard the displacements of the mass centre and elastic 
centre as taking place along the same radius-vector from 
the axis of rotation, which likewise may be obtained from 
the general solution by putting h----0. 

Let u be the ultimate amplitude of the vibration at the 
elastic centre~ then 

mac) ~ mac) 2 

u =  C ( ~ - , n 0 ) s )  ~ + b~0) ' - -  - C ~ - m ~ o ~ ) "  

Put  k =  A / c  =speed of free vibration. 
V m 

I f  0) < k, we have 

u.-~_ 
1 

The centrifugal force is 

a 

1 "  
k s 

m a  
F--m0)~(u+ a)-- 1 

0)9 

If co > k, we have 
a 

k s 
1 1 
,/~2 0)9 

1 
k ~ 

TttO~ ~ ir/~ ]~2~" 
and F = m 0 ) S ( u - - a ) =  1 1 

k 2 0) 2 

Plotting these results against the speed 0), we see that, 
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with a suitable alteration in scale, the same curves represent 
both u and F. 

The curves (fig. 4) have not been drawn close to the 
position oJ=k, as in that region the damping prevents the 
values becoming indefinitely great, as would appear to be 
the case if the formuke used for u and F were fully plotted. 

Speed, 
Fr~, 4. 

The curves exemplify clearly how that the critical speed 
is one that is particularly favourable to vibration, or one at 
which the shaft is very sensitive to lateral disturbing forces. 

I f  in the choice of the working speed the critical speed is 
avoided by 10 per cent. on either side, i. e. if w does not lie 
between "9k and 1"1k, then the amplitude of vibration will 
not be more than about five times the eccentricity of the 
mass centre. 

If  the shaft is in good balance this choice of working 
speed will therefore give good results and sufficiently steady 
running. 

Tile better the balance the closer to the critical speed may 
the shaft be worked. For while keeping the amplitude of 
vibration u within a definite limit, we may approach k the 
more closely the smaller the value of a ;  and further, the 
damping will keep the amplitude rather lower than that 
plotted. 

On the other hand, if the balance is bad the critical speed 
must be avoided by a large margin, and it may even be 
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dangerous to run through the critical speed to a higher 
working speed. 

9. If  we include damping we have the displacement of 
the shaft u = O E ,  and F=m~o ~. OM; see fig. 1. 

But OE = 

/ c ~ + b2co ~ 
and OM = a  x ~ / ( c  -m~'~)~+ bZ~o 2" 

So that we now have after putting/~__:_~fc as before, 

m a o . )  2 

U = ~/.1n2(]~2 - -  0)2) 2 + b2co2, 

m2k 4 4- b2w :~ 
and Y =mace ~ x ,~/ m ~ ( ~ -  ~ -  ~ b~to ~ . 

I t  will be noticed that the previous results are a particular 
case of this. 

On assuming a particular value for b these results may 
be plotfed similarly to those in fig. 4. m 

10. Reverting now to the formuhe for centrifugal force 
written above (w 8) we may compare the forces and vibrations 
due to a given eccentricity of mass at speeds above and 
below the whirling speed. 

Consider the design of a shaft for a given duty and 
operating at a given working speed. 

Then the preceding formulae indicate that it is better from 
the vibration point of view to design the shaft with its 
critical speed below the working speed rather than to have a 
critical speed the same proportion above the working speed. 
In the latter case the shaft will of course be thicker and 
somewhat heavier. This result, indeed, is well illustrated in 
the behaviour of the De Laval steam turbines. 

Thus comparing the centrifugal forces in the two cases in 
the particular example with which we have been dealing, 
let F be the centrifugal force when the critical speed k is 

rearer than the working speed to; and let F'  be the 
centrifugal force when the critical speed k' is less than the 
working speed ; the eccentricity of' mass centre a is supposed 
to be the same in two cases, but the masses m and m t are 
not quite the same, the former being somewhat greater 
owing to the shaft being heavier. 
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mao~2k 2 
Then we have F =  ]g2 - -  r 

n l r a r  ~2 
and F '  = - -  

F' m' k'~(k ~-or") 
so that ~ = ~ X k~(o~ k,2). 

I f  now k =  (l+p)~o, k '=( l - -p)~o,  we find 

F' m' 2 - -p (3 - -p  2) 
F m 2 +/0(3 --p~)' 

which is less than 1. 
Hence F '  is less than F, or the centrifugal three is less 

when the whirling speed is below the working speed rather 
than the same amount above. 

11. To get a numerical idea of the degree of balance 
desirable in any machine, we will consider the case of a 
rotor consisting of a single heavy mass of 5 tons concen- 
trated at the span centre. 

Further,  suppose the working speed to be 1000 r.p.m. 
aud the critical speed 1250 r.p.m. 

Then u _ 1 
a 1"25 ~ -  1 = 1"8, 

thus u = l " S a .  If,  therefore, the amplitude is to be limited 
to say "0001 inch, a must be not more than about half that 
figure. 

Also F = m ] ? u =  5 x 2240 [ 1250]~ 1"8 
3 ~  x \ .q'55} x ~ a  

= 900,000 a, 

where a is inches, and F is lb. Put t ing a= '0001  inch, we 
find F = 9 0  lb. 

I f  the rotor be out of" balance to the extent of �89 oz. at  a 
radius of 10 inches, this corresponds to an eccentricity of 
the mass centre of '00003 inch. Good balancing would realize 
this figure. 


