International Reference Ionosphere Electron density, ion composition, electron and ion temperature, vertical electron column density

Dieter Bilitza

Department of Physics and Astronomy George Mason University, Fairfax, Virginia, USA and NASA Goddard Space Flight Center, Greenbelt, Maryland, USA. Email : dbilitza@gmu.edu

 \bigstar IRI is an international project jointly sponsored by the *Committee on Space Research* (*COSPAR*) and the *International Union of Radioscience (URSI*) to develop and improve a reference model for the most important plasma parameters in the Earth ionosphere

 \bigstar COSPAR's prime interest is in a general description of the ionosphere as part of the terrestrial environment for the evaluation of environmental effects on spacecraft and experiments in space.

★ URSI's prime interest is in the electron density part of IRI for defining the background ionosphere for radiowave propagation studies and applications.

 \bigstar By charter the model should be primarily based on *experimental evidence* using all available ground and space data sources and should not depend on the evolving theoretical understanding of ionospheric processes.

 \bigstar As new data become available and as older data sources are fully evaluated and exploited, the model should be *revised* in accordance with these new results.

 \bigstar Where discrepancies exist between different data sources the IRI team should facilitate critical review and discussions to determine the *reliability of the different data sets* and to establish guidelines on which data should be used for IRI modeling.

IRI Working Group Members

60+ members representing ground and space measurement techniques and 26 countries

Which Parameters in What Range?

IRI describes monthly averages of

- electron density
- electron temperature
- ion temperature
- ion composition (O⁺, H⁺, He⁺, N⁺, NO⁺, O₂⁺, Cluster ions)

IRI represents variations with

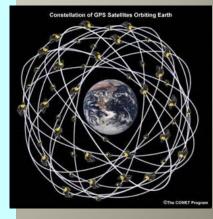
- altitude (50km 2000 km)
- latitude, longitude (geographic or geomagnetic)
- date and time of day

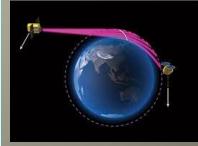
External drivers:

- solar indices (F10.7, sunspot number)
- ionospheric index (IG)
- magnetic indices (ap and kp)

Additional output parameters:

- vertical ionospheric total electron content (vITEC)
- ion drift at equator
- occurrence probability for spread-F and for F1 layer





(

Data Sources						
<u>Instrument</u> Ionosonde	<i>Platform</i> Worldwide ~170 stations	<i>Parameter</i> N _e from E to F peak	<i>Comments</i> From fifties to now			
Incoherent Scatter Radar	Jicamarca, Arecibo, EISCAT Millst. Hill, Kharkiv	N _e whole profile incl. E-Valley T _e , T _i N _i , v _i	Few radars, Many param. Also: Malvern, St. Santin, Sondrestrom			
Topside Sounder	Alouette 1, 2 ISIS 1, 2	N _e topside profile	Newer data from Ohzora, ISS-b, IK-19			
Insitu	AE-C,-D,-E Aeros-A,-B IK-24, DE-2	$N_{e}, T_{e}, T_{i},$ N_{i}, v_{i}	many more: DMSP, TIMED			
Rocket	Rocket data compilations	D-region parameters	sparse data set			
GNSS	Glob. Ground sta. network	d TEC	GPS, Glonass Baidou,Galileo			
LEO GPS (radio occultation)	COSMIC, CHAMP, others	Ne profile	data quality issues			

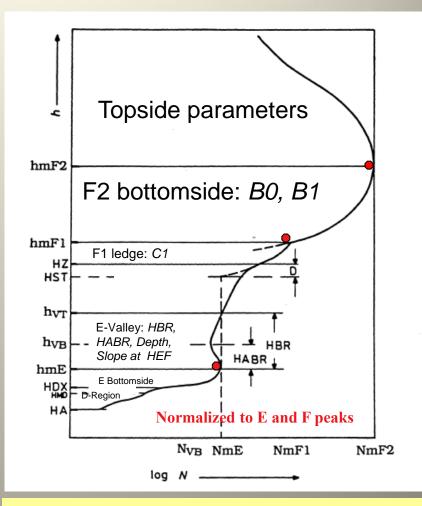
IRI-2012: model providers, their affiliation, country and the year of the related publication

Parameter	Region	Main Author	Institution	Country	Yea
	D-Region	Bilitza	IPW, Freiburg	Germany	198
		Friedrich	TU, Graz	Austria	200
		Danilov	IAG, Moscow	Russia	199
	E-Peak	Kouris	U Thessaloniki	Greece	197
		Bilitza	IPW, Freiburg	Germany	199
		Mertens	NASA, Langley	USA	201
		McKinnell	SANSA, Hermanus	South Africa	200
	E-valley	Bilitza	IPW, Freiburg	Germany	199
	F1-layer	Scotto	INVG, Rome	Italy	199
		Ducharme	CRC, Ottawa	Canada	197
		Reinisch&Huang	UML, Lowell	USA	200
	Bottomside	Bilitza&Radicella	ICTP, Trieste	Italy	200
₩ h		Gulyaeva	IZMIRAN, Moscow	Russia	198
		Altadill	Ebro Obs, Ebro	Spain	200
	foF2	Jones&Gallet	ITSA/ESSA, Boulder	USA	196
		Rush	ITS, NTIA, Boulder	USA	198
		Fuller-R&Araujo-P	CIRES/SWPC, Boulder	USA	200
	M(3000)F2	Jones&Gallet	ITSA/ESSA, Boulder	USA	196
	hmF2	Bilitza&Eyfrig	IPW, Freiburg	Germany	197
	Topside	Rawer&Ramakrishna	IPW, Freiburg	Germany	197
		Bilitza	Raytheon, Reston	USA	200
		Radicella&Coisson	ICTP, Trieste	Italy 2001,	200
т	Whole	Bilitza	IPW, Freiburg	Germany	198
	Topside	Truhlik	IAP, Prague	Czech Republic	201
	Plasmasphere	Kutiev&Oyama	ISAS, Tokyo	Japan	200
Ті	Whole	Bilitza	IPW, Freiburg	Germany	198
Ni	Whole	Rawer	IPW, Freiburg	Germany	197
	Whole	Danilov	IAG, Moscow	Russia 1985,	199
	Topside	Triskova	IAP, Prague	Czech Republic	200
	Bottomside	Richards	GMU, Fairfax	USA	201
opread-F		Abdu&Souza	INPE, Sao Jose Campos	Brazil	200
Auroral Bour	ndaries	Zhang	APL, Baltimore	USA	201

Built-up of the IRI electron density profile

Mathematical functions:

Global Variations:


- Special spherical harmonic functions using modified magnetic coordinates (modip, invdip)
- Interpolation/transition functions (Epstein, others)

Time Variations:

- Harmonics of different order
- Smooth transitions between day and night values (Epstein)

Height Variations:

- Epstein skeleton function approach
- Chapman function (varying scaleheight)

Global models for anchor points: foF2/NmF2 foF1/NmF1, foE/NmE, foD/NmD, hmF2/M(3000)F2, hmF1 , hmE, hmD

IRI Specifics

★ Combining the global picture recorded by satellites for different LTs and levels over solar activity with the 24/7 356 analysis provided by ground stations.

★ Modular approach, e.g., global models for profile anchor points: Te at different heights from ISIS, AE, IK connected by Epstein skeleton function.

★ Options to switch on a different model: 3 model options for hmF2 using different data sources (Ionosonde M(3000)F2 or hmF2, COSMIC/RO); 3 model options for topside Ne profile using different formalism. New, better models are easily phased in with validation help from the users

★ Avoid introducing interdependence between parameters because replacing one parameter model will affect the related parameter.

★ IRI drivers: F10.7 (daily, 81-day, 356-day), R (13-month), IG (13-month), Ap, Kp (3-hour, daily)

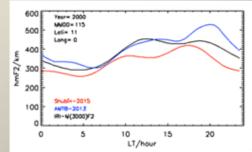
★ User input of measured parameters: NmF2/foF2, hmF2/M(3000)F2, NmF1/foF1, NmE/foE, hmE, NmD/foD, hmD, B0

IRI +/-

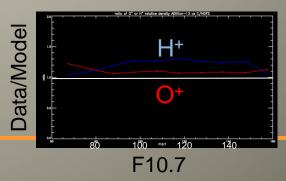
- + Synthesis of almost all available and reliable ionospheric data.
- + Widely used and validated; IRI is often the reference against which a satellite/rocket team compare their new data.
- + Recognized standard by COSPAR, URSI, ITU, ECCS, and ISO
- + Improvements continue as new data become available.
- Includes effects not yet discovered/explained by theory (4-wave pattern, Weddell Sea and Yakutsk Anomalies)
- + IRI team's global distribution guarantees access to the global data base
- Fared very well in model validation studies including the CEDAR Challenge
- Only as good as the data foundation on which it was build.
 - Bias towards Northern mid-latitudes.
 - Data-sparse regions/times require inter/extra-polation
 - Recent very low and broad solar minimum brought conditions not covered by previous solar minimum data sets.
- Funding

IRI-2016

New options for hmF2


(1) Altadill et al. (2013)

- Data from 26 digisonde stations 1998–2006.
- Spherical harmonics in longitude/LT and latitude. Total of 610 coefficients including variation with solar activity and season
- Screen points (24) along stations' modip lines.
- New model improves the fit to the observations by 10% on average compared to old IRI, and by up to 30% at high and low latitudes.
- (2) Shubin (2015)
- Radio-occultation data from CHAMP (100,000 profiles), GRACE (70,000) and COSMIC (2,000,000)
- Legendre expansion in latitude and UT Fourier expansion ; total of 149 coefficients
- RMS between data and model is 10–16 km (3-4%), IRI: 13–29km (9-12%)
 ~10% of RO hmF2 values were discarded because of data quality issues


Improvement of ion composition

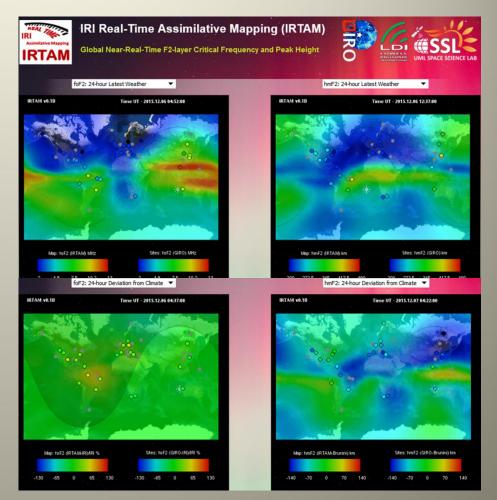
Truhlik et al. (2013)

- IK-24, AE-C, AE-E, and C/NOFS data
- Improvement at high and low solar activity
- Noontime transition height (n(O⁺) = n(H⁺)) at the equator in 2008 drops from ~850km to ~670km

Evening peak well developed in AMTB and Shubin but at different times.

IRI-Real-Time

Galkin et al. (2012), IRTAM (IRI Real-Time Assimilative Mapping)


☆ Ionosonde data from 61+ stations of the Global Ionosphere Radio Observatory (GIRO) network.

☆ Using CCIR formalism (988 coefficients) to describe the difference between ionosonde fof2 and CCIR model.

★ Using previous 24-hour history.

☆ Using same approach for hmF2.

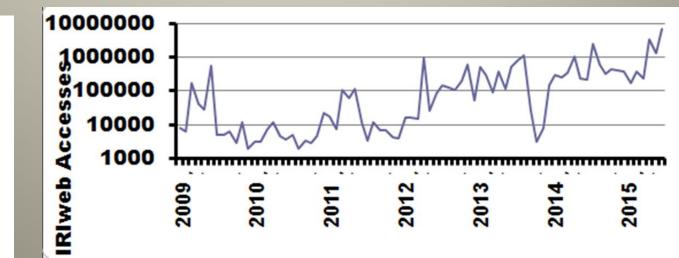
☆ Using Neural Network Interpolator (NECTAR) to fill the gaps between stations.

http://giro.uml.edu/IRTAM

IRI Usage

Year	JGR	GRL	SW	RS
2009	5.0%	3.6%	0.0%	10.5%
2010	5.6%	4.7%	5.6%	11.8%
2011	7.1%	1.6%	8.1%	14.2%
2012	7.6%	2.7%	4.8%	13.8%
2013	5.1%	1.7%	2.3%	8.2%
2014	6.6%	0.5%	5.7%	10.7%
2015	8.3%	2.3 %	1.6%	9.6%

Percentage of papers in the AGU journals JGR, GRL, RS and SW that make use of the IRI model (validated text search).


JGR = Journal of Geophysical Research

GRL = Geophysical Research Letters

RS = Radio Science

SW = Space Weather journal

Accesses to the IRIweb online computation of values (CCMC version not included)

IRI Workshops and Publications

COSPAR Bremen, Germany

IRI Workshop SANSA, Hermanus, South Africa

COSPAR Mysore, India

IRI Workshop UWM, Olsztyn, Poland

COSPAR Moscow, Russia

IRI CCBW Bangkok, Thailand

COSPAR Istanbul, Turkey

IRI CCBW Taipei, Taiwan

Representation of the Auroral and Polar lonosphere in IRI

> Improving IRI over the **African Sector**

Global representation of ionospheric peak parameters for space weather applications

IRI and GNSS Data

Representation of the ionosphere in

IRI at equatorial latitudes and progress towards Real-Time IRI

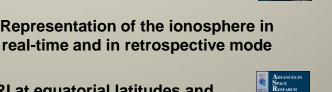
Improved Description of the Ionosphere through Data Assimilation

IRI and COSMIC data for ionospheric weather predictions

Advances in Space Research Volume 51, Number 4,

ASR, Volume 52 Number 10

Advances in Space Research Volume 55 Number 8


Advances in Space Research **Submission** deadline: July 31

irimodel.org

Advances d Space Research

Advances d Space Research

