
A phase-change memory model for neuromorphic computing
S. R. Nandakumar,1, 2 Manuel Le Gallo,1 Irem Boybat,1, 3 Bipin Rajendran,2, a) Abu Sebastian,1, b) and Evangelos
Eleftheriou1
1)IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
2)New Jersey Institute of Technology, Newark, NJ 07102, USA
3)Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland

(Dated: 20 November 2018)

Phase-change memory (PCM) is an emerging non-volatile memory technology that is based on the reversible
and rapid phase transition between the amorphous and crystalline phases of certain phase-change materials.
The ability to alter the conductance levels in a controllable way makes PCM devices particularly well-suited
for synaptic realizations in neuromorphic computing. A key attribute that enables this application is the
progressive crystallization of the phase-change material and subsequent increase in device conductance by the
successive application of appropriate electrical pulses. There is significant inter and intra-device randomness
associated with this cumulative conductance evolution and it is essential to develop a statistical model to
capture this. PCM also exhibits a temporal evolution of the conductance values (drift) which could also
influence applications in neuromorphic computing. In this paper, we have developed a statistical model that
describes both the cumulative conductance evolution and conductance drift. This model is based on extensive
characterization work on 10,000 memory devices. Finally, the model is used to simulate supervised training
of both spiking and non-spiking artificial neuronal networks.

I. INTRODUCTION

Phase-change memory (PCM) is arguably the most advanced emerging non-volatile memory technology1. PCM
is based on the property of certain materials such as Ge2Sb2Te5 that exhibit a significant difference in resistivity
depending on whether they are in the ordered crystalline phase or the disordered amorphous phase. In a PCM device,
a tiny volume of such a material is sandwiched between two metal electrodes. A typical device structure is shown
in the cross-sectional TEM image in Fig. 1(a). By the application of suitable electrical pulses and subsequent Joule
heating, it is possible to reversibly alter the phase-configuration of the material within the device. Pulses that result in
an increase in the size of the amorphous region are typically referred to as RESET pulses. In this case, the application
of the pulse results in melting of a critical volume of the material and which is then rapidly quenched to induce
glass transition. The pulses that reduce the size of the amorphous region are referred to as SET pulses. Here, the
temperature reached within the device is favorable for crystallization (see Fig. 1(b))2. Typically the SET pulses that
induce partial crystallization of the material is referred to as partial SET pulses and all these pulses are collectively
referred to as programming pulses.

The electrical resistance/conductance of the device will depend on the resulting phase-configuration. In fact, it is
possible to achieve a continuum of resistance values in a single device and this can be exploited for neuromorphic
applications. For example, as shown in Fig. 1(c), PCM devices organized in a cross-bar configuration can be used to
emulate the synaptic elements in an artificial neural network3,4. The synaptic weights are captured by the conductance
values of the PCM devices. The inputs from one layer of neurons are weighted by these conductance values (via Ohm’s
law) and the resulting current along the columns serve as inputs to the next layer of neurons. During the training
of a neural network, the initial conductance values are typically chosen randomly, which is then modified (synaptic
plasticity) via some appropriate learning rule. The programming pulses can be used to alter the conductance values
during the training process. Unlike RESET pulses, which cause in an abrupt transition to lower conductance values,
successive application of a partial SET pulse results in a more progressive increase in the conductance value. This
cumulative evolution of conductance is highly beneficial for neuromorphic applications. Hence, often in PCM, only the
partial SET pulses are used to implement synaptic plasticity rules4. To avoid the use of RESET pulses, PCM devices
are organized in a differential configuration5. A comprehensive understanding of this accumulative behavior across
a large number of devices is central to the realization of large-scale neural networks. Besides crystallization, there
are other structural dynamics at play in PCM devices. These devices exhibit a temporal evolution of conductance
values after the application of each programming pulse. This is attributed to a spontaneous structural relaxation of
the material6 and could also play a key role in neuromorphic computing.

a)Electronic mail: bipin@njit.edu
b)Electronic mail: ase@zurich.ibm.com

2

Time

Te
m

p
e
ra

tu
re

RESET pulse

SET pulse

Read
Troom

Crystallization
regime

Tmelt

50 nm

Bottom
electrode

Amor-GST

Cryst-GST

Top electrode

(a) (b)

(c)
Neurons

Synapses

Partial-SET pulse

FIG. 1. (a) TEM image of a mushroom-type PCM device. Amorphous dome (Amor-GST) inside the crystalline (Cryst-GST)
dielectric is visible (b) Pictorial representation of the programming pulses and the resulting relative temperature for RESET,
SET, partial SET and read operation in PCM (c) Schematic illustration of the application of PCM devices as synaptic elements
in neuromorphic computing. A crossbar array of PCM devices could be used to represent the connection strengths in a neural
network layer.

In this article, we present a comprehensive model of PCM devices that captures the accumulative behavior, con-
ductance drift and read noise. Extensive experimental characterization of 10,000 PCM devices has been performed to
develop this statistical model. Finally, we demonstrate the efficacy of this model by using it to match experimentally
observed array level characteristics and to train spiking and non-spiking artificial neural networks.

II. DEVICE CHARACTERIZATION AND MODELING

For device characterization, we used mushroom-type PCM devices fabricated in the 90 nm technology node7. The
phase-change material is doped Ge2Sb2Te5 (GST). A prototype chip comprising 3 million devices was used in the
study8. Individual devices are addressed via word lines and bit lines and the devices have access transistors in series.
The devices are programmed using current pulses of designated amplitude and width generated in the peripheral
circuits. The conductances are read by applying a 0.3 V read pulse and the resulting current is read using an 8-bit
ADC. The ADC is calibrated to span a conductance range between 0.1µS and 27µS.

First, the device conductances were initialized to a distribution close to 0.1µS using iterative programming9.
Subsequently, we applied 20 partial SET pulses of 90µA amplitude and 50 ns duration. After the application of each
pulse, devices are read 50 times. In addition, an immediate conductance measurement is performed approximately
100 ns after the programming pulse. However, subsequent measurements are obtained at time intervals in the order
of seconds. As a result, consecutive programming pulses were applied with an average interval of 38.6 s for the 10,000
devices. The resulting conductance evolution, except for the immediate read after 100 ns, for one such representative
device is shown in Fig. 2. In subsequent sections, we will use all the measurements from the 10,000 devices (barring
a few whose conductances where outside the ADC limits) to develop the statistical model.

A. Accumulative behavior

First, we characterized the accumulative behavior arising from the successive application of partial SET pulses. To
decouple the accumulative behavior from conductance drift, the 50th read measurement was used. The distribution

3

0 200 400 600 800

Time (s)

0

3

6

9

12

G
 (

S
)

Partial-SET instances

50ns

90μA

Partial-SET pulses

FIG. 2. The measured conductance evolution in a single device in accordance with the application of 20 consecutive partial
SET pulses. The time instances of programming are indicated by the spike sequence displayed at the top. After the application
of each pulse, the device conductance is measured 50 times.

0 10 20
Pulse number

0

2

4

6

8

10

12

G
 (

S
)

(a)

0 5 10 15

G
 (S)

-1

0

1

2

G
(

S
)

Pulse number

(b)

Device
Fit line

0 5 10 15

G
 (S)

0

1

2

3

G
 (

S
)

Pulse number

(c)

0 10 20
Pulse number

0

0.5

1

1.5

2

G
 +

 c
on

st
an

t

(d)

Device
Fit line

0 10 20
Pulse number

0

0.5

1

G
 +

 c
on

st
an

t

(e)

FIG. 3. (a) The statistics of cumulative conductance evolution as a function of the number of partial SET pulses. The error
bars indicate one standard deviation. (b) The mean µ∆G and (c) standard deviation σ∆G of conductance change as a function
of the average initial conductance µG for each programming pulse. The initial conductance distribution for each programming
pulse is divided into smaller intervals and µG, µ∆G and σ∆G is determined separately for each interval. Each data point in (b)
and (c) corresponds to an average of measurements from at least 100 devices. Also depicted are the fit lines used to obtain
the model parameters. (d), (e) The same data points of µ∆G and σ∆G are plotted as a function of the pulse number with a
constant added for data points corresponding to a single µG interval. The dependency of µ∆G and σ∆G on pulse number is
approximated using an exponential function with a decay constant of 2.6.

of the conductance values as a function of the pulse number is shown in Fig. 3(a). It can be seen that the average
conductance change is high at low conductance values and it gradually reduces as the conductance values increase.
It can also be seen that there is significant randomness associated with the conductance values. This is mostly

4

attributed to the inherent randomness associated with the crystallization process10,11. In fact, the inter- and intra-
device variability in the array has been observed to be of comparable magnitude12–14.

To obtain a quantitative description of this behavior, we studied how the conductance change arising from the
application of a single SET pulse depends on the conductance state of the device prior to the application of the pulse
as well as the device’s programming history. The devices were split into different groups based on their conductance
values. Each group corresponds to a conductance interval of 1µS. For each group, the mean (µ∆G) and standard
deviation (σ∆G) of the conductance change due to the application of a single programming pulse is plotted against
the mean conductance (µG) of each group (see Fig. 3(b) and 3(c)). The data points are generated only for those
groups with 100 or more devices. This is repeated for the conductance values measured after the application of each
programming pulse. In Fig. 3(b) and 3(c), each color corresponds to a single programming pulse with the red color
indicating the first pulse and the blue color the 20th pulse. We observe that there is a negative correlation between
the µ∆G and µG that suggests a linear decrease in the conductance change as the device conductance increases.
In addition, in a particular conductance range, the conductance change observed seem to decrease with increasing
number of applied pulses. This behavior can be captured using a linear fit of a negative slope to map the relation
between µ∆G and µG for any particular pulse number. Further, the dependency on the pulse number is encoded in
the y intercept of this linear fit. It can be seen that for any given conductance value, the extent of conductance change
induced by a single partial SET pulse reduces significantly with increasing number of applied pulses. This could be
captured using an exponential empirical relation (Fig. 3(d) and (e)).

It can be seen that the behavior of σ∆G is also very similar to that of µ∆G except that there is a positive correlation
with the µG in this case. Therefore, the mean and standard deviation of the ∆G is modeled respectively using lines
of negative and positive slopes and with an intercept which is an exponential function of the pulse number (p) as in
the following equations (also in Fig. 3(b) and (c)):

µ∆G = m1G+ (c1 +A1e
−p/α) (1)

σ∆G = m2G+ (c2 +A2e
−p/α) (2)

where the fit parameters m1, m2, c1, c2, A1, A2, and α are -0.084, 0.091, 0.880, 0.260, 1.40, 2.15, and 2.6, respectively.

B. Conductance drift and read noise

10-7 10-4 10-1 102

Time (s)

10-6

10-5

10-4

G
 (

S
)

(a)

Device
Fit line

0 5 10

G(T
0
)
 (S)

0.03

0.04

0.05

0.06

0 2 4 6 8 10

G
 (S)

0.1

0.2

0.3

0.4

0.5

nG
 (

S
)

y = 0.03 x + 0.13

(b)

Device
Fit line

FIG. 4. (a) The average conductance evolution after each programming pulse obtained by the 50 read operation is fitted using
equation 3. The estimated drift-coefficient, ν, is shown in the inset (b) The read noise measured from the device array is plotted
as a function of the average device conductance. The linear fit used to estimate read noise for the model in a state-dependent
manner is also shown.

In this section, we model the conductance drift in the devices arising from structural relaxation. For this, we use
the 50 read measurements obtained after the application of each SET pulse. The mean conductance evolution after

5

each programming event as a function of time is plotted in Fig. 4(a). The response is fitted using the model15,16,

G(t) = G(T0)

(
t

T0

)−ν

(3)

According to equation (3), if the device conductance, G(T0) is known at time T0 after programming, the conductance
at any time t can be estimated with the knowledge of the drift coefficient, ν. The estimated ν from the fit lines have a
mean value of 0.04 (Fig. 4(a) inset). Note that the logarithmic dependence on time suggests that after programming,
the conductance drift slows down with time. We observe that the partial SET pulses result in a state that drifts,
with a drift coefficient that decreases with increasing conductance µG(T0). The application of a partial SET pulse
re-initiates structural relaxation and conductance drift. Hence, we speculate that each partial SET pulse creates a new
unstable glass state because of the atomic rearrangement that occurs upon its application, which then structurally
relaxes to an energetically more favorable amorphous state6,17.

In addition to the conductance drift, there are also significant fluctuations in the conductance values (read noise)
mostly arising from the 1/f noise exhibited by amorphous phase-change materials18. To model this, we estimated
the noise from the last ten reads from the fifty read measurements. The objective was to decouple the read noise
from the conductance drift. The standard deviation of the zero-mean read noise is plotted as a function of the mean
conductance (see Fig. 4(b)). It can be seen that the read noise increases with the device conductance. The read noise
standard deviation, σnG, for the device conductance range is fitted using the linear relation,

σnG = m3G+ c3 (4)

where m3 = 0.03 and c3 = 0.13.

C. The overall model description and validation

In this section, we combine the various elements of the model describing the accumulative behavior, conductance
drift, and read noise to generate a complete statistical model and validate it based on the experimental data. The
objective is to capture the evolution of conductance values for a large collection of devices after a certain time T0

after programming with an arbitrary number of partial SET pulses. More specifically, we would like to determine the
device conductance G(t) at any time t, which has been initialized to approx. 0.1µS, and is subjected to a sequence
of 90µA, 50 ns programming pulses with arbitrary time intervals between them.

TABLE I. The model parameters

Symbol Value Symbol Value Symbol Value

m1 -0.084 c1 0.880 A1 1.40

m2 0.091 c2 0.260 A2 2.15

α 2.6 T0 38.6 s ν 0.04

m3 0.03 c3 0.13

To simulate this, three quantities are recorded per device: (a) Gi(T0), the conductance after T0 time after the ith

programming pulse for i = 0, 1, 2 . . ., (b) Pmem, a quantity that captures the programming history, and (c) tp, the time
of the last programming event. tp is initialized to zero. Based on the chosen initial conductance value G0(T0), Pmem
is initialized to Pmem,0 = e−p0/α, where p0 is the effective number of pulses applied to reach the initial conductance
G0(T0). p0 is zero for initialization around 0.1µS and p0 for higher values of conductance is determined from the
average conductance evolution curve shown in Fig. 3(a). The effective number of pulses versus conductance can be
approximated empirically as,

p0 = 0.027µ3
G − 0.15µ2

G + 0.81µG (5)

for conductance ranging from 0.1µS to around 8µS. After initialization, for the N th programming event, Pmem is
first updated as Pmem,N = Pmem,N−1e

−1/α for N = 1, 2, Then G(t), which has seen N programming pulses can

6

be determined as follows:

µ∆GN
= m1GN−1(T0) + (c1 +A1Pmem) (6)

σ∆GN
= m2GN−1(T0) + (c2 +A2Pmem) (7)

∆GN = µ∆GN
+ σ∆GN

χ (8)

GN (T0) = GN−1(T0) + ∆GN (9)

G(t) = GN (T0)

(
t− tp
T0

)−ν

+ nG (10)

Here, χ represents a Gaussian random number of mean zero and variance 1. Another Gaussian random variable with
mean zero, nG, captures the conductance fluctuations arising from PCM noise, whose standard deviation is calculated
based on the instantaneous conductance state as dictated by the linear fit in equation 4 (also in Fig. 4(b)). All the
model parameters are listed in Table I. Please note that the conductance values predicted by the model are in µS.

0 10 20
Pulse number

0

2

4

6

8

10

12

G
 (

S
)

(a)

Device
Model

0 10 20
Pulse number

0

5

10

G
 (

S
)

(b)

Device
Model

0 10 20
Pulse number

0

1

2

3

G
 (

S
)

(c)

FIG. 5. (a) The distribution of conductance values obtained using the model as a function of the number of partial SET pulses
and match with experiments. (b) The mean of the conductance as a function of the pulse number. (c) The standard deviation
of the conductance as a function of the pulse number.

First, the model is used to validate the same experimental data that was used to generate the model parameters.
In particular, the model is used to generate the distribution of conductance values as a function of the number of
programming pulses. As shown in Fig. 5, the mean and variance match remarkably well with experimental data. It can
also be seen that the distributions themselves are remarkably similar. Fig. 6(a)-(c) show the conductance distribution
from the 50th read, after initialization, after the application of 5 programming pulses, and after the application of 20
programming pulses, respectively. The model also matches the correlation coefficient observed between G and ∆G
for the pulses applied. From Fig. 6(e) and (f), it can be seen that the statistical model also captures the individual
device behavior remarkably well.

Additional measurements were performed where the devices are programmed with 20 programming pulses, however,
with varying time intervals between the application of each pulse. The time interval was determined based on the
number of reads performed and in the current experiment, each read process took approximately 1 s for the 10,000
devices. Fig. 7 shows the programming events in time (top) and the resulting evolution of the mean conductance of
the 10,000 devices (bottom). The spikes in the programming event plot correspond to the application of partial SET
pulse and the device conductances are read at all other time instances. As discussed earlier, it can be seen that with
the application of each programming pulse, the drift process is re-initiated. Another interesting observation is that the
net change in conductance seems to be independent of structural relaxation. There is some evidence that structural
relaxation slows down crystal growth rate2. But at least in these devices and these time scales, this does not seem to
be significant. The final conductance values at the end of programming seem to converge to similar conductance levels

7

0 1 2 3
G (S)

100

102

104

C
ou

nt

(a)
Device
Model

0 10 20 30
G (S)

100

102

104

C
ou

nt

(b)
Device
Model

0 10 20 30
G (S)

100

102

104

C
ou

nt

(c)
Device
Model

0 10 20
Pulse number

-0.5

0

0.5

co
rr

.c
oe

ff(
G

,
G

)

(d)

Device
Model

0 10 20
Pulse number

0

5

10

15

G
 (

S
)

Device

(e)

0 10 20
Pulse number

0

5

10

15

G
 (

S
)

Model

(f)

FIG. 6. The distribution of conductance values after (a) initialization (b) the application of 5 programming pulses and (c)
the application of 20 programming pulses. It can be seen that there is a remarkable agreement between the experimental
distribution and that predicted by the model. (d) The correlation coefficient between the G and ∆G after the application of
each programming pulse calculated based on the model and is compared with the experimental measurement. The conductance
evolution of individual devices as measured experimentally (e) and as predicted by the model (f).

P
ar

tia
l-S

E
T

in
st

an
ce

s

0 200 400 600
Time (s)

0

5

10

G
 (

S
)

1 Read
5 Read
10 Read
25 Read
Model

FIG. 7. The 10,000 PCM devices are programmed using sequences of 20 current pulses of 90µA and 50 ns width. The number of
read operations performed after each programming event is varied resulting in different time intervals between the programming
events. The resulting conductance evolution during all the read operations is illustrated. The proposed model captures the
experimentally observed behavior remarkably well.

independent of the rate of programming. Hence, our proposed model is able to capture this behavior remarkably well
with the additional incorporation of Equation (3).

8

III. SPIKING NEURAL NETWORK WITH MODELED PCM-SYNAPSES

1

250

500

In
pu

t

0

20

40

E
po

ch

0 100 200 300 400
Time (ms)

Desired spikes
Observed spikes

0 5 10 15
Time (s)

10

0

10

G
 (

S
)

-1000 0 1000 2000

W

100

101

102

103

C
ou

nt

FP64
PCM

0 20 40
Epoch

0.4

0.6

0.8

1

C
or

re
la

tio
n

FP64
PCM

Input spikes Desired spikes

Observed spikes

(a) (b) (c)

(d)

Gp Gn

+ -

W = β(Gp - Gn)

(e)

Gp

Gn

FIG. 8. (a) The spiking neural network used for the training simulation. Two PCM devices in the differential configuration
used for the synapse is also shown. (b) Raster plot of input spike streams (top) and the desired spike streams from the output
neuron (bottom). The observed spikes during each training epoch are plotted over the desired spike trains. The observed spikes
are within 0.7 ms of the desired instances after 40 epochs of training. (c) Conductance evolution of a few synapses during the
training illustrating the drift and read noise of PCM devices (d) The final weight distribution from the PCM synapses along
with the weights from a floating point (FP-64 bit) training is shown for reference. (e) The correlation between the desired and
observed spike trains after 40 epochs with the PCM synapse is similar to that using floating point synapses.

The developed model could be used to simulate training behavior of neural networks and other possible learning
systems which require adaptive weights. To illustrate this, we train a spiking neural network (SNN) and a non-spiking
artificial neural network (ANN) with PCM based synapses whose conductance modulations are emulated by the
model and discuss the effect of device behavior such as limited granularity, stochasticity in the training. The PCM
devices are assumed to be arranged in a crossbar array representing the connection strength between adjacent layers
of neurons as in Fig. 1(c). The crossbar arrangement enables them to perform the weighted summation necessary for
the dataflow through the network in constant time irrespective of the layer size.

SNNs are third generation neural networks that attempt to mimic biological neural network behavior. Biological
neurons integrate its input over time in analog domain, while communicating with other neurons via spikes, enabling
highly energy efficient signal encoding and processing. In SNNs, this neuronal behavior is typically emulated using
a leaky-integrate and fire (LIF) model. The LIF neuron could be represented as a leaky capacitor that integrates
incoming currents, with the integration reset when the voltage across the capacitor exceeds a threshold, and a spike
is sent to the downstream neurons. This continuous time behavior makes the training and inference of SNNs in
conventional digital hardware extremely inefficient. Non-volatile memory array based synapse networks with dedicated
neuronal circuits at the periphery could potentially provide a more efficient non-von Neumann architecture for SNN
implementation and training.

An example SNN is shown in Fig. 8(a). It has one LIF output neuron receiving 500 spikes streams via input
synapses. The network is expected to generate a desired spike pattern from the inputs which is generated here
from a Poisson random process for illustrative purposes. The network spike input and the desired output spike
response is illustrated in Fig. 8(b). In response to each spike input, synapses generates currents modeled by the
expression Isyn = W × (e−t/τ1 − e−t/τ2) as a function of time, t, where W is the synaptic strength. The task of the
supervised learning algorithm is to adjust the weights such that the observed spikes match a desired pattern. One
weight adjustment rule for SNNs that has been demonstrated recently is the NormAD algorithm19 which provides
the network weight updates ∆W as

∆W = r

∫ T

0

e(t)
d̂(t)

||d̂(t)||
dt (11)

where r is the learning rate, T is the duration of the training pattern, e(t) is the difference between the desired and

9

observed output spike trains. d̂(t) is obtained by convolving the synaptic current (Isyn) with an approximate impulse
response of the LIF circuit.

The network synapses are realized using the PCM model. Because of the abrupt RESET behavior of the device,
each synapse is realized using two PCM devices Gp and Gn in differential configuration such that W = β(Gp −Gn),
where β is a scaling factor5. Hence synaptic potentiation is achieved by applying a partial SET pulse to Gp and
depression is achieved by applying a partial SET pulse to Gn. This unidirectional programming often causes the
device pairs to saturate preventing any further weight update. Hence an occasional weight refresh is performed, based
on the following criteria. If Gp or Gn > Gx, and |Gp − Gn| < 0.25Gx, where Gx is a threshold, both the devices
are RESET and the conductance difference is programmed to the device which had the higher conductance. For
the hardware implementation, the RESET pulse shape could be determined from the PCM programming curve2,9,20.
Here, the stochastic RESET behavior is simulated using an abrupt conductance transition to a distribution of mean
1µS and standard deviation 0.5µS.

For the training, the device conductances are initialized to a distribution around 2µS with a standard deviation
of 0.5µS. During each training epoch, the 400 ms long spike sequences are presented to the network and the weight
updates are computed. The scaling factor β is chosen to match the PCM based weight distribution to that obtained
from an equivalent network trained with floating-point synaptic weights (Fig. 8(d)). While this scaling enables PCM
based synapses to represent the desired weight range, the achievable weight updates are limited by the device granu-
larity. Further, we assume the states of the individual devices are unknown to determine the optimum programming
pulse. Hence, the estimated weight updates are converted to programming pulses by assuming an average conductance
change of 0.75µS for each partial SET pulse (as the 7.5µS conductance range used in our study is typically reached
within 10 pulses). The resulting conductance evolutions during training for a few synapses are shown in Fig. 8(c).
As we see here, the PCM synapses drift and have read noise while computing the weight updates. The conductance
programming is without any read-verify operation and is stochastic, which will simplify the system implementation
and accelerate the training process. The training performance is evaluated based on a correlation between the desired
and observed spike trains19 and is plotted in Fig. 8(e). The corresponding numbers from a training assuming floating
point synapses are shown for reference. In spite of the stochastic nature of PCM weight updates and conductance
drift after programming, the SNN incorporating these devices exhibit training performance that is at par with the
baseline software network.

IV. DEEP LEARNING WITH MODELED PCM-SYNAPSES

Now we discuss the training of an artificial neural network (ANN) whose synapses are realized using the PCM
differential configuration. The network is designed for the benchmark handwritten digit recognition task, based on
28 × 28 gray-scale images from the MNIST dataset. The dataset has 60,000 training images and 10,000 test images.
In this exercise, we attempt to modify the standard backpropagation training algorithm to account for the limited
device granularity and its effect is analyzed.

The network used for the task is shown in Fig. 9(a), which has two fully connected weight layers. The input
layer neurons are linear, the hidden layer and the output layer neurons perform a logistic function on their inputs.
The neuron responses are often termed as their activations. The training is performed using the back-propagation
algorithm, an adaptation of gradient descent for multi-layer ANNs. The first stage of training, known as forward
propagation involves presenting the image pixels at the input layer and determining the output layer response. Out of
the ten output neurons, the one corresponding to the input image is expected to have the highest neuron activation.
The actual response is compared with the original class label and an aggregate network error is determined. The
algorithm tries to minimize the error by adjusting the weights in the network. For this, the gradient of the error
function with respect to each weight in the network is determined using the back-propagation algorithm. This involves
sending the error computed in the last layer to the previous layers successively through the corresponding synaptic
weights. If xi is the neuron activation of the pre-neuron from forwarding propagation and δj the error computed at
the input of post-layer neuron of any weight during back-propagation, then desired weight-update for the synapse
between these neurons can be computed as

∆Wij = η.xi.δj (12)

where η is a suitably chosen learning rate. The weighted summation or the matrix-vector multiplication necessary for
the forward and backward propagation can be realized using the same crossbar array of devices, by feeding the vector
as voltages respectively along the word line or bit line and reading the matrix-multiplication results as currents along
the corresponding bit line or word line respectively.

During each epoch of the training, the network is presented with 60,000 training images and weight updates are
computed using Equation (12) after each image. Software training of the ANN with high precision floating point

10

0 5 10 15 20

Epoch

30

40

50

60

70

80

90

T
es

t a
cc

ur
ac

y
(%

)

P(update) = p
P(update) = 5p

0 5 10 15 20

Epoch

10-3

101

104

U
pd

at
e

co
un

t

P(update)= p, W
KJ

P(update)= 5p, W
KJ

P(update)= p, W
JI

P(update)= 5p, W
JI

0 0.5 1 1.5 2

Time (s)

20

10

0

10

20

G
 (

S
)

350
neurons

10
neurons

WJI

E
xpected

 im
age cla

ss

xi

xk
xj

1

0

WKJ

28x28
gray-scale

 image pixels

784
neurons

(a) (b)

(c) (d)

Gp

Gn

1

1

FIG. 9. (a) The artificial neural network used for handwritten digit classification based on the MNIST dataset. (b) The network
weights are implemented using 2 PCMs in differential configuration (W = β(Gp − Gn)). The conductance evolutions of the
device pairs from few synapses are shown for the training duration. (c) The neuron activations and errors have been scaled to
determine the weight update probability. The average number of weight updates per image in the two weight layers during the
training for two chosen scaling factors are shown. (d) The test accuracies for the two update probabilities. The P(update)=p
updated a smaller number of synapses using limited precision and stochastic PCM models and achieved higher test accuracies
faster.

weights gives around 98 % classification accuracy on the test set. Typically, ∆W/W < 10−3 for most of the ∆W s
during this training. However, the PCM devices used for the synaptic implementation has a state-dependent and
stochastic conductance update with very limited precision. Hence, when such non-volatile memory arrays are used
for neural network training, transferring the desired weight updates becomes a major challenge. There are different
proposals in the literature to solve this issue of low precision synapses by either using an additional memory for
gradient accumulation21,22, or using more complex synapse structures14,23. However, the additional overheads in these
approaches constrain the maximum computational efficiency achievable in crossbar array based training architectures
for neural networks. Here, we analyze the effect of the PCM response in training, where the weights are realized using
two PCMs in differential configuration and the weight updates are implemented using single-shot programming pulses
applied to the device model. Hence, the main ambiguity is in converting the desired weight updates into programming
pulses. Due to the large disparity in the desired granularity of ∆W and the observed ∆G from the device, a linear
mapping between the two will lead the network to rarely experience any weight update. To solve this issue we used a
scaled version of the x and δ to represent the probability to apply a programming pulse to the connected device. By
adjusting the scaling factor, we could control the number of devices getting programmed in the network during each
update. For illustration, we conducted two training experiments, where the update probabilities are p and 5p, where p
is a suitably chosen scaling factor. During training, we assumed, 1µs computation delay per crossbar array resulting
in a total training time of 2.26 s for 20 epochs. The conductance drift and read noise was re-evaluated after every
training image during the simulations and a weight refresh was performed after every 1,000 images (Fig. 9(b)). Due
to the probabilistic nature of the weight updates, out of the 278,260 weights in the ANN, only a small fraction of the
total weights received updates after every image. The average number of devices updated after each image is shown
in Fig. 9(c) for the two update probabilities. The corresponding classification accuracy of the network on the test
set, which is not used for training is in Fig. 9(d). The training experiment that received lesser programming updates
achieved higher accuracy and converged faster. In contrast to the high-precision software based training which has the
flexibility to choose arbitrary learning rates, the weight updates in a low-precision device (such as the PCM synapse)
is limited to the programming granularity of the device within its conductance range. The probabilistic sparse update
scheme we use here could be viewed as an alternative approach to implement back-propagation, where instead of

11

controlling the update of individual devices, the distance traveled on the error surface is chosen by controlling the
number of devices being updated at any time. However, the limited device precision, non-linearity, and stochasticity
seem to limit the maximum test accuracy achievable in this network to approximately 83 %, which is comparable to
experimentally observed training result in a similar network using PCM devices24.

While the training performance obtained in the simulation may seem subpar to the high-precision training, it is
worth noting that biological synapses are stochastic and have state-dependent conductance update similar to the
nano-scale non-volatile memory devices25. Some studies also suggest that they have a limited precision (∼ 4.6
bit)26. Training algorithms designed assuming floating point precision for the network weights are not optimized
for the limited precision weights. Considering the possible computational advantages of non-volatile memory based
neural network implementations, adaptations or innovations of algorithms are necessary accounting the underlying
architecture and hardware limitations. In such studies, the model we presented which takes into account the device
dynamics and variabilities will be highly useful.

V. DISCUSSION

Now, we analyze the possible computational advantages of PCM based implementation of neural networks compared
to the existing von Neumann architectures. We will also discuss how our modeling approach is applicable to other
phase change material systems and how it might be affected by device scaling.

In a crossbar based matrix-vector multiplying unit, the PCM device acts as both local memory and an analog
multiplier. The array structure enables them to perform standard O(N2) complex matrix-vector multiplications in
O(1) complexity with reduced data movement irrespective of the matrix size. The PCM devices are estimated to
have 2 to 3-bit digital precision27 and higher if some stochasticity could be tolerated. The area of a PCM cell with an
access transistor is ∼ 25F 2 (where F corresponds to the minimum lithographic pitch in a technology node), which
could be reduced to ∼ 6F 2 with a suitable diode based access device28. On the other hand, one bit SRAM area is
≥ 120F 2 and the area of a 16-bit multiply-accumulate (MAC) required for neural network architectures is at least
three orders of magnitude higher28,29. This results in trade-offs between the number of parallel computing units and
on-chip memory for hardware implementations of neural networks using conventional CMOS technology. Since the
available silicon real estate per die is limited, energy-hungry off-chip memory access becomes essential for storing the
network parameters30. On the other hand, due to its in-memory computation capability, crossbar arrays are estimated
to outperform modern GPUs by four orders of magnitude31. This is particularly advantageous for SNNs, as it need
continuous time simulation which calls for more analog and inherently parallel architectures32. The computational
efficiency of the crossbar array could be maintained to a large extent in the ANN training if its weight-update stage
could also be performed directly on the array devices, based on the coincidence of stochastic pulses that represent the
neuronal activations and back-propagated errors. However, this necessitates ∼ 10-bit update precision for the device
to achieve state-of-the-art training accuracies31. Most of the non-volatile memory devices today are binary, while a
few devices including PCM offers a few extra bits of precision.

However, recent results suggest that lack of precision in the non-volatile memory could be compensated by an
accompanying higher-precision unit21–23. The granularity of the synapse could also be improved by using multiple
devices per synapse14. In order to study such approaches for larger and more complex neural network problems,
compact models that reliably capture the device statistics are required. The model presented in this paper serves this
purpose. Furthermore, the insights developed from such training explorations could also be used to determine the
specifications for future devices.

The model we presented here is based on doped Ge2Sb2Te5 in a mushroom structure fabricated in 90 nm technology.
This model is largely data-driven and is not based on specific material properties. The key aspects of the model are
the negative correlation of the µ∆G and positive correlation of the σ∆G with the average current state µG (Fig. 3(b),
(c)). An intuitive explanation for these observations is as follows. Phase change memory devices have a chalcogenide
sandwiched between a top electrode and a bottom electrode, with one of the contacts making a narrow contact (in both
mushroom and pore PCM structures) with the dielectric acting as a point of heating. The temperature distribution
within a PCM cell is decided by many factors such as thermal and electrical resistance, and the specific heat capacity of
the cell materials. Typically, the temperature distribution along the vertical symmetry axis is a skewed parabola with
the maximum temperature located slightly above the heating contact in properly designed devices33,34. Further, the
crystal growth velocity in PCM increases monotonically until it reaches a peak crystallization temperature2. Though
this peak temperature may depend on the material, in partial SET pulse driven gradual conductance change operation,
the programming pulses are chosen to operate below this temperature. Therefore, when a device initialized with a
RESET operation is subjected to partial SET pulses, the point of maximum crystal growth will be around the point
of maximum temperature. This results in large conductance change for the first few pulses. For further programming
pulses of the same amplitude, assuming that the temperature distribution remains more or less unchanged and that

12

the crystalline-amorphous boundary has moved to lower temperature regions due to earlier crystal growth, every
subsequent programming will result in smaller conductance increase. This conductance saturation is captured in the
model by the point where µ∆G versus µG crosses zero. This zero-crossing behavior also makes the model bounded
in its conductance range, even when simulated with a large sequence of pulses. The increase in the programming
noise at higher conductance states may be attributed to the higher variability in the number of trap-states within the
reduced volume of the amorphous region as sub-threshold conduction in these devices are trap-mediated35.

While Ge2Sb2Te5 is the most commonly used material in PCM devices, other chalcogenide alloys have been explored
for improved properties such as faster crystallization, reduced drift and lower programming currents36,37. However,
the qualitative description of the temperature distribution and the modeling approach we presented here is expected
to remain valid in different phase change material systems provided the conductance modulation is driven by Joule
heating and have similar crystal growth dynamics. For example, comparable partial SET conductance accumulation
behavior has been reported in GeTe based PCMs38. Hence, the model we presented could be tuned to capture the
gradual crystallization behavior if sufficient statistics on device characteristic are available. Phase change memory
devices have also been demonstrated to be scalable via ab-initio simulations39,40 and experiments41. The temperature
profile within the scaled devices remain more or less the same under constant voltage scaling42, and hence similar
state-dependent conductance modulation behavior under partial SET programming pulses could be expected in them
as well. However, the scaling of the electrode contact area reduces the amorphous volume involved in the conductance
modulation, which could result in reduced granularity and higher stochasticity. For a given trap density, the changes
in this smaller amorphous region could lead to higher programming noise. The ability of a PCM cell to provide gradual
conductance state will also depend on the cell design. For example, in a mushroom cell, if the peak temperature point
is too far away from the heater electrode, the amorphous region will not cover the heater unless very high powers are
applied, effectively making multi-level operation almost impossible33. Therefore, the model could possibly be tuned
to adapt to different phase change materials and technology nodes with sufficient data, provided the devices are not
binary and have state dependent gradual conductance change.

VI. CONCLUSION

Phase-change memory devices are poised to play a key role in neuromorphic computing, in particular as synaptic
elements in artificial neural networks. A cumulative increase in conductance value with the successive application of
partial SET pulses is one of the key enablers for this functionality. In this article, through extensive characterization of
thousands of PCM devices, we have developed an accurate statistical model that captures this accumulative behavior.
This model also captures other attributes such as conductance drift arising from the structural relaxation of the
phase-change materials. We demonstrated the efficacy of the model for training of artificial neural networks and
discussed the importance of such statistical models for neuromorphic system emulations. The proposed model can be
a powerful tool for the exploration of various neuromorphic algorithms.

ACKNOWLEDGMENTS

This work was supported in part by the European Union’s Horizon 2020 Research, Innovation Program through
the project MNEMOSENE under Grant 780215 and the U.S. National Science Foundation under Grant 1710009.

1G. Burr et al., “Recent progress in phase-change memory technology,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 6, 146–162 (2016).

2A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,” Nature Communications 5, 4314 (2014).
3B. L. Jackson, B. Rajendran, G. S. Corrado, M. Breitwisch, G. W. Burr, R. Cheek, K. Gopalakrishnan, S. Raoux, C. T. Rettner,
A. Padilla, et al., “Nanoscale electronic synapses using phase change devices,” ACM Journal on Emerging Technologies in Computing
Systems (JETC) 9, 12 (2013).

4G. W. Burr et al., “Neuromorphic computing using non-volatile memory,” Advances in Physics: X 2, 89–124 (2017).
5M. Suri et al., “Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extrac-
tion,” in Proc. IEEE International Electron Devices Meeting (IEDM) (2011) pp. 4.4.1–4.4.4.

6M. Le Gallo, D. Krebs, F. Zipoli, M. Salinga, and A. Sebastian, “Collective structural relaxation in phase-change memory devices,”
Advanced Electronics Materials (2018).

7M. Breitwisch, T. Nirschl, C. Chen, Y. Zhu, M. Lee, M. Lamorey, G. Burr, E. Joseph, A. Schrott, J. Philipp, et al., “Novel lithography-
independent pore phase change memory,” in IEEE Symposium on VLSI Technology (IEEE, 2007) pp. 100–101.

8G. F. Close et al., “Device, circuit and system-level analysis of noise in multi-bit phase-change memory,” in IEEE International Electron
Devices Meeting (IEDM) (IEEE, 2010) pp. 29.5.1–29.5.4.

9N. Papandreou, H. Pozidis, A. Pantazi, A. Sebastian, M. Breitwisch, C. Lam, and E. Eleftheriou, “Programming algorithms for multilevel
phase-change memory,” in IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2011) pp. 329–332.

13

10T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou, “Stochastic phase-change neurons,” Nature Nanotechnology 11,
693–699 (2016).

11M. Le Gallo, T. Tuma, F. Zipoli, A. Sebastian, and E. Eleftheriou, “Inherent stochasticity in phase-change memory devices,” in
Solid-State Device Research Conference (ESSDERC), 2016 46th European (IEEE, 2016) pp. 373–376.

12I. Boybat, M. Le Gallo, T. Moraitis, Y. Leblebici, A. Sebastian, and E. Eleftheriou, “Stochastic weight updates in phase-change memory-
based synapses and their influence on artificial neural networks,” in Ph. D. Research in Microelectronics and Electronics (PRIME),
2017 13th Conference on (IEEE, 2017) pp. 13–16.

13N. Gong, T. Ide, S. Kim, I. Boybat, A. Sebastian, V. Narayanan, and T. Ando, “Signal and noise extraction from analog memory
elements for neuromorphic computing,” Nature Communications 9, 2102 (2018).

14I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleft-
heriou, “Neuromorphic computing with multi-memristive synapses,” Nature Communications 9, 2514 (2018), 1711.06507.

15A. Pirovano, A. Lacaita, F. Pellizzer, S. Kostylev, A. Benvenuti, and R. Bez, “Low-field amorphous state resistance and threshold
voltage drift in chalcogenide materials,” IEEE Transactions on Electron Devices 51, 714–719 (2004).

16D. Ielmini, D. Sharma, S. Lavizzari, and A. L. Lacaita, “Reliability impact of chalcogenide-structure relaxation in phase-change memory
(PCM) cells-Part I: Experimental study,” IEEE Transactions on Electron Devices 56, 1070–1077 (2009).

17M. Boniardi and D. Ielmini, “Physical origin of the resistance drift exponent in amorphous phase change materials,” Applied Physics
Letters 98, 243506 (2011).

18M. Nardone, V. Kozub, I. Karpov, and V. Karpov, “Possible mechanisms for 1/f noise in chalcogenide glasses: A theoretical description,”
Physical Review B 79, 165206 (2009).

19N. Anwani and B. Rajendran, “Normad-normalized approximate descent based supervised learning rule for spiking neurons,” in Inter-
national Joint Conference on Neural Networks (IJCNN) (IEEE, 2015) pp. 1–8.

20M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou, “Compressed sensing recovery using computational memory,”
in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2017) pp. 28–3.

21M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks with binary weights during propagations,”
in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 , NIPS’15 (MIT Press,
Cambridge, MA, USA, 2015) pp. 3123–3131.

22S. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian, and E. Eleftheriou, “Mixed-precision architecture based on
computational memory for training deep neural networks,” in IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE,
2018) pp. 1–5.

23S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha,
B. Killeen, C. Cheng, Y. Jaoudi, and G. W. Burr, “Equivalent-accuracy accelerated neural-network training using analogue memory,”
Nature 558, 60–67 (2018).

24G. W. Burr et al., “Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change
memory as the synaptic weight element,” IEEE Transactions on Electron Devices 62, 3498–3507 (2015).

25G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type,” The Journal of Neuroscience 18, 10464–10472 (1998).

26T. M. Bartol, C. Bromer, J. P. Kinney, M. A. Chirillo, J. N. Bourne, K. M. Harris, and T. J. Sejnowski, “Hippocampal Spine Head
Sizes are Highly Precise,” bioRxiv , 016329 (2015).

27A. Athmanathan, M. Stanisavljevic, N. Papandreou, H. Pozidis, and E. Eleftheriou, “Multilevel-Cell Phase-Change Memory: A Viable
Technology,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6, 87–100 (2016).

28G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. a. Lastras, A. Padilla,
B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” Journal of Vacuum Science & Technology B, Nan-
otechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, 223–262 (2010), arXiv:1001.1164.

29T. T. Hoang, M. Sjalander, and P. Larsson-Edefors, “A High-Speed, Energy-Efficient Two-Cycle Multiply-Accumulate (MAC) Archi-
tecture and Its Application to a Double-Throughput MAC Unit,” IEEE Transactions on Circuits and Systems I: Regular Papers 57,
3073–3081 (2010).

30V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings
of the IEEE 105, 2295–2329 (2017), arXiv:1703.09039.

31T. Gokmen and Y. Vlasov, “Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations,”
Frontiers in Neuroscience 10, 1–19 (2016).

32S. Nandakumar, S. R. Kulkarni, A. V. Babu, and B. Rajendran, “Building Brain-Inspired Computing Systems: Examining the Role of
Nanoscale Devices,” IEEE Nanotechnology Magazine 12, 19–35 (2018).

33D.-H. Kim, F. Merget, M. Först, and H. Kurz, “Three-dimensional simulation model of switching dynamics in phase change random
access memory cells,” Journal of Applied Physics 101, 064512 (2007).

34C. Ma, J. He, J. Lu, J. Zhu, and Z. Hu, “Modeling of the Temperature Profiles and Thermoelectric Effects in Phase Change Memory
Cells,” Applied Sciences 8, 1238 (2018).

35D. Ielmini and Y. Zhang, “Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices,”
Journal of Applied Physics 102, 054517 (2007), arXiv:1602.01885.

36S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bulletin 39, 703–710 (2014).
37F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, and E. Ma, “Reducing

the stochasticity of crystal nucleation to enable subnanosecond memory writing,” Science 358, 1423–1427 (2017).
38M. Suri, O. Bichler, D. Querlioz, B. Traor?, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C. Gamrat, and B. DeSalvo, “Physical

aspects of low power synapses based on phase change memory devices,” Journal of Applied Physics 112, 054904 (2012).
39J. Liu, X. Xu, L. Brush, and M. P. Anantram, “A multi-scale analysis of the crystallization of amorphous germanium telluride using

ab initio simulations and classical crystallization theory,” Journal of Applied Physics 115 (2014), 10.1063/1.4861721.
40J. Liu, “Microscopic Origin of Electron Transport Properties and Ultrascalability of Amorphous Phase Change Material Germanium

Telluride,” IEEE Transactions on Electron Devices 64, 2207–2215 (2017).
41F. Xiong, E. Yalon, A. Behnam, C. Neumann, K. Grosse, S. Deshmukh, and E. Pop, “Towards ultimate scaling limits of phase-change

memory,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016) pp. 4.1.1–4.1.4.
42S. Kim and H.-S. Wong, “Analysis of Temperature in Phase Change Memory Scaling,” IEEE Electron Device Letters 28, 697–699 (2007).

