Preprint Open Access

A phase-change memory model for neuromorphic computing

S. R. Nandakumar; Manuel Le Gallo; Irem Boybat; Bipin Rajendran; Abu Sebastian; Evangelos Eleftheriou


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120171227.0</controlfield>
  <controlfield tag="001">1492261</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland</subfield>
    <subfield code="a">Manuel Le Gallo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland; Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland</subfield>
    <subfield code="a">Irem Boybat</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">New Jersey Institute of Technology, Newark, New Jersey 07102, USA</subfield>
    <subfield code="a">Bipin Rajendran</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland</subfield>
    <subfield code="a">Abu Sebastian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland</subfield>
    <subfield code="a">Evangelos Eleftheriou</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1964128</subfield>
    <subfield code="z">md5:7061b6173f62e72b8c376a30409dd6f8</subfield>
    <subfield code="u">https://zenodo.org/record/1492261/files/NSI_JAP_main_v5_preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-10-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1492261</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">152135</subfield>
    <subfield code="v">124</subfield>
    <subfield code="p">Journal of Applied Physics</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland; New Jersey Institute of Technology, Newark, New Jersey 07102, USA</subfield>
    <subfield code="a">S. R. Nandakumar</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A phase-change memory model for neuromorphic computing</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780215</subfield>
    <subfield code="a">Computation-in-memory architecture based on resistive devices</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Phase-change memory (PCM) is an emerging non-volatile memory technology that is based on the reversible and rapid phase transition between the amorphous and crystalline phases of certain phase-change materials. The ability to alter the conductance levels in a controllable way makes PCM devices particularly well-suited for synaptic realizations in neuromorphic computing. A key attribute that enables this application is the progressive crystallization of the phase-change material and subsequent increase in device conductance by the successive application of appropriate electrical pulses. There is significant inter- and intra-device randomness associated with this cumulative conductance evolution, and it is essential to develop a statistical model to capture this. PCM also exhibits a temporal evolution of the conductance values (drift), which could also influence applications in neuromorphic computing. In this paper, we have developed a statistical model that describes both the cumulative conductance evolution and conductance drift. This model is based on extensive characterization work on 10 000 memory devices. Finally, the model is used to simulate the supervised training of both spiking and non-spiking artificial neuronal networks.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1063/1.5042408</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
109
138
views
downloads
Views 109
Downloads 138
Data volume 271.0 MB
Unique views 103
Unique downloads 129

Share

Cite as